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We consider the scalar equation

X'+gx)=p) (1)

where g and p are real valued functions continuous on the reals R, p(t+2n) = p(t),
and the solutions of (1) are uniquely determined by their initial conditions. If g is
nonlinear, the question of whether all solutions of (1) are bounded on R has long
been recognized as nontrivial and challenging. For the special case of g(x) = 2x°
Morris [1] was able to show that this question has an affirmative answer. Later
Dieckerhoft and Zehnder [2] were able to prove it for the case g(x) = x4
pZn(t)xz" + -~ +p,(t)x where the p,(¢) are 2zm-periodic and sufficiently smooth. A
more recent and considerably more general result is due to Ding [3] and asserts that
if g is continuously differentiable and g(x)/x — oo as |x| — oo, the answer is
in the afirmative. On the other hand, Littlewood [4] has given an example of an
equation like (1) with g(x)/x — oo as |x| — oo where g(x) and p(¢) are not
continuous which has an unbounded solution on R. As Morris has pointed out in
[1], it is easy to modify the g(x) in Littlewood’s example so that it is continuously
differentiable, in fact, C™°, and still have an unbounded solution for (1); whether
the function p(¢), which in Littlewood’s example is piecewise constant-valued, can
be modified to be continuous seems not entirely obvious. However, in Ding’s proof
in [3], only the fact that the Poincaré map associated with (1) is an area-preserving
twist homeomorphism is used, and since this is also true if g(x) is continuously
differentiable and p(¢) only piecewise continuous, a question arises as to the validity
of Ding’s proof or Littlewood’s example.

In this note we consider the problem of giving conditions on g for which all
solutions of (1) are unbounded on R specifically on [0, co), primarily for cases
where g is nonlinear. Our main result states that if for some integer », |g(x)—n2x|
is bounded on R, and if a suitable Fourier coefficient of p(¢) has sufficiently large
absolute value, then all solutions of (1) are unbounded on [0, oo).
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Our result is based on the following two results, which we state without proofs.
First we define for f(¢) any function continuous on [0, 27] the notation

2n
Mf(n,é) = ; f(t)cos(nt+ ) dt.

LemMaA 1. If f(¢) is continuous and 2z-periodic, and there exists a ¢ such that
M (n, 8) # 0, then all solutions of x" +n’x = f(1) are unbounded on [0, oo).

LeEmMA 2. If all solutions of (1) exist for 1 > 0 and there exists a solution which
together with its derivative is bounded on [0, oo), then there exists a 2z-periodic
solution of (1).

Lemma 1 is well known and easy to prove; in fact it also follows easily that if
M(n,8) =0 forall 6, 0 <d < 2, then all solutions of x" +n’x = f(t) are
bounded on R. Lemma 2 is a special case of a theorem due to Massera [5] and its
proof uses a nontrivial fixed point theorem in R%.

THEOREM 1. Suppose there exists a g, > 0, and an integer n > 0, such that
g(x)—nzx <g, forxinR. (1.1)

Then if |M,(d,, n)| > 2ng,, where J; = —tan_'(so/co), Co = foz"p(t)cosnta’t,
Sp = ()Z"p(t) sinntdt, all solutions of (1) are unbounded on [0, co0).
Proof. Using standard continuation theorems, one can easily show that under the
hypotheses on g, all solutions of (1) can be continued to ¢ = co; we omit the details.
We next show that if x(¢) is a solution bounded on [0, co) then x'(¢) is also.

Suppose not; then there exists 7, > 0 such that

, 2

(x' (1)) > 4M,B, (1.2)
where B, = sup{|x ()| : t > 0},
and M, = sup {|g(x) —p(t)|: |x| < B,, tin R}.

Suppose x'(f,) > 0; the case x'(f)) < O can be dealt with in the same way.
Since x(z) increases without bound if x'(1) > 0 and is bounded away from zero
for t > 0, it follows that there exists an increasing sequence {f,}, k =1,2,...,
such that ¢, > 1,, x'(t,) — 0 as k — oo, and x'(1) > 0 for 1y <t <7 where
7=1lim,__t . Put x, = x(t;), k=0,1,2,..., and define y(x) = x'(1(x)),
where #(x) is the inverse of x(¢) on [¢,, 7). It is easy to show that for any integer
k> 1, d(y*(x))/dx = 2(p(1(x)) = g(x)), X, < X < X

From this and the mean value theorem we get

‘yz (x¢) = .VZ (Xo)‘ < 2M, (x, — xo) < 4M; B, (2)
and since y(x,) = x'(to) and y(x,) = x'(lk) — 0 as k — oo, we obtain from (2)

that (x'(t,))" < 4M,B,, which contradicts (1.2). This proves the assertion that x'(1)
is alsobounded on [0, 00).
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Thus if (1) has a solution bounded on [0, co), by Lemma 2 it has a 2zn-periodic
solution, say X(f). So the equation

M ntx =% () - g (X (D)) +p (1) (3)

has a 2z-periodic solution X(¢). Using Lemma 1 with f(¢) = nzf(t) —g(x()+p()
we find that for all ¢,

2n
M, (6, n) = —/ (nzf(t) —g(X(t))cos(nt+9)dt.
0
So |Mp(5 ,n)| <2ng, forall §. But by elementary calculus, it follows easily that

)

max {Mp (6, n): 5rea1} = ’Mp (09> 1)

and we arrive at a contradiction since by hypotheses |Mp(60, n)| > 2ng,. This
proves the theorem.

We state a result for a more general equation which can be proved using the method
in the proof of Theorem 1.

THEOREM 2. Let f(x, t) bereal valued and continuous of Rx R and f(x, t+2n) =
f(x, t) there. Suppose there exists an integer n» >0 and a § such that

2n
/ (f&@), 0+n'% (1)) cos(nt +3) di #0
0

for all continuously differentiable 2z-periodic functions X(¢). Suppose all solutions
of

: xX"=f(t,x) (4)
are uniquely determined by these initial conditions and extend to [0, oo). Then all
solutions of (4) are unbounded on [0, o).

We conclude by applying Theorem 1 to some special cases of (1), first to obtain a
lower bound on the suprema of the absolute values of certain bounded solutions of
x"+x*=pa).

Let n, and m, be positive integers, and define

3
gx)=x", 0<x <my,

=n(2) (x — my) +mé, X, > m,
and g(x)= —g(—x) for x <0. We use Theorem | with n = n,. If
g, = max {mo ‘m(z) - né‘ , 2n3/3\/§} ,
it follows by straightforward calculations that
‘g(x) - néx’ <g,x InR

Thus if M, (n,, dy) > 2mg,, with J; as defined in Theorem | with n = n,, all
solutions of (1) for this g are unbounded on [0, oo); i.e., for any solution x(¢) of
(1) there exist 7, — oo as k — oo such that |x(t,)|>m,, n=1,2,....
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This shows also that if x() solves x” + x} = p(t) and |x(1)] < m, for ¢ in R,
then Mp(no, dy) < 2mg, -
If we take m = n, clearly g, = 2n8/3\/§, and we conclude that if

2n
/ p (t)cos (nyt +6,) dt > 4nn3/3\/§,
0

then there exist no solutions x(z) of x" +x’ = p() such that |x(1)| < n, for ¢ in
R.
Next consider the piecewise linear g(x) given by

g(x)=x, 0<x<,
=4x -3, x> 1
with g(x) = —g(-x), x <0.
A simple application of Theorem 1 shows that if ¢, is defined as in Theorem 1
with n =2, and
M, (2.6,)| > 6x, (5)
then all solutions of (1) are unbounded on [0, co). An interesting and apparently

open question is that if p(t) does not satisfy (5), are these solutions bounded on
[0, 00); i.e., are there 2m-periodic solutions? It is easy to show that if for some J,

M, (1,8)#0, (6)
then for every solution x(¢) there exists a sequence 7, — oo as k — oo such that
[x(t,)|>1, k=1,2,....If not, there exists a 7, such that |x(¢)] <1 for 1 >1¢,,

and so x(t) satisfies x” + x = p(¢) for all such ¢, and using (6) we easily get a
contradiction.
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