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1. Introduction. Let the interval [0, 1] be occupied by a one-dimensional material

of unit density. If the material is elastic, the stress is given by

r = f(V), (i.i)

where Vx is the strain. If elastic effects due to a material microstructure, such as

a phase transformation or a continuous distribution of dislocations, are to be ade-

quately included into the constitutive description, it has been noted by Aifantis and

Serrin [2], among others, that an extra stress Te depending on long-range molecular

forces should be added to (1.1). While there are many forms this extra stress could

take, we will assume a particularly simple one involving the second spatial derivative

of V . Then, the gradient-dependent expression for the total stress reads

T — f{V) - AVxx, (1.2)

where / is a nonmonotone function and X a constant.

A central question is the determination of the stable equilibrium states associated

with (1.2). One way to define these states is to consider (1.2) in conjunction with the

differential equation of static equilibrium Tx = 0 leading to the differential equation

U{V)-kVxx)x = 0, (1.3)

which upon integration and for some constant TQ implies

f(V)-T0-Wxx = 0. (1.4)

Alternatively, (1.4) can be obtained as the Euler-Lagrange equation for the functional

I[V)^Sl (/r(K) + IK^ dx' (L5)

where F'(V) = f(V)-TQ. Gibbs's idea of stability is then to identify the stable states

as those which yield local minima for this gradient-dependent energy functional.

A more fundamental and less restrictive way to define stability is to consider

(1.2) in conjunction with the differential equation of motion or momentum balance
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Tx = un where u denotes the displacement (V = ux). Then we can say that an

equilibrium solution is stable if it is obtained as a long-time limit of the solution of

the dynamical equations of motion for all initial data sufficiently close to the given

equilibrium solution.

Obviously, there is a great deal more involved in this second definition than in the

first. We must describe the equation of momentum balance or equation of motion

along with a dynamic constitutive equation for the stress. This typically involves the

inclusion of terms that give a viscous stress. Since these terms vanish at equilibrium,

a given solution of (1.3) may be an equilibrium state of many different evolution

equations. It does not seem obvious that the dynamic stability of this state should

be the same for all these evolution equations. One must also address the problem of

measuring closeness. There are many ways to measure this and it seems clear that

it could happen that an equilibrium state is stable with respect to one measure of

closeness and not stable for some other measure of closeness. It is not even obvious

that solutions to the appropriate evolution equation exist or that they are unique.

Because of these mathematical complexities, the idea of minimizing a functional has

long been an attractive approach.

If this notion of stability could account for actual observations, perhaps there

would be no need to study the second notion of stability with its increased math-

ematical complexities. This is not the case, however. Often, the material states

of most interest today are states far from thermodynamic equilibrium (dissipative

structures, metastable states), and no Lyapunov functional or minimization principle

can be associated with them. Moreover, patterned solutions are usually ruled out by

Gibbs's definition of stability as possessing more energy than other structured solu-

tions. Patterned solutions, however, do occur as equilibrium solutions of (1.4). This

was shown, for example, by Aifantis and Serrin [2] by a very simple argument. They

showed that the bounded equilibrium solutions of equations including (1.4) as a spe-

cial case are of three kinds: transitions, reversals, and oscillations. The oscillations

correspond to the formation of patterns. The paper by Alexiades and Aifantis [1]

suggests that in the sense of minimizing I{V), the oscillations are unstable. How-

ever, their analysis was for the whole real line. Carr, Gurtin, and Slemrod [5] have

shown by using a phase plane analysis that oscillations occur among the solutions of

(1.4) on the finite interval if and only if X is sufficiently small. They also showed

that these oscillations are unstable (in the sense of minimizing (I(V)). These results

seem to imply that it is more appropriate to use the dynamical definition of stability.

The purpose of this paper is to discuss the existence, uniqueness, and long-time be-

havior of solutions of an initial boundary value problem, resulting from an equation

of motion whose equilibrium states are solutions of (1.4). In Sec. 2, the evolution

equation is derived. We note that a similar evolution equation was discussed, using

different techniques, by Andrews and Ball [3], the difference being in the form of the

viscous stress. We also allow for much more general boundary conditions. Section 3

contains an abstract form of the initial boundary value problem along with theorems

of existence, uniqueness, and continuous dependence. Actually, this time-dependent

problem should be called an "approximate problem" because various functions have
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been truncated. In Sec. 4, estimates on the strain are obtained which allow the deter-

mination of an approximate problem whose solution coincides with the solution of

the problem of interest. Thus, well posedness of the transient problem is established.

Also this section contains elegant estimates on the second and third derivatives of

the strain. These estimates allow us to determine a space in which the trajectories of

the transient problem are in a compact set. Moreover, if our method of proving ex-

istence and uniqueness is adapted to formulate a numerical method, these estimates

would provide the necessary regularity to use standard approximation theory and

thereby obtain error estimates for the numerical method. In Sec. 5 the long-time

behavior of the solutions of the transient problem is partially obtained. We show

that the velocity converges to 0 in L2( 0, 1) and for a given choice of initial data, we

describe a set and a measure of distance such that the distance between this set and

the solution to the transient problem converges to zero as t —> oo. The ideas outlined

here are essentially a version of standard techniques used in dynamical systems. In

particular, Lemma 8 is a version of LaSalle's invariance principle. Finally, we show

that for certain boundary conditions the transient solution converges to a solution of

the steady-state problem. The overall approach of the paper is different from existing

ones, since the present evolution equation cannot be viewed as a semilinear parabolic

problem and thus treated by the techniques developed for these problems [8]. Nev-

ertheless, our approach may be capable of being generalized to more nonlinear and

less idealized equations.

Throughout the paper, £ is a closed subspace of H2(0, 1) which contains the

test functions, C™(0, 1) and H = L2(0, 1). Since E is dense in H, we may write

E CH = H' C E' and we will always identify H and H' in this way. The symbol

—> will denote strong convergence and will denote weak or weak* convergence.

2. The evolution equation. Let [0, 1] be a material interval, x £ [0, 1], the initial

density p0(x) = 1 , and let u be the displacement. Thus ux is the strain. We are

interested in a stress given by

T = f(ux) - kuxxx + viscous stress, (2.1)

where / is a nonmonotone function whose graph is given by Fig. 1.

£ (V)

7
Fig. I.
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The viscous stress will be of the same general form as the elastic part of the stress,

f(u ) - Xuxxx, but with a time derivative. Thus, the viscous stress is assumed to be

of the general form

(2J)

with P'{ux) = a{ux) > 0 for all ux . The term uxxxl is included in the viscous part

of the stress because it seems reasonable to assume that if the gradient-dependent

terms are important in the part of the steady-state or equilibrium stress, then the

time derivative of these terms is also important in the transient or dynamical part

of stress. The motion is then determined by the differential equation of balance of

momentum (Tx = un), i.e.,

utt = (/(ux) " + P{ux))t - Suxxxl)x (2.4)

along with initial conditions

u(0,x) = u0, w,(0, x) = Mj(x), (2.5)

and boundary conditions, one of which will always be

u(t , 1) = 0. (2.6)

This merely says that the right end of the material is fixed. For <p e C^°((0, T) x

(0, 1)), multiply (2.4) by q> and integrate by parts. We have

- f I u {t, x)<p,{t, x)dxdt+ f f (f{ux) - P0)(pxdxdt
Jo J 0 J 0 J 0

+ k [ [ Uxx{t, x)<px (t, x)dx dt + f f a(ux)uxl(pxdx dt
Jo Jo ' Jo Jo

+ S [ [ uxxi(Pxxdxdt = 0 (2.7)
Jo Jo

where P is a given constant. Let £ be a closed subspace of H2(0, 1) contain-

ing C^°(0, 1). By requiring (2.7) to hold for all <p € C^°(0, T \ E), we obtain a

variational form for weak solutions to (2.4) and boundary conditions which are de-

termined by choosing E. For example, if E = {u e H (0, 1): u{ 1) = 0}, formal

integration by parts in (2.7) yields the boundary conditions

u(t, 1) = 0, (2.8.1)

f{ux{t, 0)) + a(ux{t, 0))uxt{t, 0) - Auxxx(t, 0)-Suxxxl{t, 0) = P0, (2.8.2)

Xuxx{t, 1 ) + Suxxl(t, l) = kuxx(t,0) + Suxxl(t,0) = 0. (2.8.3)

Other boundary conditions are obtained by routinely choosing E C H~(0, 1).

In summary, the problem at hand is

-[ f ul(t,x)<pl(t,x)dxdt+ [ f (f(ux) - P0)<px + [ [ auvv<pvv
Jo Jo Jo Jo ' Jo Jo

+ [ [ «(".*)"V/P.V +S f [ Uxx,<Pxx = °
Jo Jo Jo Jo
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for all <p e C0°°(0, T; E) where C0°°(0, I) C E C {u e H2(0, 1):«(1) = 0}. The

initial conditions take the form

v0eC(0,T-E), vx e C(0, T; L2(0, 1)), (2.9.2)

u(t,-) = vQ(t) a.e., ut(t,-) = v{(t) a.e., (2.9.3)

Hm ||«0(0 - m0||£ + |u,(0 - m,|w = 0, (2.9.4)

where H - L (0, 1). Stated less precisely, this is

lim \\u(t, •) - w0||£ + |u (t, ■) -ul\H = 0. (2.10)
/—► o+

3. The abstract form of the evolution equation. For u, v , w e E, it is natural to

define the operators Q(u), L, and R mapping E to E' by

(■Q(u)v,w) = (ar{ux)vx,wx)H, (3.1.1)

{Lu, w) = {uxx, wxx)H, (3.1.2)

(Ru, v) = 2.(Lu, v) + (fr(ux) - P0, vx)H, (3.13)

where for h e {a, /} ,

( h(x) if \x\< r,

~ | ifx>r, (3.2)

( h(-r) if x < -r,

with / assumed to be locally Lipschitz and a continuous. The abstract form of

(2.9)r [(problem (2.9) with / replaced by fr and a replaced by ar)] to begin with

is

u"+ Q(u)u +8Lu +Ru = 0, (3.3.1)

u',«6L2(0J;£)e^, u"g^', (3.3.2)

u(0) = u0eE, i/(0) = u1gH, (3.3.3)

where the denotes differentiation in the sense of E' valued distributions. That

is, for geLl(0, T; E'), and <peC™(0, T),

g\<P) = -[ g{t)<p\t)dt. (3.4)
Jo

Theorem 1. There exists a unique solution to (3.3).

The proof of Theorem 1 is a routine modification of the proofs of similar theorems

found in [11, 9, 10], so we omit it.

Now define M\ E —* E' by

(Mu, v) — {fir(ux) - Pr(u0 x),vx)H + S(uxx - u0xx,vxx)H (3.5)

where

Pr(V)= [ ar{s)ds. (3.6)
Jo
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Applying J0' to both sides of (2.3.1) we obtain

u\t) + Mu{t) + f Ru(s) ds = w, , (3.7.1;
Jo

u{0) = u0, (3.7.2)

u,u (3.7.3)

Lemma 1. u solves (3.3) if and only if u solves (3.7).

Theorem 2. Let u0n e E and uin e H be given sequences of initial data satisfying

ji™ (IK„ - "olU + K„ - wil H) = °- (3-8)

Then if un is the solution of (3.3)n, i.e., the problem (3.3) with uQn and u]n in

place of w0 and m, , respectively, we have

lim [ sup IK(0-"(0ll£) =0. (3.9)
\teio.T] h J

Proof. From (3.7) it is easy to obtain

1 2 1 if'
jKO - "(01//- 2lM0« ~ "ol// + J (Mun{s)-Mu(s), Un{s)- u{s))ds

+ f ( (Run(y) - Ru(y)> Un(S) - "{s))dyds = f {U\n-UX,Un(s)-u{s))ds.
Jo Jo io (310)

Consider the fourth term. This term is bounded in absolute value by

KrJo Vs (/ ||M„(y) - wOO"^) ||K„(s) - M(j)||£</5, (3.11)

where A"r is a constant depending only on r. It follows that this may be dominated

by an expression of the form

L Cr "sL + w(5)lldi, (3.12)

where rj > 0 is arbitrary and Cr depends on r and >]. The third term of (3.10)

is easily seen to be no smaller than

0r(ll"„Os) " u(sWe ~ l"„(5) ~ ^{s%f)ds, (3.13)
2  2f J 0

for some constant 6r > 0 depending on r . It follows that there exists a constant Kr

depending on r such that

\un(t) - u(t)\2„ + f ||M„(i) - u(s)\\lds
J 0

— Kr{\u\n - + \u0n - M0I//)

+ Kf /) (' +5) (/o u(yS>\ti:dy + l"«(5) - uW\h) ds• (3-14)
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By Gronwall's lemma,

\u„{t)-u(t)\2H + f \\un{s)-u(s)\\2Eds < Kr{\uln-ul\2H + \u0n-u0\2H)eT+T ,2. (3.15)
Jo

Therefore, lim^ \un{t)-u{t)\H = 0 and lim^^ -0. Multiply (3.3.1)„

by u'n and then apply /0'. Since fr is bounded this yields

IH+ 8r [ (\<A*)\h + \u'nxX(s)\2H)ds + MUnXM]
JO

<Mu0nxx\2H + Krf\u'nx(s)\Hds, (3.16)
Jo

where 6r and Kr are positive constants depending on r. The above inequality

implies easily the existence of a constant, C , depending on r but independent of n

such that

\\u'\\r, || un\\r<C. (3.17)

Because of (3.17), we may take un , u to be in C(0, T\ E).

Lemma 2. For each /e[0, T], lim„_QO «„(0 = M(0 •

Proof. Suppose un(t0) u(t0). Then by selecting a subsequence, still denoted by

n , we may assume

||w„(0 - u{t)\\E -» 0 a.e.t, (3.18.1)

IIun(t0) - u(t0)\\E > e > 0. (3.18.2)

But then

IIun^0) - ^ " M«(0ll + IIUn(t) ~ "(Oil + |JM(0 " M(/0)ll

<2C\t0-t\U2 + \\un(t)-u(t)\\. (3.19)

Let t be such that ||un(t) — u(t)\\E 0 and 2C|/0 — t\^2 < f . Letting n —> oo

in (3.19) contradicts (3.18.2). This proves Lemma 2. To complete the proof of

Theorem 2, let e > 0 be given and let 0 = tQ < t] < ■ ■ ■ < tm — T be a uniform

partition with 2(tj - /;_,)1/2C < |. Let n0 be large enough such that for n > nQ ,

||un(tj) - u(tj)\\E < § for / = 0, ... , m . Then for any t e (0, T], t e (tj l , tt\ for

some i and thus for any n > n0 ,

IIujt) - u{t)|| < 2C\tl - r|'/2 + !!«„(/,.) - u{tj)|| < | | = e.

This proves Theorem 2.

4. Estimates. In the remainder of the paper, we assume that there exists an ro > 0

such that

K.x-(-V)l < r0' (4-L1)

f(V)-P0> 0 if V > ro • (4-1.2)

f(V)-P0< 0 if V < -rQ. (4.1.3)



480 K. KUTTLER and E. C. AIFANTIS

Define

W(V)= [\f{s)-P0)ds, Wr{V)= [\fr(s)-P0)ds, (4.2.1)
Jo Jo

and assume

lim W(V) = lim W{V) = oo. (4.2.2)
V—► — oo F—>-oo

From now on, assume r > rQ and let

-J = m'm{W(V): V e K}. (4.3.1)

It follows, since r > rQ , that

— J = min{Wr(V): V e E}. (4.3.2)

Multiply (3.3.1) by i/ and integrate /0'. This yields

^|z/(0ltf - 5l«ili + I (Ru(s), u'(s))ds[ (Ru(s), u'{s))i
Jo

+ / (ar(ux(s))u (s), u' (s))Hds
Jo

+ S [ \u'xx{s)\2Hds = 0. (4.4)
Jo

Consider the third term. From (4.2.1) and (3.1.3),

^ {Ru(s), u'(s))ds = ^\uxx{t)\2h - ^\u0xx\2h

i

+

It follows from (4.3) that

r\
l dx

• i

[ Wr(ux(t)(x))dx- f W(u0x(x))dx. (4.5)
Jo Jo

*KMh+[ ^("vWW)
Jo

*Kxx\h + [ ^(«0,(*)
Jo

< 2IW11// + + I W(unv(x) dx

= c, (4.6)

where C is a constant independent of r, t, 0, and . For simplicity in notation,

let V(x) - ux(t)(x). Then (4.6) becomes

Myx(x)\2h+ f Wr{V{x))dx<C. (4.7)
Jo

Therefore

^x\^)\H\VJx)\2<{C + J)XX = C2 (4.8)

and so for x,ye[ 0, 1 ]

\V(x)-V(y)\<Cl\x-y\l/2 <Cr (4.9)
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Let r, > rQ and let r, satisfy

W(V)>C if IK| > r,. (4.10)

Hereafter let r > rx. Then Wr(V) = W(V) if \V\ < r and there exists x0 € [0, 1]

such that |K(jc0)| < r] . If this were not so, then the second term in (4.7) would be

larger than C . Therefore, for any xe[0, 1],

\V(x)\ < |K(jc0)| + C,

^ Cj + a*j = C-,. (4.11)

This proves

Lemma 3. If r > r{, there exists a constant C2, independent of t, r, S, and /?

such that

\ux(t)(x)\ < C2 (4.12)

for all t > 0 and x € [0, 1].

For the remainder of the paper, r > max(r, , C2) = r2. Then, \ux(t)(x)\ < < r

and thus, a measurable representative of the problem (3.3) is the solution to problem

(2.9) which satisfies

u,ut, ulx, utxx , ux, uxx e L2{(0, T) x (0, 1)). (4.13)

Since T > 0 is arbitrary, Lemma 3 along with Theorems 1 and 2 establish global

existence, uniqueness, and continuous dependence for problems (2.9) and (4.13).

Furthermore, we can study this problem in the form (3.3) or (3.7) for a suitable

choice of r > 0, the choice of r being independent of the function /?, the constant,

S , and t.

Up to now, the subspace E C //2(0, 1) is arbitrary as long as C^°(0, 1) C E C

{u G H2(0, 1):m(1) = 0}. We now assume that whenever g e C^°(0, 1),

(■)
g(s)ds e E, (4.14.1)I

and

u0 e EnH\o, 1). (4.14.2)

Of course u0 = 0 satisfies (4.14.2) and (4.14.1) does not seem to be a serious restric-

tion either.

Let g € C^°(0, 1) be given. Then multiply (3.7.1) by the function given by

x —► f* g(z) dz . This yields

j u (t)(x) ^ g(z)dz^j dx

+ fo \fo + (fr(Ux(S)W) - Po)g(X)dxj ds

f [fir(ux(t)(x)) - pr(u0,(x))]g{x) + S(uxx(t)(x) - U0xx(x))gx(x) dx
Jo

g{z)dz^jdx. (4.15)

+
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Let
-1 / rx \ r 1

9{t)= J u'mx) (/ g(z)dz^J dx + J [0r(ux(t){x)) - Pr{uQx(x))]g{x)dx

+ SJQ KxWM - u0XX(x^Sx(x)dx - J ui(•*)(/ g(z)dz^j dx. (4.16)

From (4.15) (note q(t) consists of the terms of (4.15) that do not have /0' next to

them) we obtain

q'(t) = -k[ uxx{t){x)gx(x)dx - f [fr(ux(t){x)) - P0]g{x)dx. (4.17)
Jo Jo

Therefore,

q'{t) + ^q(t) = ^ u\t){x)(j" g{z)dz^j dx

+ 2 J0 _ PMox^^SW dx

+ ^jo uoxxxWsW - 3 fo M1 w(/ S{z)dz^j dx

-/ [fr(ux(t)(x)) - P0]g(x)dx. (4.18)
J o

Next, we assume \g\H < 1 . From (4.5) and (4.4) it follows that \u'(t)\H is bounded

independent of r, S, and t. Therefore, from Lemma 3 and (4.18), there exists a

constant C, independent of r, 5, t, and g £ C^°(0, 1) with \g\H < 1 such that

X C
r(n^j

From (4.16) and (3.7.3), q(0) = 0. Therefore

q (t) + ^q(t) < - + C = Cv (4.19)

<7(0 < C. £ _ (Xt/S)I Je < Si (4.20)

This along with (4.16) and Lemma 3 implies that for all geC0 (0,1) with |£|;/ <

1 , there is a constant C, independent of r, t, such that

^ / m (/)(x)^ (x)</x < C3.
Jo

(4.2i:

Since this holds for all ^eC0 (0. 1) with |g|w < 1 , it follows that

'1 r
< -±. (4.22)sup

?6C0°°(0, 1)

[ uxx{t)(x)gxdx
Jo S '

It follows from the density of C^°(0, 1) in H = L~{0, 1), that there exists a unique

function A: e H such that (k, g)H = uxxx(t)(g). Thus

«„,(')£" and |mvvv(0I// < y, (4-23)
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for all t > 0. This establishes the following

Lemma 4. Let uQ e E n //3(0, 1) and let (4.14.1) hold for all g e C^°(0, 1). Then

there exists C , independent of t and r , such that

KxMh < C. (4.24)

Corollary 1. Let u0 € E n H4{0, 1) and let (4.14.1) hold for all g e C^°(0, 1).

Then there exists a constant C, independent of t and r, such that

\uxxxxM)\h — C- (4-25)

Proof. Replace g by gx in (4.15), (4.16), (4.17). This yields

q{t)= [ u'(t)(x)g{x)dx - f {fi'{u )u - P\u0x)u0xx)g(x)dx
Jo Jo

+ S f uxx{t)(x)gxx{x)dx - 5 [ u0xxxx(x)g{x)dx - [ ux(x)g(x)dx,
Jo Jo Jo (4.26.1)

?'(/)= -X f uxx{t)(x)gxx(x)dx+ [ f{ux)uxx(t)(x)g(x)dx.
Jo Jo

(4.26.2)

Thus

Q'{t) + ̂ q{t) = ̂  J u'(t)(x)g(x) dx

~ ^ So xx{x))g{x)dx

r 1 X f'
-A Jo u0 xxxx(x)g(x)dx ~ £ yo m, (x)g(x) dx

+ [ f{ux)uxx(t)(x)g{x)dx. (4.27)
Jo

Let C be a constant independent of r and t. In the same way as before, q (t) +

^q(t) < C where C is independent of t, r, and g e C^°(0, 1) with |g|w < 1 .

Thus q(t) < C and it follows that for all g e C^°(0, 1) with \g\H < 1 ,

■ l

/J o
urM)(x)gx(x)dx < C. (4.28)

Thus \uxxxx{t){g)\ < C, so by the density of C^°(0, 1) in L2(0, 1) and the Riez

representation theorem, uxxxx(t) e L2(0, 1) and \uxxxx{t)\H < C .

5. The long-time behavior. Let us define

B = {u e E: |mv(x)| < r for some r > 0 and uxxx e H), (5.1.1)

F = //3(0, l)n£. (5.1.2)

Then B C F . The content of Sec. 2-4 imply that problem (3.3) yields a dynamical

system on B x H given by

S{t)(u0, «,) = («(/), u'(t)), (5.2)
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where u is the solution of problem (3.3) with initial data {uQ , w,) € B x H. By this

we mean

S(ti + t2)(u0, «,) = S(tl)S(t2)(u0, ut), (5.3)

which follows from the uniqueness of problem (3.3).

Lemma 5. Let u be the solution of problem (3.3). Then

lim |w'(0lw = 0. (5.4)
f—► OO

Proof. Applying j- to both sides of (4.4) and using the estimates of Sec. 4 for

ux(t)(x), we obtain an inequality of the form

jt\u\t)\2H - K(\u'x(t)\H + \uxx{t)\) + C(\u'x(t)\2H + \u'xx{t))\2H) <0, (5.5)

where K and C are two constants which are independent of /. It follows from this

that j-,\u'(t)\2H is bounded above. The estimate for ux(t)(x) of Sec. 4 applied to the

fourth term of (4.4) along with (4.4) and (4.5) yields

ft

fJo
| u'x(s)\2Hds<C, (5.6)

where C is a constant independent of t. Poincare's inequality (recall E c {u e

H2{0, 1):m(1) = 0}) yields

I |u\s)\2Hds<C. (5.7)
Jo

This, with the upper bound on $-{(\u'(t)\2H) implies the desired conclusion.

Next, we assume (uQ, u,) e B x H .

Lemma 6. For each (u0, m, ) € B x H , there exists {y0, v,) 6 B x H and a sequence

t n —+ oo such that S{tn){uQ, u^) —1 (y0, y\) in F x H. Furthermore, v, =0.

Proof. This follows from Lemma 5 and the estimates of Sec. 4.

Define the co limit set of a point (uQ, «,) € B x H by

<y(M0, «,) = [~| weak closure {S(t)(uQ , «,): t> /0}. (5.8)

'o>°

Lemma 6 implies that co{uQ, ux) ^ 0 and Lemma 5 implies that all elements of

(o(u0, m, ) are of the form (y0, 0). For (u, v) e B x H , define

G(w, v) = ^\v\2h + W(ux(x))dx + ^\uxx\2h. (5.9)

From (4.4) and (4.5) we have

G(S{t){u0, m ))+ fl(Q(u)u',u') + S(Lu,u')ds = G{u0,ul). (5.10)

The integrand in (5.10) is nonnegative; thus it follows that G{S(t)(u0, «,)) is de-

creasing in t and thus G is a Lyapunov function because it decreases along trajec-

tories. Also,

G{S{t){u0,u,))>-J, (5.11)
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where -J is the lower bound to W . Let

I (lir., u.) = lim G(S(t)(un, u,)). (5.12)
U 1 t—> OO U 1

Lemma 7. For (_y0, 0) e a>{u0, u{), G(y0, 0) = l(u0, ux).

Proof. If u is the solution of (3.3) with (u0,u{) G B x H, there exists tn —► oo

such that u{tn) —- y0 in F. By the compactness of the embedding of //3(0, 1)

into H (0, 1) and Lemma 5, this implies u(tn) —> y0 in E and u'(tn) —> 0 in H .

Therefore, l(uQ, ux) = lim,,^ G(u(tn), u\tn)) = G(y0, 0).

Lemma 8. Let Z be the set of equilibrium solutions of (3.3.1) which are in B . That

is, u € Z if and only if

Ru = 0, u e B. (5.13)

Then

w(«o,m,)CZx{0}. (5.14)

Proof. Let (y0, 0) e a)(u0, «,) and consider G(S(t)(v0, 0)).

G(S(T)y0, 0)) < G(y0, 0) = l(u0, ux). (5.15)

Let tn —> oo and S{tn)(u0, w,) — {y0, 0) in F x H. By Lemma 5 and the com-

pactness of the embedding of //3(0, 1) into H2(0, 1), this means S(tn)(uQ, ux) —>

(y0, 0) in E x H . Thus, by Theorem 2,

5(T + f«)("o' u\) = Mi) ̂ 5'(t)(^0' °). (5-16)

the convergence taking place in E x H. This implies

l(n0' "l) = + rn)("i0' Wl)) = G(5(t)(>;0' °))- (5-17)

This shows that ? G(S(/)(y0, 0)) is constant and so from (5.10), S(f)(.F0, 0) =

(y0, 0) which implies (y0, 0) is in Z x {0}.

Let be a subset of B and for »e£, define

dist(v , A) = inf{||v - y\\E:y e y4}. (5.18)

Theorem 3. For (u0, ut) e B x H, let n, ) = u0 . Then

lim dist(w(r), n. (co(un ,«,))) = 0. (5.19)
/—»-oo 1 u 1

Proof. If (5.19) is not true, there exist e > 0 and a sequence tn —> oo such that

dist(w(/ ), 7r,(t(i(M0, m,))) > £. But from Sec. 4, there is a subsequence tn, —> oo

such that w(^,') —" >'0 in F for some yQ e B . By Lemma 5, {y0, 0) e (o(u0, m,).

By the compactness of the embedding of F into E , limn/^oo ||u(tn,) - y0\\E - 0.

i.e., a contradiction.

Corollary 2. In the situation of Theorem 3, lim^^ dist(u(/), Z) = 0 . The proof

follows from Lemma 8. For more background on the procedure just presented, we

refer to [4, 6, 7].

In fact, the conclusion of Theorem 3 can be strengthened if we assume that E =

{u G H2(0, l):w(l) = 0}, implying that the natural boundary conditions (2.8.3)
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and (2.8.2) are satisfied. For the remainder of this paper, we assume this is the

case. If (z, 0) e <w(w0, «,) where {u0, i^) e B x H, it follows from Lemma 8 that

Rz = 0, z € B . Therefore,

= (5.20.1)

and

z«(1) = ^A-(0) = 0, zeH\ 0,1). (5.20.2)

Letting = zx , it follows from the choice of E that

-kVxx + f{V)-PQ = 0, (5.21.1)

Vx(l)=Vx(0) = 0, VsH\0,1). (5.21.2)

The graph of /(•) - PQ depends on the value of P0, i.e., the stress applied at the

left of the material. In what follows and without loss of generality, we assume that

the graph /(■) - P0 is of the form depicted in Fig. 2. Then the graph of W(V)

(see (4.2.1)) is given in Fig. 3. It is convenient to consider the problem (5.21) as the

following overdetermined first-order system

W'(x) = f(V)-P0, v'(x) = U(x), (5.22.1)

1/(0) = 0, V(0) = VQ, 17(1) = 0, (5.22.2)

where VQ must be chosen in such a way that U{1) — 0. The phase diagram for

(5.22.1) is given in Fig. 4. It follows from this diagram that for a solution of (5.22)

to exist, we must have A < VQ < D, or VQ e {A, B}.

Multiplying (5.21.1) by Vx and using (5.21.2), we see that

Z^Vx2 + W(V)= W(V0). (5.23)

Fig. 2
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W(V)

Fig. 3

Fic. 4

Let J/(F0) be the value of V which occurs when the solution of (5.22.1) first

crosses the V axis. (We note from the phase diagram and (5.23) that W(V{) =

W(V0).) Then (5.21.2) implies that for VQ < C ,

-Wo) dV 1
y/Xf

h''v0 ^2(W(V)-fV(V0)) n '

for some positive integer n . If VQ > C, then V{ (VQ) < C and we need

'Wo) dV 1

(5.24)

VI [
J K

  - , (5.25)
0 y/2{W(V) - W(V0)) n'

letting

fvMo) dV

F,F»)=±/, umvrwmr ,5 26)

for some positive integer n . By letting

•TO dV
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depending on whether V0 < C (+) or VQ > C (-), we see that the solution of

the initial value problem contained in (5.22) is a solution to (5.22) exactly when

F(V0) = 1 /n\[X for some positive integer n ; or else VQ e {A , B, C} , in which case

we obtain a constant solution of (5.22).

It is routine to show that

lim F(K)= lim F(Vn) = oo. (5.27)
V0^A+ U V0 — D- U

We assume that

F(-) is C1 on (A, C)U(C, D) (5.28)

and note that it is a simple but tedious exercise to verify (5.28) under reasonable

smoothness assumptions on f. We also observe that W(A) < W(C) and so if

uQx — A, u0G E, it follows that

G(uQ,0)<G(w,0), (5.29)

where wx = C , w — Cx - C .

Theorem 4. Let W(A) < G(w, 0) - e for some e > 0 and suppose that (u0 , «,) €

B x H satisfies

G(u0 , u{) < G(w , 0) - e. (5.30)

Then there exists a set of measure zero, S , such that for X S and u the solution

of (3.3), there exists z E Z with

lim ||u(t) - z\\F = 0. (5.31)
t —► OC

Proof. We begin with the following

Claim. Since G(u0, «,) < G{w, 0) - e, there exists r, > 0 independent of

(«0, m, ) in BxH satisfying (5.30) such that if z e nx ((o(uQ , m, )), then |z (0) —C| >

ri ■

Proof of Claim. If the claim is false, there exist {u0n , uXn) 6 BxH satisfying (5.30)

and zn e 7tl(co(u0n , uin)) such that |znr(0) - C| < l/« . It follows that zn^w in

E and so G(zn , 0) —► G(w , 0). By Lemma 7 and (5.10), G(zn , 0) < G(w , 0) - e ;

therefore G(w , 0) < G(w , 0) - e , a contradiction. This proves the claim.

By Sard's theorem [13] and (5.28), the set of singular values of F has measure

zero and so there exists a set S of measure zero such that 1 /n\fX is not a singular

value of F for all n— 1,2,... wherever X £ S . For a fixed X £ S, (5.27) implies

that for z E Z , zv(0) E {A , B} U [A + , D - r,] where r, > 0 depends on X .

Therefore, for z E ;r,(o;(«0, w,)), zv(0) E {A , B}\j[A+r, C-r\j[C+r, D-r] where

r = min(r1 , r7). Since F is bounded away from zero on [A+r, C — r]U[C+r, D-r],

only finitely many values of n can have the property that \/n\/~X is a value of F

for zx(0) E [A + r, C — a-)] U [C + r, D - r]. Since X £ S and \/n\[X is a regular

value of F, it follows that for a fixed y there are only finitely many elements of

F~\\/nVX) in [A + r, C - /•)] U [C + r, D - r]. Therefore nx (oj(u0 , ut)) consists

of finitely many points and consequently u(t) converges in E and 7ix(a>(u0, h,))

consists of a single point.
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