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We consider the scalar equation

x" + g(x) = p(t) (1)

where g and p are real valued functions continuous on the reals R , p(t+2n) = p(t),

and the solutions of (1) are uniquely determined by their initial conditions. If g is

nonlinear, the question of whether all solutions of (1) are bounded on R has long

been recognized as nontrivial and challenging. For the special case of g(x) = 2x

Morris [1] was able to show that this question has an affirmative answer. Later

Dieckerhoff and Zehnder [2] were able to prove it for the case g(jc) = x2"+1 +

Pin^x2" + • • • + P\{t)x where the pk(t) are 27i-periodic and sufficiently smooth. A

more recent and considerably more general result is due to Ding [3] and asserts that

if g is continuously differentiate and g(x)/x —> oo as |x[ —> oo, the answer is

in the affirmative. On the other hand, Littlewood [4] has given an example of an

equation like (1) with g(x)/x —+ oo as |x —► oo where g(.v) and p(t) are not

continuous which has an unbounded solution on R. As Morris has pointed out in

[1], it is easy to modify the g(x) in Littlewood's example so that it is continuously

differentiable, in fact, C°° , and still have an unbounded solution for (1); whether

the function p(t), which in Littlewood's example is piecewise constant-valued, can

be modified to be continuous seems not entirely obvious. However, in Ding's proof

in [3], only the fact that the Poincare map associated with (1) is an area-preserving

twist homeomorphism is used, and since this is also true if g(x) is continuously

differentiable and p(t) only piecewise continuous, a question arises as to the validity

of Ding's proof or Littlewood's example.

In this note we consider the problem of giving conditions on g for which all

solutions of (1) are unbounded on R\ specifically on [0, oo), primarily for cases

where g is nonlinear. Our main result states that if for some integer n, \g(x)-n~x\

is bounded on R, and if a suitable Fourier coefficient of p(t) has sufficiently large

absolute value, then all solutions of (1) are unbounded on [0, oo).
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Our result is based on the following two results, which we state without proofs.

First we define for f(t) any function continuous on [0,2^] the notation

fin

M,' An , S) = f f (t) cos(nt + S) dt.
Jo

Lemma 1. If f(t) is continuous and 2^-periodic, and there exists a S such that

Mf{n ,<5)^0, then all solutions of x" + n'x — f(t) are unbounded on [0, oo).

Lemma 2. If all solutions of (1) exist for t > 0 and there exists a solution which

together with its derivative is bounded on [0, oo), then there exists a 2;r-periodic

solution of (1).

Lemma 1 is well known and easy to prove; in fact it also follows easily that if

Mf(n, S) = 0 for all S, 0 < S < In, then all solutions of x" + n2x = f(t) are

bounded on R . Lemma 2 is a special case of a theorem due to Massera [5] and its

proof uses a nontrivial fixed point theorem in R~.

Theorem 1. Suppose there exists a g0 > 0, and an integer n > 0, such that

< g0 for x in R. (1.1)g(x) - n2x

Then if \Mp(S0,n)\ > 2 ng0, where SQ = -tan '(s0/c0), c0 = p(t) cos nt dt,

s0 = Jq" p(t) sin nt dt, all solutions of (1) are unbounded on [0,oo).

Proof. Using standard continuation theorems, one can easily show that under the

hypotheses on g , all solutions of (1) can be continued to t — oo; we omit the details.

We next show that if x{t) is a solution bounded on [0, oo) then x'{t) is also.

Suppose not; then there exists tQ > 0 such that

>4 M0B0 (1.2)

where B0 = sup {\x (?)| : ^ > 0} ,

and M0 = sup {|g(x) -p (01 : M < B0, t in R} .

Suppose x'(t0) > 0; the case x'(t0) < 0 can be dealt with in the same way.

Since x(t) increases without bound if x'(t) > 0 and is bounded away from zero

for t > 0, it follows that there exists an increasing sequence {tk}, k — 1,2,...,

such that tx > tQ, x\tk) -* 0 as k -> oo, and x\t) > 0 for tQ < t < 1 where

1 = lim^^^ tk . Put xk - x(tk), k = 0, 1,2,..., and define y{x) = x\t(x)),

where t(x) is the inverse of x(t) on [/0, 7). It is easy to show that for any integer

k > 1 , d{y2(x))/dx = 2{p{t{x)) - £(*)), x0 < x < xk .

From this and the mean value theorem we get

\y2 {xk) - y2 (x0)| < 2M0 (xk - x0) < 4MQBQ (2)

and since y(x0) = x'(t0) and y(xk) = x'(tk) ->0 as k ^ oo, we obtain from (2)

that (x'(?0))2 < ' wh'cl1 contradicts (1.2). This proves the assertion that x'(t)

is alsobounded on [0, oo).
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Thus if (1) has a solution bounded on [0, oo), by Lemma 2 it has a 27t-periodic

solution, say x(t). So the equation

x" + nx = n2x{t) - g (x (/)) + p (?) (3)

  2   
has a 2;r-periodic solution x(t). Using Lemma 1 with f(t) = n x{t) —g(x{t))+p(t)

we find that for all 5 ,

Mp (S, n) = — J (n~x (t) - g (x (t)) cos (nt + S) dt.

So |MAS, n)| < 2ng0 for all S . But by elementary calculus, it follows easily that

max {Mp(d, n) : <5real} = Mp(S0,n)

and we arrive at a contradiction since by hypotheses |M (d0, n)\ > 2ng0 . This

proves the theorem.

We state a result for a more general equation which can be proved using the method

in the proof of Theorem 1.

Theorem 2. Let f(x, t) be real valued and continuous of RxR and /(x, t+2n) =

f(x, t) there. Suppose there exists an integer n > 0 and a S such that

[f {x (?) , t) + nx (t)J cos (nt + S) dt / 0
/

for all continuously differentiate 27r-periodic functions x(t). Suppose all solutions

of

x" = f(t,x) (4)

are uniquely determined by these initial conditions and extend to [0, oo). Then all

solutions of (4) are unbounded on [0, oo).

We conclude by applying Theorem 1 to some special cases of (1), first to obtain a

lower bound on the suprema of the absolute values of certain bounded solutions of

x" + X3 = p(t).

Let n0 and m0 be positive integers, and define

g(x) = x3, 0 < x < m0,

= n20 (x - m0) + ml, x0 > mQ

and g(x) = -g(-x) for x < 0. We use Theorem 1 with n = nQ. If

2 2
mo - ,70 , 2«q/3\/I} ,g0 - max yn0

it follows by straightforward calculations that

g (x) - n20x < g0 , x in R.

Thus if M (n0, <50) > 2ng0, with S0 as defined in Theorem 1 with n = n0, all

solutions of (1) for this g are unbounded on [0, oo); i.e., for any solution x(t) of

(1) there exist tk —> oo as k —» oo such that |x(^)| > m(), n — 1,2, ... .
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This shows also that if x(t) solves x" + a3 = p(t) and |a(/)| < for / in R,

then Mp{n0,S0) < 2ng0.

If we take mQ = nQ , clearly g0 = 2«q/3\/3 , and we conclude that if

rln

Jo
p (t) cos (n0t + <50) dt > 47r/?0/3\/3,

then there exist no solutions x(t) of x" + a*3 = p(t) such that |a(/)| < nQ for t in

R.

Next consider the piecewise linear g(x) given by

g (x) — x, 0 < x < 1 ,

= 4x - 3, x > 1

with g(x) = -g{-x), x < 0.

A simple application of Theorem 1 shows that if S0 is defined as in Theorem 1

with n — 2, and

Mp{2,S0)\ >6n, (5)

then all solutions of (1) are unbounded on [0, oo). An interesting and apparently

open question is that if p(t) does not satisfy (5), are these solutions bounded on

[0, oo); i.e., are there 2^-periodic solutions? It is easy to show that if for some S ,

Mp(l,S)jiO, (6)

then for every solution x(t) there exists a sequence tk —> oo as k —► oo such that

\x{tk)\ > 1 , k = 1,2 If not, there exists a tQ such that |a(/)| <1 for t > t0,

and so x(t) satisfies x" + x = p(t) for all such t, and using (6) we easily get a

contradiction.
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