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Consider the problem

ut-Au = -u " for/>0, xeD, (1)

u— 1 for/>0, xedD, (2)

u(0, x) = u0{x) > 0 forxeZ), (3)

where D c MA is a bounded domain and a > 0. It is well known that for suit-

able domains D and initial data u0 the solution of (1) (2) (3) can approach zero

in finite time ("it quenches"), while for other initial data or other domains it can

remain globally bounded away from zero; see for instance [10]. A third possibility is

conceivable, i.e.,

(P) The solution of (1) (2) (3) tends to zero in infinite time.

In this case we speak of quenching in infinite time. It was shown in [2, 3, 13] that (P)

cannot occur for N = 1 and uQ = 1 . Other results concerning the impossibility of

(P) for N = 1 can be found in [11], For N >2 the question whether (P) can occur

was stated as an open problem in [10, p. 279]. There is also a related problem for

which it has been shown by Levine [9] that quenching in infinite time is impossible

in one dimension, and by Levine and Lieberman [12] that (P) is possible in two

dimensions. In terms of our notation they studied problems like

ut-Au = 0 forr>0, xeD, (4)

u= 1 for/>0, x e a , (5)

= ~u " forf>0, xeX, (6)

m(0, x) = u0(x) > 0 for xeD, (7)

in which dD is split in two subsets a and I. So for problem (4)-(7) the answer to

the question whether (P) can occur depends on the space dimension N. Our result

reads as follows:

Theorem. Let u be a decreasing solution (ut < 0) to (1) (2) (3) and suppose that

D c K'v is c

and a > 3 .

Del" is convex. Then (P) cannot occur for N = 1, 2 and a > 1 or for N = 3

Received September 7, 1989.

©1990 Brown University

531



532 M. F1LA AND B. K.AWOHL

The assumption that u is decreasing is satisfied for instance for initial data uQ = 1

or, more generally, for u0 satisfying AuQ - u^" < 0.

One ingredient in the proof is a transformation of the quenching problem into a

blow up problem. The equivalence between quenching and blow up problems was

pointed out in [1], For blow up problems it is known that the occurence of blow up

in infinite time depends on the space dimension, see [14, 5], Our strategy is to apply

the concavity method as in [8] to the new blow up problem. In order to do this we

need to know that

[ dx < c{u0) < oo (8)
JoD on

holds, where c is independent of t. Property (8) follows form the proof of Theorem

2.3 of Deng and Levine [4] (for a corresponding result in the context of blow up see

[7, proof of Theorem 3.3]). Here the convexity of D was used. Finally we need to

use Theorem 3.4 from [6], which states that

f _i N
lim / u (t,x)dx — + oo for A > — (1 + a) and a > 1. (9)

t-*T~ Jd 2

Here T < +oo is the quenching time. We remark that fDu~A(t, x)dx may stay

bounded for / € [0, T) if A < y( 1 + a), see [6].

Proof. We make the ansatz v = u'11 with positive /?. Later we shall restrict the

range of P . Then v solves the problem

. „ (a+P+l)/P P + 1 -1,„ .2 c _ _
vt-Av = pv   —v |Vy| for/>0, xeD,

v = 1 for / > 0, x e dD,

v(0, x) = vQ(x) = uQ(x) ^ for .v e D.

Assume that u quenches in infinite time and that u is decreasing. Then v blows

up in infinite time and is increasing. It is easy to see that the functional

2 / P~ [ (a+2p+\)ip
V(w) := i f \Vw\2dx - P I

2 JD a + 2p + ' JL
w^^'^dx

decreases along v . In fact,

^V(v) - J {VvVv, - Pv{a+p+l)lpvt}dx

,2

= " Ldx ~ 'nr L r"-s -1v-dx ■

where we used the monotonicity of v with respect to t. Therefore

[ [ v^dxdt + V(v(t, x)) < V(v0(x)). (10)
Jo Jd

Denote M(t):= fDv2 dx dt, then using (8) and (10) and setting /:=/?-
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we obtain

[ vvtdx
2 Jd

= - [ |Vv|2 dx + [ ^ dx + P f d(<#+2^+1)/^ dx - f |Vv|2 dx
Jd JodJ" Jd P Jd
2(2)3+1) f (a+2p + l)/p ,

■V(v) - Pc(u0) + 7 / IT ^ ' dx
Jd

> -

>

P
2(2/? + 1)

P
(/ J v2 dx dt - V(v0)^ - fic(u0) + y J v(a+2^+x)^ dx.

We want to have y > 0. Therefore we choose /? < ^ • This explains the assump-

tion a > 1 in our theorem. Now we identify the last integral with

Lu 'dx, where A = a + 2/? + 1.

We use the fact that according to (9) this integral goes to +oo as Moo, provided

A > f(l+a). This and p < imply N < (4—N)a , which explains our restrictions

on N and a. Therefore M"(t) —► oo (and hence M and M' —► oo) as t —* oo.

Now we calculate

m J t" 2/? + 1 / 2MM ^—(M )

> 4(2)? +i;
nv2dxdt- / / vfdxdt-l / / vvtdxdt\

) Jo Jd \Jo is /P

+ M ^2y jDV[a+ip+l)IIS dx - 4{2Pp+l) V(v0) - 2pc(u0)

LM,(2JM^[2dx) + 2_l±±([2^2
V P Jd 0 ' J P \JD0 "■* I ^ R \ L "0

Notice that we have used the identity

M'(t)= f Vydx+ f [ {v2)ldxdl.
Jd Jo J D

The term in the square brackets is nonnegative because of Schwarz's inequality. The

first term in the curly brackets can be estimated from below by c^M1)6 with some

S > 1 . The second and third terms in the curly brackets are equal to some constant

-c2.

Therefore we can rewrite our estimate as follows:

MM" - 21 (A/')2 > c. M(M')S - c,M - C-.M', (11)
/>

and for sufficiently large t the right-hand side of (11) is positive. Hence (M'

for t large enough and for n — . But is decreasing and concave and must

have a root tQ > 0—a contradiction to the assumption that M is well defined for all

1 > 0. □
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Remark. Suppose it is known that the stationary version of problem (1) (2) has

a minimal solution w which is classical and unstable from below (for N = 1 and

D sufficiently small this is known, see [11]). Then by a result of Matano [15] there

is a monotone decreasing solution u of (1) (2) defined on (—oo, 0] x D which, for

t —► -oo , tends to w in C2(D). According to our theorem the solution emanating

from m(0, ■) must quench in finite time. Hence by the maximum principle any

solution of (1) (2) (3) with u0 < w but u0 ^ w will quench in finite time. Our

argument should be compared with the reasoning of Levine [11, proof of Theorem

3.1 A], We do not require a priori knowledge about nonexistence of weak stationary

solutions.
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