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Abstract. The evolution equations of a linear viscoelastic solid are written in terms

of the Laplace transform of the displacement field. A corresponding reformulation of

the condition of vanishing divergence for vector fields is then proposed and, through

a systematic procedure, an explicit representation for a very large family of such

conserved vectors is derived. As an application it is shown how a suitable choice of

the admissible parameters leads to specific conservation laws which involve spatial

means of linear momentum, angular momentum, stress, and displacement, in terms

of the known body force, and initial and boundary data. As a further application a

Betti-type reciprocity relation is derived. The connection with Noether's approach

to conservation laws is also discussed.

1. Introduction. Consider a system of partial differential equations of the form

Ai(Xa, </>j> tjafi) = 0' (L1)

in the unknown functions (f>Axa), where Greek (Latin) indices vary from 1 to n

(m), 4>ja = d(j)j/dxa , (j)jnp - d2(f)j/dxadxp , and the A.'s are sufficiently regular

functions of their arguments. To save writing we omit all hypotheses concerning

continuity, differentiability, etc., whenever it is clear from the context what these

ought to be.

Suppose J is a vector function of components 7t(x„, (j)j, 0 .„). A conservation

law for the system (1.1) is an equation of the form

D J = 0, (1.2)a a ' x '

in the unknowns J , where the symbol = means that equality holds on solutions to

(1.1), D denotes the total derivative with respect to xa , that is

^ & ± d , d ....
£ + + (1-3)

and the summation convention on repeated indices is in force. Whenever (1.2) holds

the vector J is said to be conserved or divergence free. The knowledge of conser-

vation laws for systems of partial differential equations allows one to gain useful
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information on the properties of the solutions. That is why the generation of conser-

vation laws is a topic which has always attracted a deep attention [1],

The search for conservation laws is usually performed up to trivialities, which

means that none of the following conditions holds: (i) J vanishes identically on

the solutions to (1.1) or (ii) DaJa = 0 for every set of functions <f>j regardless of

whether they solve the system (1.1) [1], No matter which of the two conditions may

occur, trivial conservation laws do not have any physical significance nor do they

provide any information about the properties of the solution to the given system of

differential equations. That is why we are interested only in nontrivial conservation

laws. In addition we regard as equivalent two conservation laws if they make a

suitable linear combination, with constant coefficients, a trivial conservation law and

we look for independent, that is nonequivalent, conserved vectors.

Under the assumption that the system (1.1) is self-adjoint and thus may be derived

from a variational principle [2], Noether's theorem provides a straightforward means

for associating conservation laws to each one-parameter variational symmetry group

[1, 3, 4], Recent investigations aiming at specific applications have led to rather

general formulations of Noether's theorem which allow, e.g., dealing with conserved

vectors depending on higher-order derivatives of the <£ .'s [5, 6], Besides these im-

provements, the recent literature has also exhibited methods for the determination of

conserved vectors for non-self-adjoint systems through the solution of the so-called

perturbation equation for the system (1.1) and the use of Green's theorem [7, 8],

The direct approach, which consists in finding the general solution to (1.2) under

the constraint (1.1), has been used only in a few cases (see, e.g., [9]), perhaps because

of difficulties in giving the physical interpretation of J . To our mind, however, this

method is very efficient and can be used profitably even when a variational formu-

lation is allowed, as the present paper will show. Indeed, we think that this work is

a remarkable step towards a general approach to the generation of conservation laws

for systems with memory.

To fix ideas, we look at the dynamics of (linear) viscoelastic bodies [10], which

constitute the simplest model for deformable solids when dissipation and hereditary

effects are incorporated. The corresponding mathematical scheme involves a sys-

tem of integro-differential equations, with the integrals reflecting the memory effects.

The occurrence of integro-differential equations strongly suggests that we apply the

Laplace transformation, so that a suitable reformulation of (1.2) is solved in the

space of transformed variables. By means of this procedure we are able to generate

previous results (given in [1 1, 12]) and to provide rather general conserved vectors.

Particular examples show how these vectors lead to conservation laws which involve

initial-boundary data and provide estimates for the unknown displacement and its

time derivative.

The conservation laws turn out to be nonlocal in that they involve convolutions.

Families of nonlocal conservation laws, which however do not involve convolutions,

have already been derived (e.g., in [ 13]; cf. also [14]) in connection with nongeometric

symmetries of the Maxwell equations. It is of interest to reinvestigate these extensions

of the concept of local conservation law and possibly to connect the unknown function

to the initial and boundary data. This connection is provided in the present paper.
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2. Preliminaries on viscoelasticity. Let 3 be a closed, bounded regular region

in the three-dimensional euclidean point space f occupied by a homogeneous vis-

coelastic solid in its stress-free configuration. Let 'V be the vector space associated

with (o and Lin be the space of linear transformations ,eV) from 'V into 'V

(or second-order tensors).

The motion of the solid is described by the function y(x, t) giving the position

vector y at time / e 3? of the particle located at x; henceforth x e 3 . It is

convenient to introduce the displacement vector field u associated with the motion,

u : 3 x 311-> 'V, defined as

u(x, /) = y(x, t) - x.

The unknowns 0(. are identified with the Cartesian components ui of the vector u,

so that latin indices run from 1 to 3. We consider independent variables xa , with

a = 1,2,3,4, and we let x, , x2, x3, and x4 denote the Cartesian coordinates

and the time t, respectively. Accordingly, e.g., «;y denotes duJdXj and we set

for convenience iil = ujt, that is, a superimposed dot denotes the time derivative.

Henceforth the direct tensor notation is used when convenient. A dot denotes

contraction or inner product.

To arrive at the correspondent of the system (1.1) we define the strain tensor

E : 3 x 31 Lin through

E(x, t) = sym Vu(x, t)

where sym denotes the symmetric part and V stands for the gradient operator. On

the assumption that the medium is in its undeformed state, and hence E = 0 for all

/ in (0, oo) we write the constitutive equations of linear viscoelasticity as [15]

T(x, t) = G(/)E(x, 0)+ [' G(t - t)E(x, z)dx, (2.1)
Jo

where T is the stress tensor and G : 3 x [0, oo) h-> L(Lin, Lin) is the relaxation

tensor satisfying the usual symmetry relations that in Cartesian components read

^Uhk ~ Gjihk = Gjjkh = Gkhjj. (2.2)

We call viscoelastic state a triple (u, E, T) on 3 x 31 of displacement field u,

strain tensor E, and stress tensor T, related by (2.1). The convolution form for the

viscoelastic state equation (2.1) will be decisively advantageous in the next develop-

ments.

Letting p be the constant mass density and F(x, t) the body force, the equations

of motion are

/hi = V-T + F, (2.3)

subject to the initial conditions

u(x,0) = d(x), u(x,0) = v(x). (2.4)
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As discussed in [11], (2.2) and (2.3) are equivalent to the single equation

pu = g * V ■ T + f in x [0, oo), (2.5)

where * denotes the convolution,

g(t) = t, t e [0, oo),

f(x, t) = [g * F](x, t) + />[zv(x) + d(x)], t e [0, oo).

We now apply the Laplace transform operator Sf : J*?{fi(x, ?)} = h(\,p) to

obtain

pu(x,p) = ^{V-T} + -^F(x, p) + p
P~ P

~T*(x) + ~d(x)
L p" P

(2.7)

Hence it follows from (2.1) that

• T} = V ■ [pG(p)Vu].

Substitution into (2.6) yields the vector form of the transformed equation of motion;

the explicit expression of its z-th component reads

P*i = -^Aijkfiikj + fi (2-8)

where the tensor A is defined by

^jk, = GIJkl + GlkJr (2-9)

The vector f is the Laplace transform of (2.6), namely

(210)

and the dependence on the parameter p is henceforth understood and not written.

Incidentally, we observe that, by mistake, in [12] Eq. (2.8) has been written with the

additive term V • (GVd).

For later convenience we observe that in view of (2.2) and (2.9) the tensor A

satisfies the symmetry properties

^ijkl = Ajkji = Atjki = Aklij. (2.11)

It is also apparent that Eq. (2.8) is the Euler-Lagrange equation corresponding to the

Lagrangian density L given by

1 = ^Ukl^uKl ~ fi"i + ■ (2-12)

3. General form of conservation laws. According to our notation, a conservation

law is a relation of the form

DjJj + DJ = 0, (3.1)

where, for convenience, I stands for J( and the symbol = means that equality holds

along solutions to (2.3). In this framework / is usually referred to as a conserved

density and the associated J- s identify the corresponding flux.

Owing to the structure of (2.1) and (2.3), in the case of viscoelasticity ,/ and I

at the point x and time t are likely to be functional on a normed space of
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histories of u and Vu, at x, up to time t. This dependence, however, would make

the search for the solution J(., / a formidable problem. With this in mind, and taking

advantage of the convolution form of (2.6), we set up an alternative characterization

of conservation laws by arguing as follows.

The formal application of the Laplace transform to (3.1) yields

DiJi + pl - I0 = 0,

where IQ is the restriction of / to / = 0 and the field equations are now given by

(2.8). Therefore, in view of the well-known properties of convolutions under Laplace

transformation, we expect that in terms of u the conservation law can be given the

form

D,j;+p/-/0 = 0, (3.2)

with Ji and I functions of (x, u, Vu) £S"x^x Lin. In (3.2) IQ stands for a

scalar function on 3) to be determined. Of course, the Laplace variable p enters

Ji and / as a parameter. Explicitly, (3.2) can be written as

d J d J dJ ~

e£ + m> + 5<">

Our aim is to solve (3.3) for Jt and / and to determine their inverse Laplace trans-

form, in order to find conservation laws in the physical space; in applying this pro-

cedure we will identify IQ with the expression at t = 0 of the inverse transform of

7.
The first step in our approach yields the explicit form of the dependence of Ji

on Vu. Under rather mild conditions of nondegeneracy [1], there exist three real

functions Bt, / = 1, 2, 3 , on SSy.'VxLin such that the condition (3.3) is equivalent

to the validity of

dJ dJ dJ ~ /1 ~ ~ \

+ ot?" + W~h^ + pI-J° = B« + 2A- - 2p*k) (3.4)

for arbitrary values of , ujh , ujhi. The arbitrariness of ujhl, along with its

symmetry with respect to the indices h and i, implies that

( d J. dJ.\ 2
^ + l^-\=-BkAklhr (3.5)\dujh dUjJ p k kihj'

On regarding (3.5) as a differential equation for the unknown functions J we may

determine the general form of the dependence of and Bk on ujq .

The integrability conditions for (3.5) are found by observing that suitable combi-

nations of its partial derivatives with respect to the spatial gradient of u lead to

A d-^-A ^ + A dB-k
i ^ - si L r\ ~ ^1k'hjdu kh«sdu-. k,qjdu.., '

sq ji sh

The left-hand side is symmetric in the pairs j, 5 and h , q ; on the contrary, the

right-hand side is symmetric with respect to the pair h , q only. Hence we have to
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impose a compatibility condition, which is obtained by taking the skew part of both

sides with respect to the indices j and s . This yields

( ~ dB, ~ dB, \
[AkihjQfi AkihsQjj ) ' (3- )
V s" Jlj(ihq)

the subscript (ihq) denoting total symmetrization over ihq .

Equation (3.6) is written in the form of a homogeneous linear system in the un-

knowns dBk/du , which is to hold in correspondence with any choice of the coef-

ficients Akjhj obeying the symmetry requirement (2.11). Suppose we set

Akihj = ^kjS,h + fl^khS,j + SkiShi> >

where A and p are nonvanishing constants with Substitution into (3.6) leads

to the necessary condition

where a is defined in 9$ x 'V x Lin . This condition is also sufficient, in the sense

that upon substitution of (3.7) into (3.6) it is found that the expression within round

brackets vanishes identically in view of (2.11).

Equation (3.7) yields the expression of Bk . By the integrability conditions of

(3.7) we obtain that aq cannot depend on Vu, whence it follows that Bk may be

represented as

Bk = 2^k^ai + + ^ + ^ ^3'8)

with a , fik , aq , ftk , as functions of x, u, and the parameter p , aq and fik

having been introduced for convenience.

Upon substitution of (3.8) into (3.5) we conclude that the most general solution

to (3.5) can be written as

l=X- 2^kqaq + Pk^kih/ljh 4° jqsr^1 jqli rs

+ ("*A + Pk)Gk,hj"jh ~ ^iGJqsrUJqUr + Uijhitjh + ki> (3'9)

where viJh and k/ depend on x, u and, in addition, wjjh = . Comparing with

(3.5), (3.8), and (3.9) it follows that (3.4) becomes

k<> I <ix, i)uj '/ dx. Oh, ''

1 ~ If da. da. _
^ + —'-U

kihj jh 4 \QXj Dul 11

X AjqsrUjq»rs +
u I U \ + dl± + dJLu
** (a.v, ou/ ) 0\t Ou, GkihjUjh

1 / dai 0<\ „ \ ~ _ _

dlJl]h . Ovijt , Ok Ok, .
+ ~^u,h + ~uliuih + T"2" +

dxj Jh On! " J" 0Xj Oni "

+ pi - Io + [ukq{aq + aq) + fik + pk](puk ~ fk) = 0. (3.10)



CONSERVATION LAWS IN VISCOELASTICITY 509

The next step consists in finding the form of the functions a , pk , aq , fik , vj]h ,

kj, and 7 which satisfy (3.10). The conservation law (3.10) is in fact a family of

conservation laws. Actually, it seems that in view of the arbitrariness allowed in

the determination of /, almost any choice of J gives rise to a conservation law.

However, we have to take into account two basic facts. First, the expressions for

the admissible functions should be simple enough to allow for the application of

the inverse Laplace transform; in practice, this is guaranteed by taking polynomial

dependences on u and its spatial derivatives. Second, the arbitrariness in the choice

of I is restricted by the requirement that the resulting conservation law is not trivial.

In this connection it is worth observing that the terms which precede pi in Eq. (3.10)

cannot simply be removed by collecting them into the definition of / in order to

achieve maximum generality; this would imply the appearance of a spatial divergence

in the expression of I, which ultimately should lead to a trivial conservation law in

the physical space.

For the sake of definiteness and to prepare the discussion of subsequent appli-

cations to physically relevant situations, henceforth we make the assumption that

I depends at most linearly on Vu. Look at (3.10) as a third-order expression in

the partial derivatives iikq that must be satisfied for suitable choices of I. Then

the vanishing of the contributions due to third-order and second-order terms implies

that

ak = 2axk + bk , ak = cxk +ek, (3.11a)

h = aiik + Vk > Pk = \cUk + > (3-1 lb)

<3I|C)

where a, bk , c, ek are only allowed to depend on the parameter p; zjh =

zih(x,u,p), with zih = -zhi, and <pk = <j>k{x,p), y/k = y/k(x,p). As a conse-

quence (3.10) reduces to

1 (I d<t>k ~ . d<j/k ~ _ \ d2zih , dk. dk.
p {2 + d^G^JuJ")+ + + w,u"

+ pT-t0 + + bc + eq] +(a + jc) uk + 4>k + ¥k }

X(puk-fk) = o (3.12)

and Jt takes the form

2 ("kqaq + Pk>^kihj^jh + (l'ikqaq + ^k^kihj"jh

1 r . - 1 _ y. . . '
jqsrU jqllrs 2°'' jqsrUjqUrs

^,h
+ ea:*J> + k>- (3"13)
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4. Explicit structure of some conservation laws. To obtain simple but physically

significant examples we consider the particular case when a , c, bq, eq, <j>k, and

zjh vanish. The expressions (3.12) and (3.13) reduce to

+ w,+ §%;*<"+~'«+-/»»-# (411

and

1 = Xp^Jik,hjUjh + kr (4-2)

Among the conservation laws are the balance laws of linear and angular momentum.

With the purpose of obtaining these laws we choose / as

T=~);VkPuk- (4J)

i) Balance laws. Now we show in detail how the balance laws follow. By (4.3), Eq.

(4.1) reduces to

+ (4.4)

The arbitrariness of ujh gives

1 OVkg i dkh _ Q
p dXj k,h' dii.

whence

= + <45»

where ah is a function of x parameterized by p . Meanwhile (4.4) becomes

dk
/.=<>• (4.6)

Letting wk be the inverse Laplace transform of wk := yJk/p2, by (4.3) we have

I = —wk * puk - pwkdk (4.7)

and

IQ = -pwk(0)dk,

where wk(0) denotes the restriction to / = 0 of wk . Substitution of kh from (4.5)

into (4.6) yields

1 °2Vk r r, , 9dh

* S?t + ^-0'

U].

i)2y/k

where only the first term depends on w . Hence

2

= 0. (4.8)
OxhOx,
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The functions ah are then characterized through the divergence ddh/dxh by

^ = -pwk(0)dk + y/kfk. (4.9)

By (4.8) we can write

wk=h + (Xkh + akh)xh, (4.10)

where Xk , xkh , and cokh are arbitrary functions of t with xkh = Xhk > wkh = hk ■

Meanwhile (4.9) can be written as

^ = p[pu>k - wk(0)]dk + wkFk + pwkvk ,

whence we get the divergence of ah = & \ah) as

= P*>kdk + wk * Fk + Pwkvk ■ (4-11)

The inverse Laplace transform of (4.2) and account of (2.1) and (4.5) yield

J, = wk * Tk, + Xki * (Gkihj *"j + Gkihjdj) + ■ (4.12)

The functions (4.7) and (4.12) provide the desired conservation law.

To get a physically more suggestive form of the balance equation we consider the

global counterpart. By (3.1) and (4.12), integration over 2) x [0, t) gives

V(I-70) = -[ f \xk,*Tki + ]fA dxdt- f [ wk * Tkjnj da dt
Jo Jy> L vXj j j0

where V is the volume of 3 , a superposed bar denotes the spatial mean in 3 , n

is the outward normal, dx is the volume element and da is the surface element.

Account of (4.11) and some rearrangement yield

Vwk * puk - V f xkl * Tkl dt = f {wk*Fk + pW^Tk)dt + f f wk*Tkinidadt'.
J0 JO Jo Jocn

(4.13)
The arbitrariness of Xk , xki > °hi Provides three separate conservation laws, namely

V{X*pu)(t) = V f'(X*F +pX\)dt'+ [ X* [ Tndad/, (4.14)
Jo Jo Jo&

V[X * sym(x <8> /?u)](/) + V / Of * T)dt' = V [x * sym(x ® F) + x sym(x <g> pv)]dt
Jo Jo

f"'fJo Jd
dadt ,

am
(4.15)

V[co*(\ x /?u)](Z) = V / (co*\ x F+co*\ x p\) dt'+ a>* xxTndadt , (4.16)
Jo Jo Joy

where X, /, (0 are arbitrary scalar-valued functions on 31; really, (4.14)—(4.16)

hold with independent A's, ^'s, and w's for the various components. The particular

case when X, x, are Dirac's delta function d(t') gives

pu(t) = [ F dt' + p\ + ~ f [ Tn dadt', (4.17)
Jo r Jo Jd'JH
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sym(x ® pii)(t) + / T dt — / sym(x ® F) dt + sym(x ® pv)
Jo J o

+ ~ f [ sym(x ® Tn) da dt , (4.18)" JO J 02

xxpu(t)- f (x x F) dt + x x p\ + -j- f [ x x Tn dadt . (4.19)
Jo * Jo Jd&>

Alternatively, we could have obtained (4.17)—(4.19) directly, without having recourse

to Dirac's delta function, by considering Xk , xkt > 0Jki as independent of t.

Incidentally, (4.17) and (4.19) are the integral version of balance equations for

linear and angular momentum. They give the means p\i and x x pa in terms of

the boundary and initial data, namely Tn on dS x and v on and the

known body force F on 2 x^+ . Equation (4.18), instead, is unusual as a balance

equation; it provides an estimate on sym(x x pii) or T when information is given

on one of the two quantities.

ii) A conservation law involving the displacement. A less usual conservation law

follows by considering the case when the density I involves the displacement u,

rather than the velocity u.

Formally, let wk = Wk/P and wk = Jzf~^{i//k/p} . By paralleling, step by step, the

previous procedure we have

/ = -wk * puk , (4.20)

where, again, wk is given by (4.10). Then from

ddh 1 - B 1 -
—JL = —w.Fk + -pwkvk
dxh p K K p K K

we have

(4.21)

where &~k and Wk are the integrals, over the time interval, of Fk and wk . Mean-

while

J, = wk * Gkihj * ujh - Xkh * Gkhij * Uj + a,. (4.22)

By (3.1) and (4.20), (4.21), integration over 3 x [0, /) yields

wk* puk= / wk*.9kdt'+ / pvkW'kdt
Jo Jo

J Jjwk * GkUh * u,h ~ xkh * Gm * uj)n, dadt+ y
10 Jcx

which in fact gives the three conservation laws

A * nG * Vudadt ,
o

(A * pu){t) = [ X*,9~ dt' + pv [ [ l{x)dxdt' + j7 [ [
Jo Jo Jo v Jo J.rj

[X * sym(x ® pu)](t) = [ [x * sym(x® ,^") dt' + sym(x ® pv) [ [ xWdrdt'
Jo Jo Jo

n[X * sym(x ® nG * Vu) — / * G * (u ® n )]dadt',
*

+ y
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(co * x x pu)(t) = / (co * x x .9r)dt + x x p\ / / co(x)dxdt
J0 io ./0

+ j7 f [ co * x x (nG * Vu) da dt',
' Jo J&

whereby the knowledge of u and Vu on the boundary d2> and of the body force

F on 2$ x [0, t) leads at once to estimates on the means u and xlgTu. As before,

if X, x > and co are taken as Dirac's delta functions then convolutions reduce to the

current value of the pertinent physical quantity.

iii) Conservation laws related to reciprocity theorems. Every self-adjoint linear sys-

tem does always possess a reciprocity relation [1, 7, 8, 16] which allows the determi-

nation of a conservation law canonically associated with every pair of solutions to

the given equations. Conversely, it has been shown in linear elastostatics [3, 17] and

in linear elastodynamics [18] that a reciprocal theorem follows from the knowledge

of a complete set of conservation laws; it takes the explicit form of a Betti theorem

whereby, given two elastic states, the work done by the external forces of the first over

the displacements of the second is related to the work done by the external forces

of the second over the displacements of the first. We observe that the system (2.8)

is linear and self-adjoint, since it arises from the Lagrangian (2.12). Thus, notwith-

standing possible difficulties that may occur in connection with the problem of the

time-derivative, we expect that a result similar to the Betti's reciprocal theorem holds.

To show this, consider a new viscoelastic state (iT , E*, T*) corresponding to the

same relaxation function G and denote by a superimposed * the pertinent quantities.

Then look at the conservation law (4.1) and choose kj and / as

= (4-23)

1= ~^Vk(puk - fk) + *k(PVk - ■£)]' (4-24)

where of course is given by the counterpart of Eq. (2.10), and let 70 = 0. In

view of (4.23) and (4.24), (4.1) becomes

+-f'"0

which is satisfied whenever ^ coincides with the solution u"j to the counterpart of

(2.8). Hence the explicit expressions for ki and / become

= (4-25)

7= ~uk{puk - fk) + X-uk(puk - fk). (4.26)

The application of the inverse Laplace transform shows that (4.26) is consistent with

the choice I0 = 0 and provides the following result.
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Let (u, E, T) and (u* , E*, T*) be viscoelastic states on 31 x (0, oo) correspond-

ing to the same relaxation function G, as in (2.1), to the body forces F and F* ,

to the initial data d, v and d*, v*, respectively. Then, for any / e (0, oo), the

conservation law (3.1) holds with

Ji = I K * Gkihj * ujh - u\k * Gkhu * u,)(t')dt',

7 = [ {~uk*[g*Fk + P(gv*k+d*k)] + uk*[g*Fk + p{gvk + dk)]}{t')dt',
Jo

where u* is the solution to the problem (2.3), (2.4) with body force F* and initial

data d* and v*.

5. The connection with Noether's theorem. Owing to the application of Noether's

theorem for the derivation of conservation laws it is worth investigating the possi-

ble connection between divergence-free fields and Noetherian fields, i.e., conserved

vectors that are generated via Noether's approach. This connection would have the

advantage of providing divergence-free fields with the physical meaning usually as-

sociated with Noetherian fields in terms of the generators of infinitesimal invariance

transformations [1, 4, 18].

Since the Lagrangian for the viscoelastic body is provided by (2.12) we can apply

the Noether-type approach developed in [12, 18] whereby

tt>A + J|*,+- dM,+p>- I,=0 (5,i)

is the conservation law which arises from the invariance of the functional Jy LdV

under the infinitesimal transformation

Xj Xj + eh^x, u, Vu),

ut ^ ui + £^,(x, u, Vu),

where e denotes a "small" parameter and hj and ^ are the generators of the invari-

ance transformation. Here M denotes an arbitrary set of functions of x, u, Vu

arising from the fact that the invariance of the functional is meant up to a divergence

term. Upon use of the Euler-Lagrange equations

— - D = 0
dui 1 <)ui]

we can write (6.1) as

DjJj+pI- I0 = 0

with

J>Lhi+ §£-/(, ~*j>h)-"r (5-2)

This establishes a formal equivalence between the two approaches, the correspon-

dence being specified by (5.2). Operatively, the search for the general solution to (5.1)

is usually more involved and then, often, appropriate restrictions on the form of the
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unknown functions are introduced. For instance, in [12] we solved the problem by

letting hi = hj(x, u), £(. = £((x, u) and Mi be linear in Vu. Here, instead, we have

found the general form of the dependence of on the derivatives uij , showing in

particular that Ji is necessarily quadratic.

In conclusion, there seems to be technical advantages in searching for conservation

laws through the divergence form (3.2).

6. Derivation of conserved fields in elasticity. Besides proceeding along the same

guidelines, the search for conservation laws in elasticity develops through quite sim-

ilar conditions. The constitutive equation (analog of (2.1)) is

T(x, t) — CE(x, t),

with C e L(Lin, Lin) being constant and satisfying the symmetry conditions (2.2).

Then the equations of motion (2.3) ultimately become (cf. (2.8))

K = J2 CUklUklj + f,

ft being the same as in (2.10). The Lagrangian L is given by

1 = ^2 CUklUUUkl ~ fa + •

This shows that, in connection with the Laplace transform, the equations for elas-

ticity are put in 1-1 correspondence with those for viscoelasticity by simply letting

C correspond to pG .

Of course, the correspondence of C with pG, rather than G itself, leads to

quite different time dependences when the inverse Laplace transformation is applied.

This difference is hardly surprising from a mathematical viewpoint. As we expect

it to be, important differences arise as to the mechanical behaviour associated with

the corresponding conservation laws. This feature will be the subject of a future

investigation.
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