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Abstract. We present a method for determining optimal coordinates for the repre-

sentation of an inertial manifold of a dynamical system. The condition of optimality

is precisely defined and is shown to lead to a unique basis system. The method is

applied to the Neumann and Dirichlet problems for the Ginzburg-Landau equation.

Substantial reduction in the size of the dynamical system, without loss of accuracy

is obtained from the method.

1. Introduction. In many applications one is confronted with dynamics in a repre-

sentational space which is large, perhaps infinite. Often this is accompanied by the

belief that a description involving a smaller space is possible. This belief is based on

theoretical or experimental results of various kinds. The most elementary of these is

the fact that simple phenomena should be reducible to simple systems. For example,

limit cycle (or two-torus) behavior, even in an infinite space, as can occur in Rayleigh-

Benard convection or Taylor-Couette flow, is representable by dynamics in a two- (or

three-) dimensional phase space. Otherwise stated, if the phenomenon in question is

first represented in some arbitrary way, then if the motion shows limit cycle behav-

ior all dependent variables are representable as functions of just one distinguished

dependent variable (two if it is two-torus motion).

This picture may be regarded as a specialized or limiting form of the master-

slave formulation, which appears in a number of applications in which multiple

timescales appear [1-3]. Typically one has a slow, evolving time scale describing

the salient features of the system, and a fast transient (or oscillating) time scale.

Simplification of the system is then obtained as a consequence of the elimination of

the fast scales. Perhaps the classic example, and triumph, of this approach is the

Chapman-Enskog procedure which leads from the Boltzmann equation, governing

the molecular distribution, f(x, £, /), function, to the Navier-Stokes equation (in

which only five moments with respect to the molecular velocity £, of f, appear viz.,

P,u, T) [4, 5].

The idea of attractors of dissipative systems may be relevant to such delibera-

tions. Many dissipative systems, especially those related to fluid mechanics, show

a tendency for the phase point to dwell on a relatively low-dimensional attractor,
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usually of fractional dimension. Perhpas the most famous example is that of the

Lorenz system (itself a model of Benard convection)[6] in which case the equations

are represented in a three-dimensional phase space and for which the attractor, at

some reference parameter values, has the generally accepted measure of 2.06 [7],

Another example is the Ginzburg-Landau (G-L) equation [8], which, being a partial

differential equation, has an infinite-dimensional representational space, but over

some well-defined range of parameters it has a maximal attractor dimension of 3.05.

[9, 10]
In previous papers [10, 11, 12] we have approached the problem of finding a

finite approximation to such problems through the use of the Karhunen-Loeve (K-L)

procedure [13], In brief, this determines a basis system which is optimal in the sense

that a maximal fraction of the energy of the flow is captured, on average, for any

finite-dimensional approximation. The basis functions generated in this way are then

used in a Galerkin procedure to generate a dynamical system. In geometrical terms,

the Galerkin procedure projects the dependent variables and the equations onto a

finite-dimensional space. Thus the goal is to find an optimal hyperplane in which

the attractor resides to a good approximation. Further, since the K-L procedure

can be viewed as a principal axis decomposition, the procedure can be viewed as

encapsulating the attractor in an ellipsoid—which becomes flatter and flatter as the

dimension of approximating hyperplane is increased.

One can therefore expect to improve on the Galerkin procedure by slaving the

previously neglected variables to the retained variables. That is, by finding algebraic

relations between the neglected variables and the retained variables. A mathematical

framework for rigorously treating these ideas is contained in the study of inertial

manifolds [14, 15, 16], The inertial manifold by definition is a manifold to which

solutions tend at an exponential rate. A caricature of the slaving approximation to

the inertial manifold which we have described above is that it puts some bend in the

encapsulating ellipsoid.

While the notion of an inertial manifold is intrinsic to a problem, its actual specifi-

cation depends in an essential way on the representation. (As a trivial illustration we

might consider an oscillator moving on a straight line in yV-space. Unless one chooses

the appropriate coordinate system the problem appears to involve 2/V-dimensions.)

We show in this paper how, by objective criteria, to optimally choose an approx-

imate inertial manifold. This will be applied to two problems which arise from

consideration of the G-L equation. In both instances a substantial reduction in the

representational phase space is obtained.

2. An optimal basis set. For purposes of exposition we assume that the solution

to the dynamical system

d\
di = F[v] (1)

is chaotic and is known to us in as much detail as we might wish. Next suppose that

{\j/n} represents a complete orthonormal basis. It is unnecessary for us to distinguish

between the finite or infinite case. In the latter case {yn} may be regarded as a basis
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set in a function space. At this stage the basis is unknown to us, and the object of

the following deliberations is how to best determine the system, {y/n}.

Denote by PN the projection operator onto the first N of these elements, e.g.,

N

v=v=i>*>v)^ w
k=\

where (•, ■) denotes the inner product under which {y/n} are orthonormal. The

ordering of the elements is important and will be discussed. To further fix matters

we regard N as prescribed, i.e., N is fixed and the system {^„} is varied in the

analysis below.

We write the complimentary vector as

ycN = (\-PN)y (3)

and therefore

v = yN + yN. (4)

In this notation we split the dynamical system (1) by projecting the system point

onto the projected space and complimentary spaces as follows,

^ ~ ~ + Vw) - + Vw) (5)

<'" = (' - Wv + »'») = + v>- <«)

^ d D CV , C X ~ / ■ C
  —  V   P H f V J_ <" X —

dt dt
d\ d

]~di ~ dt'

On inspecting these forms we might argue that if the set can be chosen so

that = 0, say asymptotically, and we can take asymptotic initial data (aged initial

data) so that
= 0 (7)

then it would follow from (6) that

SN(t) = 0 (8)

and hence

^ = (9)
d\

dt
The last system is just what would be obtained from a Galerkin procedure.

In order to implement the above procedure we write

IMI2 = IKII2 + lKvll2 (io)

and then search for the basis set which minimizes ||v'v||2 (alternately, maximizes
2 c 2

llVyyll ). Since Hv^H is time dependent we instead minimize its ensemble average

4 = (iKvii2)- (n)

Or if we assume ergodicity, as we will, the time average of ||v^||2 is to be minimized.

The solution to this problem is furnished by the K-L procedure [13]. Since the

discussion of the next section parallels the K-L procedure and since this has been

presented previously [10, 17, 18], we do not pursue it further.
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3. An ideal inertial manifold basis. A natural extension, and hopefully an improve-

ment, of the above approach lies in retaining the effect of the neglected variables v^,.

The essence of the idea is contained in the slaved variable approach (see [3] and

references mentioned there). Instead of setting v'v = 0 we solve

rjv(vjv + vat) = 0 (12)

for

V = S(v„), (13)

substitute into (5)

^,» = <Vv„+S(lV». (14)

and solve this system. Thus the sets v'v are slaved in their time dependence to \N .

This approach has been suggested as an approximation to the inertial manifold of the

underlying system by Foias et al. [19] and Titi [20] for the Navier-Stokes equations.

If we examine the argument leading to the approximate inertial manifold, we

observe that the objective of the procedure changes character as we pass from the

Galerkin formulation to the system (14). For, to arrive at (9) we obtained a param-

etrization based on minimizing the energy error (11). However, in going to obtain

(14) we first need to solve (12). But this implies that our principal objective should

be the minimization of HR^H . Or, what is equivalent, to minimize in some sense

IKJI2.
To develop this notion into a criterion, consider

IMI2 = IM2 + llvll2> (15)

where the norm is based on the inner product. Thus an alternate viewpoint is that

we wish to maximize ||vv||~. This quantity will vary in time and we therefore

attempt instead to maximize its time average. Equivalently, under the assumption

of ergodicity, we wish to maximize the ensemble averaged form,

= <(**>**))• (16)

for arbitrary N.

Strictly speaking this is not the standard K-L procedure, but the analysis is similar

and we outline the steps. (In the usual form of the K-L procedure (\N , v^) is

maximized.) For this purpose we form, what might be termed, the acceleration

covariance,

L = (v ® v), (17)

where ® represents the outer product. The solution to the optimization problem is

then given by the eigenvalue problem [17]

L<t> = X(f>. (18)

Both (17) and (18) require some further explanation.

We denote by

{v(0} = {v(n)} (19)
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an ensemble (sufficiently large, say M members) of uniformly (time) sampled states

of the solution of (1). If (1) represents a finite system of ordinary differential equa-

tions in the components vi then

i M

(20)
n

is a symmetric matrix and the orthonormal set {4>k} represents the eigenvectors

of L, (14). On the other hand, if (1) represents a system of P partial differential

equations then we first obtain the ensemble

{w;(x,/„)} = {w((")(x)}; 1 <n<M- 1 </</>; (21)

and then form the two point covariance matrix,

1 M
L(7(x, x') = (6.(x)tf;(x')) = ^x')- (22^

n= 1

Then, by (18), we mean

L(x, \')(p(x')d\ — A</>(x), (23)
/,

when V is the domain of the problem.

In any case the operator L is easily seen to be hermitian, nonnegative, and in

particular instances can be proven to be square integrable. For example, for the G-L

equation which we use as an illustration, Lagrange stability has been demonstrated

[21], from which square integrability follows. Thus Mercer's theorem [22] assures us

that {<f>k} form a complete orthonormal system. The K-L theorem [13] then states

that

* = bn = (</>„,*) (24)

almost everywhere. It also follows that the coefficients, {bn}, are statistically orthog-

onal,

(b b ) = u S . (25)\ n m' r+n nm K >

In previous treatments [10, 11, 12] we have used the K-L procedure by forming

the covariance matrix,

K = (v <g> v), (26)

and then generating the corresponding eigenfunctions,

(27)

The state variable is then expanded

v = fl« = (wv)' (28)

and the coefficients {an} are statistically orthogonal

(29)

To relate the two sets, {«;pn} and Wn), we form the symmetric nonnegative

matrix,

Mnm = KO- (30)
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Then if {/nj denotes the components of an eigenvector of M, one easily verifies

that

0 = (31>

is an eigenfunction of L .

It may be useful to close this section by summarizing the two different approaches,

by once again contrasting their underlying philosophies.

In the standard K-L procedure we are led to the system {y/n}, which are eigen-

functions of the covariance K, (26). A finite truncation of v, , is identified with

the coefficients, (28), and we write

vN~a= (a,, ... , aN),

and similarly

vCN ~ («,v+i >•••)■

The corresponding dynamical system may be written formally as

-j-a = , a')
dt

d c C/?C! c\=J^ (a, a ). J
(32)

In a similar fashion we consider the eigenfunctions, {0„}, of the acceleration co-

variance L, (17). The coefficients are now given by (24) and correspondingly we

make the associations

iN <-» b = (bl, ... , bN),

4 ~ b = (bN+{,...).

We are then led to the dynamical system

di, - ^"'>

^b , ,c
w = T{b-b

(33)

In the first instance, the split in variables has been made on the basis of energy.

Thus N is chosen so that for some criterion

(l|ac|f)<e (34)

and under the approximation ||al || « 0 we are led to

rj

(35)

which is just the Galerkin procedure. It might be supposed that a better approxima-

tion results if instead of neglecting a1 we consider

dt J, (36)

0 = ^'(a, a
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where a' is solved for in the second relation and then substituted into the first. This

is an example of the slaving principle, but it should be observed that the steps going

into (36) did not start with the objective of using the slaving principle.

The method presented in this section starts with the premise that the slaving prin-

ciple is to be applied. Thus in (33) the split in dependent variables is based on an

accerleration energy, (16). The splitting index N is chosen so that for some criterion

e
(||bc||)<£. (37)

From this it might be supposed that (33) can be approximated by

37=T,b'bt) (38)

0 = Tf(b, bc).

In both cases (33) and (38) the algebraic relation is easily solved if the slaved

variable (af or b') is supposed small. Titi [23] has suggested that an iteration based

on this smallness assumption would converge very rapidly, since solutions converge

exponentially to an inertial manifold.

4. Application to the Ginzburg-Landau equation. The G-L equation

A, - q2{i + c0)Axx - pA - (i - p)A\A\2 = 0, (39)

has been well investigated numerically and theoretically and therefore serves as a use-

ful example for exploring the ideas presented in the previous section. Two boundary

value problems have been investigated in detail [11, 12], viz. the Dirichlet Problem:

A{0) = A(n) = 0, (40)

and the Neumann Problem:

dAW = dAW =
dx Ox { '

For all the numerical computations mentioned here, the parameters cQ and p have

been fixed at c0 = p = 1 /4 and the active bifurcation parameter is q. A summary

of behavior in the two cases is presented in Fig. 1.

The Galerkin procedure, associated with Eq. (39), has also been applied to each of

these cases and we briefly summarize those results in each instance. For the Neumann

problem in the range,

•6 < q < 1.3, (42)

the Lyapunov dimension of the attractor has a maximum of dL = 3.047 at q — .95 .

For this reason the K-L eigenfunctions were computed at this value of q and from

these a dynamical system was constructed according to (9) or (35). The criterion used

to choose the cutoff index N was that roughly 99% of the mean energy be captured.

This led to a system of three complex equations [12], The behavior of these six

equations over the range (42) is virtually indistinguishable from exact integration

[10, 12],
The Dirichlet problem was considered over the range [ 12]

.01 <q<\. (43)
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(a) (b)

q 1.0
1.3 —;

*  LIMIT CYCLE

1.099-
1.075 -
1.039-

0.908-
0.895
0.863—|
0.827

0.7-

0.6-1

TWO FREQUENCIES, Single period-doubling

CHAOS

• TWO FREQUENCIES, Single period-doubling
  CHAOS

-*  Complete period-doubling sequences

•*  TWO FREQUENCIES

LIMIT CYCLE

.33 -

.27 ■

.23 •

.21

0.0 ■

LIMIT CYCLE

TWO FREQUENCIES
— LIMIT CYCLE
TWO FREQUENCIES

 CHAOS

Fig. 1. Summary of behavior for (a) Neumann problem, (b) Dirichlet

problem.

The Lyapunov dimension was computed over the range .08 < q < .3 and found to

increase monotonically. Since there existed no distinguished value of q at which to

compute the eigenfunctions, the value of q = .14 was arbitrarily chosen as the nom-

inal value for the calculation. At this value of q the Lyapunov dimension was found

to be 9.1. Again, using the 99% criterion, ten complex differential equations resulted.

In the range, (43), the agreement between the exact and approximate systems was

excellent [12],

Neumann problem. The database for this case at q = .95 was used to construct the

acceleration covariance L, (17), and from this its eigenfunctions. Table 1 contains

the first three eigenvalues and contrasts these with those obtained for the covariance

(26).

Table 1

2

3

UP
.8599

.1380

.0021

.8970

.1013

.0019

The eigenvalues here and later are normalized to be probabilities, i.e., their sum

is unity.

Figure 2 contrasts the real parts of the first three eigenfunctions (the imaginary

parts are small and are not shown [10]). As can be seen these functions are relatively

close to one another in the two cases.
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(a) (b)

Fig. 2. Comparison of real parts of first three eigenfunctions for

Neumann problem (a) K-L eigenfunctions, (b) Acceleration eigen-

functions.

The splitting of the dependent variables as given by (33) breaks these into dynam-

ical, b, and algebraical, b1 , variables. Since the latter are now being retained, we

should expect the cutoff to be more forgiving in contrast with the Galerkin cutoff, i.e.,

a larger value of e should be tolerable. As mentioned earlier the maximal dimension

of the attractor for the range (42) is dL = 3.05 . From this it follows that the minimal

number of equations we can hope for is four. The system was split into two complex

dynamical equations corresponding to the first two eigenfunctions and an algebraic

equation corresponding to the third eigenfunction. The resulting system is given in

the Appendix. (In view of the smallness of the third coefficient, only the linearized

form of algebraic equation is shown.)

The result of integrating the system given in the Appendix is as good as the six

equation Galerkin approximation in depicting the phenomena in the range (42). All

the transition points shown in Fig. 1 are obtained with the same accuracy. The same

slaving procedure was also applied to the covariance formulation (32), and the result

was essentially the same. I.e., with N = 2, the system (32) accurately described the

range (42). Perhaps, in view of the closeness of the two sets of eigenfunctions shown

in Fig. 1, this is not surprising. This is doubtless due to the lack of spatial complexity

in solutions of the Neumann problem in the range (42).

Dirichlet problem. As mentioned earlier, the nominal value of q = .14 was arbi-

trarily chosen, in this case, as the point at which to compute the eigenfunction basis

of L. Table 2 contrasts the eigenvalues of K and L.

As was the case for Table 1 the two columns represent probabilities, but represent

different measures. The square root of the eigenvalues in the first column repre-

sent rms amplitudes while the square root of the eigenvalues in the second column

represent rms values of time derivatives.

In Fig. 3 we contrast the first four eigenfunctions of the K and L formulations.

Unlike the Neumann case the two sets of eigenfunctions are now sharply different.

The Galerkin approach, (35), based on the A'-eigenfunctions, with N = 10 (i.e., ten

complex equations) gives excellent agreement with the exact numerical integration of
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1.750

0.875 -

-1.750

0.000

-1.750
0 0.62832 1.25663 1.88495 2J1327 3.14159 0 0.62832 1.25663 1.88495 2.51327 3.14159

1.750 » i i i | i i i i | i . i i | i i i . | i i i » 1.750

0.875 -

-i r .... I .... I .... I .... I .... 1 -1.750

0 0.62832 1.25663 1.88495 2J1327 3.14159 0 0.62832 1.25663 1.88495 2J1327 3.14159

1.750 i ..... i . . ■ . . . , . . 1.750

-0.875 - - -0.875 -

-1.750 r i iiiI.iiiIiiiiIiii.IiiiiI -1.750
0 0.62832 1.25663 1.88495 2^1327 3.14159 0 0.62832 1.25663 1.88495 2J1327 3.1415!

1750 | .... | i | . 1.750

0.875 "

0.000

-0.875 [- \ / -\ -0.875 -

-1.750

0 0.62832 1.25663 1.88495 2.51327 3.14159 0 0.62832 1.25663 1.88495 2J1327 3.14155

Fig. 3. Comparison of real (continuous and imaginary (dashed) parts

of first four eigenfunctions for Dirichlet problem, (a) K-L eigenfunc-

tions, (b) Acceleration eigenfunctions.
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Table 2

1

2
3
4

5
6
7

8
9
10

11

XJK)
.2602

.1997

.1870

.1334

.1110

.0499

.0290

.0135

.0075

.0038

.0022

^(L)
.3698
.2178

.1810

.0964

.0492

.0243

.0200

.0137

.0103

.0065

.0041

(39) for the range . 1 < q < 1 [11]. To examine the approach using an approximate

inertial manifold we chose N = 6 in (38).

Excellent agreement with the exact results, for .1 < q < 1 was obtained for (38).

All transitions were accurately described with this system. (With N = 5 spurious

windows of relaminarization appeared.) A similar investigation was made using the

formulation (36) based on the A^-eigenfunctions. In this case we could not go below

N = 7. But the agreement was again good over the range . 1 < q < 1 for this

splitting. Thus the improvement of the L-formulation over the ^-formulation is

not dramatic in this instance.

We close by contrasting the 6-mode theory (approximate inertial manifold), the

10-mode (Galerkin procedure) and the exact theory (pseudospectral method [11]) in

Tables 3 and 4. Table 3 indicates the attractor dimension as measured by the Lya-

punov dimension. The exact theory leads to a growth in dimension which is inversely

proportional to the bifurcation parameter, q . Therefore any finite-dimensional dy-

namical approximation must eventually underestimate this measure. For example,

10-mode theory is seen to match the exact dimension quite well for q = .14 and

q = .1 but (understandably) seriously underestimates the dimension at q = .08.

On the other hand 6-mode theory consistently underestimates the Lyapunov dimen-

sion. It is of some interest to determine whether such a discrepancy is necessarily

a flaw. Typical power spectra (not shown here) are extremely close in appearance

in all instances. Since the transitions shown in Fig. 1 are well modeled by both 6-

and 10-mode theory we must go to other measures to distinguish the approximate

formulations from the exact results. An important extensive measure of the motion,

is the mean energy

(E) = ̂ J*\A\2dxy (44)

The energy is compared in Table 4. We see that in spite of the significant differences

in the attractor dimension the energy predicted by the model systems is reasonably

accurate except at q = .08 for the 6-mode theory. In our calculations we used

the linearized form of the algebraic slaved variable equation and hence a further

improvement may result from a more exact calculation.
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To end on a note of optimism we observe that the case treated indicates that a

reasonable statistical description of the dynamics can be obtained without matching

the attractor dimension.

Table 3. Lyapunov dimension.

Q =
6-mode

10-mode

exact

.14

8.41

9.16

9.09

.1

8.67

13.92

13.84

.08

8.91

14.51

17.76

Table 4. Energy.

Q =

6-mode

10-mode

exact

.14

.402

.402

.394

.1

.456

.453

.415

.08

.530

.471

.425
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Appendix.

A0= -q2{. 0020 + .008 li)AQ

+ <72(.0587 - . 1164i)A2 + .25AQ

+ (-.2514 + 1.0058/)/40|^0|2

+ (-.01899+ .075930^2

+ (-.3012+ 1.0470/)^/!*

+ (-.5286 + 2.1 \4i)A0\A^

+ (-.2290 + .1422i)A]A\

+ (-.03795 + .15186/M2M0|2

+ (-.2508 + 1.0015/)^o

+ (-.3767 + l.506i)A2\Ai \2

+ (-.5009 + 2.0037/)/40M,j

+ (-.01832 + ,04283/)^2|^2|2
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Ax = - q\.2521 + 1.0084/)^! + .25A1

+ (-.2269+ 1.0655 i)A2A0^1

,2
0l

,2

+ (-.5286 + 2.1140^,14

+ (-.3916+ 1.566 i)Ax\A

+ (-.1883 + ,7532i)AIA2Ag

+ (-.1883 + .7532i)AjA*A0

+ (-.1472 + .7626i)AQA*A2

+ (-.2210+ \mA7i)A\A\

+ (-.5133 + 2.053 i)Ax\A
,2

where A2 satisfies

0 = - <?2(. 1348 + .12800^0 + (-.5133 + 2.053i)A2IA,

- q2{ 1.005 + 4.020i)A2 + .25A2

(-.01899 + .07593i')^0M0|
,2

+ (-.250+ 1.002 i)AgA*

+ (-.2290+ .7422 i)A2.A1^0

+ (-.3765 + 1.506/)v40|/4
,2

+ (-.2919+ l.0l69i)A2A2

+ (-.5009 + 2.004i)A2\A0\2.
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