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Abstract. The vector field associated with a dynamical system is assumed to be

piecewise continuously differentiable. The gradient of the vector field, entering into

integral expressions for the Lyapunov exponents, may therefore contain derivatives

of step functions. Results from the theory of distributions are used in the integrals'

evaluation.

Introduction. Differential equations have been previously derived which describe

the evolution of vectors, area tensors, and Lyapunov exponents along a trajectory.

These equations have been integrated by various means to give the spectrum of Lya-

punov exponents, L. E., [6,10], For discontinuous differential equations, D. D. E.,

3 a set of points, c e R, for which the integrands of the evolution equations, gradi-

ents of the vector field, will contain distributions. It is assumed that each point of

the set c; € (aj, &(), where the intervals are disjoint. Integrals for the evolution of

vectors, phase space volume, and L. E. are evaluated over the intervals [aj, bt]. The

integration methods of [6,10] are applicable to the complement of (ai, bt).

D.D.E. occur in a variety of applications including relay control systems [2,3]

and the oscillation of mechanical systems with Coulomb friction. Such systems may

exhibit intermittent motion. A numerical study indicates the utility of the derived

algorithms.

Lyapunov exponents. Consider a dynamical system

x = f(x) (1)

where x are spatial curvilinear coordinates in an n-dimensional Euclidean phase

space, En , and f(x) is piecewise continuously differentiable. Under general condi-

tions the solution of (1),

x = x(X), (2)

exists, is unique and continuous, [1,3], where X are material coordinates.

A subspace, V , of dimension m < n may be defined by the parametric equations

X = X(u) in material coordinates and after deformation, (2), by x = x(u) in spatial

coordinates, where u has m components. Let da{m) and dA(m) be spatial and
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material area elements of Vm , respectively. The w-dimensional L.E. associated

with a trajectory originating at X is defined as, [4,5],

*(x> ^J = limsup(\n(dam/dAJ)/q{t) (3)
t~* OO

where q(t) = t. The one-dimensional L.E., m = 1 , for the arc, ds , with tangent, n ,

associated with a trajectory and having initial values, respectively, of dS, N, and

X is given by

/(X, ds) = lim(lnAJ/q{t) (4)
t—*oo "

where stretch Xn = ds/dS. Since D(\nXn)/Dt = dklnkn{ , |n| = 1 , it follows that

(4) may be expressed as

*(X, ds) = lim(\/q(t)) / dkxnkn^dt (5)
(-.00 JQ

where dkl = (vkJ +vl k)/2 and vk=xk.

The material derivative of a vector, n, tangent to an arc ds is given by, [6,7],

D(nk)/Dt = vk and therefore

nk({) = nk(°) + [ vk \n\dL
Jo

(6)

In [4,5,6] an algorithm is given for the computation of /(a)(X,^sa), a — 1,...,

n. An arbitrary set of initial orthogonal unit vectors, {n( , ... , nfl} , is evolved

through the numerical solution of (1) and (6). At each time step the vectors

are orthonormalized. *((l)(X, ds(t) is then given by (5). In [4,6] it is shown that

£*/(X, dsj = x(X, VJ , i= I, m, and that

/(X, V) = lim (1/0(0) f'vk kdt. (7)
Jo

D.D.E. Since f(x) in (1) is piecewise continuously differentiable, the gradient,

j may contain derivatives of step functions. The following results are useful in

evaluating the integrals of such v( ■ as they occur in (5,6,7), [8,9]: If, in some

neighborhood of t = c, g(t) is continuous, x{t) is continuous and monotonic,

x(c) - 0, and Jt(c+)3 and does not vanish then

' , ,du(x(t)) , . . ..., +., ,0,
g{t) dx dt = g{c)l\x{c )| (8)L

where u(x) =1 for x > 0, u(x) = 0 for x < 0, and 0 < c < t. Since sgn(x) =

u{x) - u{-x) it follows from (8) that

I ' g(t)dSgnd{*{t)) dt = g(c)(\/\x(c~)\ + l/|x(c+)|). (9)

Asymmetric relay elements and relays with hystersis and dead zones may be mod-

eled by sums of u(x) and sgn(x), [2], The function describing the behavior of a

relay with a dead zone is given by (sgn(x - x0) + sgn(x + x0))/2 which = 1,0,-1

for x > x0, |x| < x0 , and x < -x0 , respectively.
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An example will indicate the general application of (8) and (9). Consider an

oscillator with Coulomb damping:

x, = x2 (10)

x2 = - klxl - F sgn(x2) + /(x3) (11)

x3=l (12)

where the constant coefficients, kx and F, are >0. Then v{ , = 0, v{ 2 = 1,

i>, 3 = 0, v2 , = —kx , Vj 2 = -Fd sgn(x2)/<9x2, v2 3 = df/dx3, i>3 , = 0,

v3 2 = 0, and v3 3 = 0. (7) and (9) imply that

X(X, Vn)=lim(-F/t)^{l/\x2(c7)\ + l/\X2(c+)\) (13)
i

where x2(c;.) = 0. In an interval, a < t < b, with k = 1,(6) implies

n,(&) - (.h/2)n2{b) ~ /i,(a) - {h/l)n2(a) (14)

where h = b - a and the trapezoidal integration approximation has been applied.

For k - 3 it follows from (6) that n3{b) — n3(a). Since the initial values of nj are

arbitrary, let n3 = 0 for 0 < t. It then follows from (6) with k — 2 that

{klh/2)n[(b) + (\ + F/\x2(b)\)n2{b) ^ -{k[h/2)nl{a) + (1 - F/\x2(a)\)n2{a) (15)

where a < c < b, x,(c-) ~ x2(a), and x2(c+) ~ x2(b). (14) and (15) determine

n(6), An — d , and det\A\ > 1 .

Integration of D(\r\Xn)/Dt, (4), and (5) for a < t < b gives

lnAn(6) = lnXn{a) + (h( \ - kx)l2)(nx{b)n2(b) + n^a)n2{a))

- F(n2(b)/\Jc2(b)\ + n2{a)l\x2(a)\). (16)

If h <C 1 and kxh < 1 then terms involving products with h may be omitted in

(14), (15), and (16).

Solutions of D.D.E. may be intermittent in the sense that for some time interval,

a < t < P , components of x = 0. If the system (10), (11), and (12) stops at t = a

then x,(a) = 0, x2(a~) 7^ 0, x2(a+) = 0 , and x3(t) ^ 0 . In (9) the term containing

|x(c+)| is therefore omitted.

Computation of L.E. The oscillator with Coulomb damping is subsequently used

as a test case. Equations (10), (11), and (12) were solved simultaneously assuming

f(x3) = 0, F — 5.886, k{ =60, xl =40, and x, = 0 at x3 = 0. *(X, V2),
(7), was evolved through (13) and is shown in Fig. 2 for 0 < / < 50. Two vectors,

n1 and n2, were evolved with (6) and in intervals containing points c; by (14) and

(15). These were orthonormalized after each time step. The evolution of X\ an<3

X2 associated with n1 and n~ was realized through (5) and (16). X\ and Xi are

shown in Fig. 1 for 0 < t < 50. The numerical error associated with the equality
1 2

/(X, v2) = x,(X, ds ) + ^2(X, ds ) was < 1%. Since this system stops, it follows

that 0 is the asymptotic limit of X\ , X-> > and X which is approached as \/t.
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Conclusions. Integral expressions for L.E. appear to be particularly appropriate for

vector fields with gradients containing distributions. An approximation of (7) was

studied for (10), (11), and (12), in which sgn(jc) was approximated by a(x) = +1,
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x > e, a(x) = -1 , x < e, and a(x) = ex for |x| < 1 . The results were in very

close agreement with those of (13) for small e .
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