RESONANCE IN UNDAMPED SECOND-ORDER NONLINEAR EQUATIONS WITH PERIODIC FORCING

By

GEORGE SEIFERT

Iowa State University, Ames, Iowa

We consider the scalar equation

$$x'' + g(x) = p(t) \tag{1}$$

where g and p are real valued functions continuous on the reals R, $p(t+2\pi) = p(t)$, and the solutions of (1) are uniquely determined by their initial conditions. If g is nonlinear, the question of whether all solutions of (1) are bounded on R has long been recognized as nontrivial and challenging. For the special case of $g(x) = 2x^3$ Morris [1] was able to show that this question has an affirmative answer. Later Dieckerhoff and Zehnder [2] were able to prove it for the case $g(x) = x^{2n+1} +$ $p_{2n}(t)x^{2n} + \cdots + p_1(t)x$ where the $p_k(t)$ are 2π -periodic and sufficiently smooth. A more recent and considerably more general result is due to Ding [3] and asserts that if g is continuously differentiable and $g(x)/x \to \infty$ as $|x| \to \infty$, the answer is in the affirmative. On the other hand, Littlewood [4] has given an example of an equation like (1) with $g(x)/x \to \infty$ as $|x| \to \infty$ where g(x) and p(t) are not continuous which has an unbounded solution on R. As Morris has pointed out in [1], it is easy to modify the g(x) in Littlewood's example so that it is continuously differentiable, in fact, C^{∞} , and still have an unbounded solution for (1); whether the function p(t), which in Littlewood's example is piecewise constant-valued, can be modified to be continuous seems not entirely obvious. However, in Ding's proof in [3], only the fact that the Poincaré map associated with (1) is an area-preserving twist homeomorphism is used, and since this is also true if g(x) is continuously differentiable and p(t) only piecewise continuous, a question arises as to the validity of Ding's proof or Littlewood's example.

In this note we consider the problem of giving conditions on g for which all solutions of (1) are unbounded on R; specifically on $[0, \infty)$, primarily for cases where g is nonlinear. Our main result states that if for some integer n, $|g(x)-n^2x|$ is bounded on R, and if a suitable Fourier coefficient of p(t) has sufficiently large absolute value, then all solutions of (1) are unbounded on $[0, \infty)$.

528 G. SEIFERT

Our result is based on the following two results, which we state without proofs. First we define for f(t) any function continuous on $[0, 2\pi]$ the notation

$$M_{f}(n, \delta) = \int_{0}^{2\pi} f(t) \cos(nt + \delta) dt.$$

LEMMA 1. If f(t) is continuous and 2π -periodic, and there exists a δ such that $M_f(n, \delta) \neq 0$, then all solutions of $x'' + n^2 x = f(t)$ are unbounded on $[0, \infty)$.

LEMMA 2. If all solutions of (1) exist for $t \ge 0$ and there exists a solution which together with its derivative is bounded on $[0, \infty)$, then there exists a 2π -periodic solution of (1).

Lemma 1 is well known and easy to prove; in fact it also follows easily that if $M_f(n, \delta) = 0$ for all δ , $0 \le \delta < 2\pi$, then all solutions of $x'' + n^2x = f(t)$ are bounded on R. Lemma 2 is a special case of a theorem due to Massera [5] and its proof uses a nontrivial fixed point theorem in R^2 .

THEOREM 1. Suppose there exists a $g_0 > 0$, and an integer $n \ge 0$, such that

$$\left| g(x) - n^2 x \right| \le g_0 \quad \text{for } x \text{ in } R. \tag{1.1}$$

Then if $|M_p(\delta_0, n)| > 2\pi g_0$, where $\delta_0 = -\tan^{-1}(s_0/c_0)$, $c_0 = \int_0^{2\pi} p(t) \cos nt \, dt$, $s_0 = \int_0^{2\pi} p(t) \sin nt \, dt$, all solutions of (1) are unbounded on $[0, \infty)$.

Proof. Using standard continuation theorems, one can easily show that under the hypotheses on g, all solutions of (1) can be continued to $t = \infty$; we omit the details.

We next show that if x(t) is a solution bounded on $[0, \infty)$ then x'(t) is also. Suppose not; then there exists $t_0 > 0$ such that

$$\left(x' \left(t_0 \right) \right)^2 > 4 M_0 B_0 \qquad (1.2)$$
 where $B_0 = \sup \left\{ |x \left(t \right)| : t \geq 0 \right\}$, and $M_0 = \sup \left\{ |g \left(x \right) - p \left(t \right)| : |x| \leq B_0 \, , \ t \text{ in } R \right\}$.

Suppose $x'(t_0) > 0$; the case $x'(t_0) < 0$ can be dealt with in the same way. Since x(t) increases without bound if x'(t) > 0 and is bounded away from zero for $t \ge 0$, it follows that there exists an increasing sequence $\{t_k\}$, $k = 1, 2, \ldots$, such that $t_1 > t_0$, $x'(t_k) \to 0$ as $k \to \infty$, and x'(t) > 0 for $t_0 \le t < \overline{t}$ where $\overline{t} = \lim_{k \to \infty} t_k$. Put $x_k = x(t_k)$, $k = 0, 1, 2, \ldots$, and define y(x) = x'(t(x)), where t(x) is the inverse of x(t) on $[t_0, \overline{t})$. It is easy to show that for any integer $k \ge 1$, $d(y^2(x))/dx = 2(p(t(x)) - g(x))$, $x_0 < x < x_k$.

From this and the mean value theorem we get

$$\left| y^2 \left(x_k \right) - y^2 \left(x_0 \right) \right| \le 2M_0 \left(x_k - x_0 \right) \le 4M_0 B_0$$
 (2)

and since $y(x_0) = x'(t_0)$ and $y(x_k) = x'(t_k) \to 0$ as $k \to \infty$, we obtain from (2) that $(x'(t_0))^2 \le 4M_0B_0$, which contradicts (1.2). This proves the assertion that x'(t) is alsobounded on $[0, \infty)$.

Thus if (1) has a solution bounded on $[0, \infty)$, by Lemma 2 it has a 2π -periodic solution, say $\overline{X}(t)$. So the equation

$$x'' + n^{2}x = n^{2}\overline{x}(t) - g(\overline{x}(t)) + p(t)$$
(3)

has a 2π -periodic solution $\overline{x}(t)$. Using Lemma 1 with $f(t) = n^2 \overline{x}(t) - g(\overline{x}(t)) + p(t)$ we find that for all δ .

$$M_{p}(\delta, n) = -\int_{0}^{2\pi} \left(n^{2}\overline{x}(t) - g(\overline{x}(t)) \cos(nt + \delta) dt. \right)$$

So $|M_n(\delta, n)| \le 2\pi g_0$ for all δ . But by elementary calculus, it follows easily that

$$\max \left\{ M_{p}\left(\delta, n\right) : \delta \text{ real} \right\} = \left| M_{p}\left(\delta_{0}, n\right) \right|,$$

and we arrive at a contradiction since by hypotheses $|M_p(\delta_0,n)|>2\pi g_0$. This proves the theorem.

We state a result for a more general equation which can be proved using the method in the proof of Theorem 1.

THEOREM 2. Let f(x, t) be real valued and continuous of $R \times R$ and $f(x, t+2\pi) = f(x, t)$ there. Suppose there exists an integer n > 0 and a δ such that

$$\int_{0}^{2\pi} \left(f(\overline{x}(t), t) + n^{2} \overline{x}(t) \right) \cos(nt + \delta) dt \neq 0$$

for all continuously differentiable 2π -periodic functions $\overline{x}(t)$. Suppose all solutions of

$$x'' = f(t, x) \tag{4}$$

are uniquely determined by these initial conditions and extend to $[0, \infty)$. Then all solutions of (4) are unbounded on $[0, \infty)$.

We conclude by applying Theorem 1 to some special cases of (1), first to obtain a lower bound on the suprema of the absolute values of certain bounded solutions of $x'' + x^3 = p(t)$.

Let n_0 and m_0 be positive integers, and define

$$g(x) = x^3$$
, $0 \le x \le m_0$,
= $n_0^2 (x - m_0) + m_0^3$, $x_0 > m_0$

and g(x) = -g(-x) for x < 0. We use Theorem 1 with $n = n_0$. If

$$g_0 = \max \left\{ m_0 \left| m_0^2 - n_0^2 \right|, \ 2n_0^3 / 3\sqrt{3} \right\},$$

it follows by straightforward calculations that

$$\left|g\left(x\right) - n_0^2 x\right| \le g_0, x \text{ in } R.$$

Thus if $M_p(n_0, \delta_0) > 2\pi g_0$, with δ_0 as defined in Theorem 1 with $n = n_0$, all solutions of (1) for this g are unbounded on $[0, \infty)$; i.e., for any solution x(t) of (1) there exist $t_k \to \infty$ as $k \to \infty$ such that $|x(t_k)| > m_0$, $n = 1, 2, \ldots$

530 G. SEIFERT

This shows also that if x(t) solves $x'' + x^3 = p(t)$ and $|x(t)| \le m_0$ for t in R, then $M_n(n_0, \delta_0) \le 2\pi g_0$.

If we take $m_0 = n_0$, clearly $g_0 = 2n_0^3/3\sqrt{3}$, and we conclude that if

$$\int_{0}^{2\pi} p(t) \cos(n_0 t + \delta_0) dt > 4\pi n_0^3 / 3\sqrt{3},$$

then there exist no solutions x(t) of $x'' + x^3 = p(t)$ such that $|x(t)| \le n_0$ for t in R.

Next consider the piecewise linear g(x) given by

$$g(x) = x$$
, $0 \le x \le 1$,
= $4x - 3$, $x > 1$

with g(x) = -g(-x), x < 0.

A simple application of Theorem 1 shows that if δ_0 is defined as in Theorem 1 with n=2, and

$$\left| M_p \left(2 \,,\, \delta_0 \right) \right| > 6\pi \,, \tag{5}$$

then all solutions of (1) are unbounded on $[0, \infty)$. An interesting and apparently open question is that if p(t) does not satisfy (5), are these solutions bounded on $[0, \infty)$; i.e., are there 2π -periodic solutions? It is easy to show that if for some δ ,

$$M_{p}(1,\delta) \neq 0, \tag{6}$$

then for every solution x(t) there exists a sequence $t_k \to \infty$ as $k \to \infty$ such that $|x(t_k)| > 1$, $k = 1, 2, \ldots$. If not, there exists a t_0 such that $|x(t)| \le 1$ for $t \ge t_0$, and so x(t) satisfies x'' + x = p(t) for all such t, and using (6) we easily get a contradiction.

REFERENCES

- [1] G. Morris, A case of boundedness in Littlewood's problem on oscillatory differential equations, Bull. Austral. Math. Soc. 14, 71–93 (1976)
- [2] R. Dieckerhoff and R. Zehnder, Boundedness of solutions via twist theorem, Abteilung für Math. der Ruhr-Univ., Bochum 22 (1984)
- [3] T. Ding, An answer to Littlewood's problem on boundedness for super-linear Duffing's equations, J. Diff. Equations 73 (2), 269–287 (1988)
- [4] J. E. Littlewood, Unbounded solutions of an equation $\ddot{y} + g(y) = p(t)$, with p(t) periodic and bounded and $g(y)/y \to \infty$ as $y \to \pm \infty$, J. London Math. Soc. 41, 497–507 (1966)
- [5] J. Massera, The existence of periodic solutions of systems of differential equations, Duke Math. J. 17, 457-475 (1950)