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Abstract. The temperature distribution within a thin metal plate of infinite extent

traversed by an electric arc is obtained for the case when the plate remains electroneg-

ative. The potential application of this result to the experimental determination of

the size of the cathode dark space is discussed.

1. Introduction. A problem that arises in attempts to characterise the high pres-

sure metallic arc, used in welding and for illumination, is that of determining the

size of the cathode dark space in the arc at the electronegative gas/metal junction.

No method has yet been devised that can be used to accurately determine the ex-

tent of this region [1]; despite the fact that it exerts considerable influence over the

temperatures prevailing at the arc spot [2],

A naturally occurring idea, however, is that, if the temperatures in a plate traversed

by an arc can be derived analytically then, by comparing theoretical and measured

temperatures, the extent of the dark space, figuring in the analytic solution, may be

calculated.

At the cathode spot only arc radiation seems to be responsible for the heating of

the electrode; and in this paper the relationship connecting the cathode dark space

size and the cathode spot temperature is derived. In order to do this it becomes

necessary to modify the Wilson-Rosenthal [3,4] moving heat source theory; so as to

make allowance for the distributed character of arc radiation.

2. Moving heat source theory. It proves convenient to treat the arc as stationary,

and to consider a closed surface, S, within the cathode but fixed in space; so that the

plate material passes through S. Then, due to mass movement, there will be a heat

flux across S , the density of which equals ^«>On , where p is the mass density, c

the specific heat, v the speed, and <t> the temperature in the plate, while n is a unit

vector directed parallel to the plate movement. In addition there will be a heat flux

due to conduction along the negative temperature gradient in the space fixed relative

to the arc spot. Denoting the density of this conducted flux by J, and the volume

enclosed by S by V, it follows from the conservation of heat energy that, if Q is
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the rate of heat production per unit volume,

f (J + pcv<&n) ■ dS = f QdV.
Js JvIS JV

Transforming the integral on the left, by means of Gauss' divergence theorem, and

using the rule for the divergence of a product of a scalar and a vector [5], we obtain

div J + pcvn • grad $> = Q. (1)

But, by Fourier's law,

J = -/cgrad<P,

where k is the thermal conductivity of the plate. Moreover, if a is the distance that

a point lies from the arc spot centre, measured in the direction -n (Fig. 1) then,

ngradO> = ,
do

and, on substituting for J from Fourier's law and using this result in Eq. (1), we get

2 0 O
V-O + 2 Xv— = -Q/k, (2)

where

2 Xk = pc. (3)

<t>• const.

Fig. 1. The isotherms in the space occupied by the plate, as viewed

from the (stationary) arc exhibit the shape shown schematically; a

point in this space lies at distance a from the arc, measured opposite

to the sense of apparent plate movement.

In the case of a thin plate the heat flow problem becomes two dimensional and for

Q we write W/h , where W is the normal heat flux density on the plate surface due

to arc radiation, and where h is the plate thickness. In this case Eq. (2) becomes

i t](J)
V~0> + 2Xv— - - W/Kh.

da
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In order to reduce this equation to a recognisable form we must make the substitution

[4]
d> = e Xva<j,, (4)

where <f> is a function of the coordinates in the plane of the plate, with origin at the

arc spot centre. The equation thus obtained is

_,2 . ,2 2- W Iva .
V O - A v O = Te , (5)

Kh

which is related to the Helmholtz equation [6].

3. Integral solution. To solve Eq. (5) we apply Green's theorem in the form

/ (0V-4, - *vV) (6)

where S is now any area in the plane of the plate bounded by a closed curve C , along

which 5 measures distance, and normal to which d/dn denotes differentiation in

the direction of the outward drawn normal; while <f> and 4>' are any two functions

which, along with their derivatives, remain continuous in S. We assume that <t>

satisfies Eq. (5) while

vV -AV = 0, (7)
and we seek a solution for a plate with its boundaries at infinity. From Eqs. (5), (6),

and (7) we get

Th"" ds= A* aa-*T,rr1' (8)L
Further, a solution to Eq. (7) is

<t>' = K{)(Xpv) ,

where K0 denotes the modified Bessel function of the second kind and zero order,

and p is radial distance in the plane of the plate from the pole P , at which we seek

the value of 4> (Fig. 2). Since 4> now becomes infinite as p —> 0, we must deform

C to consist of a small circle C, , described counterclockwise about P , and a circle

C2 at infinity. With these changes Eq. (8) becomes, on letting the radius of C, tend

to zero,

i Is WK° [XpV)eXV° dS = X^l7tp {~K° {*pV) ̂p + 0 J~p[kpv)) ■

But we know that [7]

Hm^o(0 = -f0{tmt/2) ,
t —► J

lim tK'(t) = -1,0 u

where /0 is the modified Bessel function of the first kind of zero order, and so

27r0=-i- [ WKQ(kpv)eiva dS,
K" J s
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Fig. 2. Showing the point P in the plane occupied by the moving

plate and fixed relative to the arc.

Fig. 3. Showing meaning of symbols a and ff0 used in text,

whence, by Eq. (4), on letting a{) stand for the value of a at P, (Fig. 3)

<"=^ThLWK^)eH°"')ds-

If we now move the point P to 0, the arc spot centre (Fig. 1), and denote by <J>0

the temperature at 0 then, since (Fig. 3)

a - a0 — p cos a,

where a is the angle that the radius from P makes with -n (Fig. 3), we obtain

i p2k rOO

Using Bessel's integral we readily obtain

2 nl0(t)= e da
>o

and so
1 r oo

O = —
0 k h

r An
I t COS <\

/ ?
Jo

roo

/ pWI0{?.pv) K0(Xpv) dp. (9)
Jo
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4. Cathode arc spot temperature. The formula for W is [2]

w = *L
4n

(
\

1 1

\l{p2 + S') \J{p2+St) J
where 7 is the current in the external metallic circuit of the arc, E is the axial

electric field along the arc column, and 5, and s2 are the distances from the arc spot

centre, 0, to the lower and upper terminations of the radiating portion of the arc

column. By substituting from this equation into Eq. (9), and defining a function F

by

t \
l l

F(») -sJo t

\

we obtain, using Eqs. (3) and (9)

\A'2 + "2);

dt

= (10)

5. Results. The function F(/u) just defined was evaluated by numerical integra-

tion; the contributions to the integral for very small and very large values of the

argument of the integrand being found analytically. Tables of Bessel functions and

Simpson's rule were used to carry out the numerical work.

Watson's tables [7] cover a range of arguments starting with 0.02 and so F(0.02)

was evaluated using the series [8]

K0 (t) = —70 (t) {In (t/2) + 0.5772 • ■ • } + (t/2 f + ■ ■ ■ ,

70(0= 1 + (r/2)2 + - ■ ■ .

In fact the product /0(0.02)AT0(0.02) found from Watson's tables differs from the

value of this product found, using the above expressions, with terms in t2 and above

omitted, by only 0.02%. Consequently the value of F(0.02) was determined ana-

lytically using the approximation

70 {t) K0 (t) {In (t/2) + 0.5772}.

On the other hand [7]

i
lim Kn (t) = e

0 (2 7T01/2'

1/2

lim 70 (/) =
I —► OO u It

and these expressions were used to evaluate analytically the contribution to the inte-

gral F(n) for values of t at which IQ(t)KQ(t) approximated 1 jit; the asymptotic

value of this product.
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Over the intermediate range of t values, where integrations were carried out by use

of Simpson's rule, coarse and fine intervals were chosen to ensure sufficient accuracy

for purposes of graphical presentation of the results.

For iron A equals 6.8 x 104 s/m2 (0°C) [9] and, for an arc traversing an iron

plate at 0.1 m/s, fi may have values as small as 0.1 or as large as 50 . Values of ^

in this range were chosen to develop the function F{fi), shown graphically in Figs.

4a and 4b.

Fig. 4a. The function F(n) over the range of values in which /jJi,

generally lies.

6. Discussion and conclusions. Equation (10) only remains applicable if the speed

of traverse of the arc is high enough so that temperatures developed in the plate

remain small; since otherwise the heat flow problem may become nonlinear, owing

to the temperature dependence of the thermophysical constants [9], Moreover Eq.

(10) applies only if all of the radiation received by the plate is absorbed. Consequently

in experimental applications it is necessary to use oxidised plates, or plates treated

with lamp black.

Under these conditions values of E, /, v and s2 (approximately equal to the

gap distance) may be easily measured and the arc spot temperature, 5>0 , may also be

readily measured, by one of several methods. These measurements used in conjunc-

tion with Eq. (10) and Fig. 4 then enable the value of 5, , the size of the cathode

dark space, to be calculated, for a variety of metallic arcs.



TEMPERATURES IN A THIN METAL PLATE 497

T

Fig. 4b. The function F(ft) over that range of p values in which

/,vs2 generally lies.
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