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Abstract. In this paper, we study persistence and uniform persistence in dynamical

systems. Necessary and sufficient conditions are given. These results are an extension

of G. Butler, H. Freedman, and P. Waltman's discussions. Applying these results to

two- and three-dimensional ecosystems, we obtain necessary and sufficient conditions

about persistence and uniform persistence of these systems.

1. Introduction. Let X be a locally compact metric space with metric d, E be

a nonempty closed subset of X. For any subset S of X, boundary, closure, and

interior of S will be denoted by b(S), 5, and intS, respectively. Let F be a

dynamical system defined on the set E, that is F = (E, R,n), where R is the

real numbers, n: E x R —► E is a continuous mapping such that n(x, 0) = a and

n(n{x, t), s) = 7t(x, t + s) for all a* e E and t, s e R . In this paper, we assume

throughout that b{E) is an invariant set of the system F , i.e., n(b{E) x R) c b{E),

and int E ± 0 . For the ^-species Kolmogorov system

dxjdt = xifi{xl ,x2, ... ,xn), i = 1, 2, ... , n,

where the fi are continuous on R" 0 - {(a, , x2, , xn) \ xi > 0, / = 1,2

and are such that the system satisfies existence, uniqueness, and continuability of

solutions of initial value problems. b{R"+0) is an invariant set of the system. There-

fore the n-species Kolmogorov system is a special situation of the system F , i.e.,

E = Rn+0 . This shows it is important in mathematical ecology to study the system F

when b(E) is an invariant set.

The concept of persistence plays an important role in mathematical ecology. Vari-

ous definitions of persistence have been considered in articles [2, 3, 6, 8, 11]. Among

these, persistence and uniform persistence seem to be the most suitable from the

point of view of applications. In [2, 3], G. Butler, H. Freedman, and P. Waltman

gave a method which studies persistence and uniform persistence of system F , and

obtained a necessary and sufficient distinguishing criterion for uniform persistence

of system F . But G. Butler et al. required that system F has restrictive properties

on the boundary b(E). In particular, they required that system F be dissipative

and isolated on b(E). Thus the range of applications subject to this criterion is
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restricted. In fact, these properties may be weakened considerably, and the property

that system F is dissipative on b(E) may be abolished entirely. Therefore, in this

paper, it is our purpose to give necessary and sufficient criteria of persistence and uni-

form persistence for system F under weaker restrictions on the boundary b(E). In

the first place, we will give some new properties of limit sets of trajectories of system

F . We will use these new properties to study persistence and uniform persistence of

system F .

2. Main definitions and lemmas. For any x G E, the trajectory, positive semi-

trajectory, and negative semi-trajectory of system F through the point x will be

denoted by r(x), i'+(x), and r~(x), respectively. The omega and alpha limit sets

of the trajectory r(x) will be denoted by A+(x), A~(x), respectively.

Definition 1. Let M c E be a nonempty set, if for any point xgM, >'+(x) is

compact, then we say that system F is quasi-dissipative over M .

If system F is quasi-dissipative over M , then for any point x G M, A+(x) is a

nonempty, compact, connected, and invariant set.

Definition 2. Let system F be quasi-dissipative over M c E, then system F

is dissipative over M if there is a compact set N c E such that A+(x) c N for all

x e M.

If system F is dissipative over M, then the set Q = Uvg w^-+(-x) ^as compact

closure Q.

Definition 3. Let M c E be a nonempty invariant set, then M is an isolated

invariant set if there is a neighborhood U(M) of M such that M is a maximum

invariant set in U(M), in which case U(M) is called an isolated neighborhood of

M.
If M is an isolated invariant set, then M is a closed set. For any nonempty set

M c E , the stable set and unstable set of M are denoted by S+(M) = {x | A+(x) ^

0, A+(x) c M} , S~(M) — {x | A~(x) ± 0, A~(x) c M}, respectively.

Definition 4. Let M2, ... , Mk be a pairwise disjoint sequence of nonempty

sets, then {A/, , M2, ... , Mk} is called a cycle if there are points Qx , Qn, ... , Qk

such that Qt G S+{Mj) n S~(Mj+l), Qt £ Mt U Mj+l for i = 1,2, , k, and

Mk+l = M] .
Definition 5. Let A be a nonempty index set, {Mn \ a G A} be a class of pairwise

disjoint nonempty sets, then {Mn\a G A} is called acyclic if any finite subset of

{Mn | a G A} does not form a cycle.

Let B = {x\x £ b{E), r+(x) is compact} and C = (JvgB A+(x), when 5^0

then C / 0 .

Definition 6. Let A be a nonempty index set, {Mn \ a G A] be a class of pairwise

disjoint nonempty sets, then {M I a e A} is called a covering of C if all A/ c

b(E), Mn n C / 0 , and C c Uf,L K .
The definitions that system F is persistent and uniform persistent have been given

in [2, 3], Here we only need to point out that if system F is quasi-dissipative on the

int£\ then system F is persistent if and only if for all x G int£, A+(x) C inti: .

Next we give several useful lemmas. They represent some new properties of limit
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sets of trajectories of system F . In the first place, we need the following hypothesis.

H. There is a covering {Ma \ a G A} of C such that

a) all Ma are isolated invariant set of system F ,

b) {Ma | a € A} is acyclic,

c) for any compact set M c E , there is only a finite subset {Mx, M2, ... , Mk}

of {Mn | a G A} such that M n Mi 0 for i = \, 2, ... , k .

Lemma 1. Let M c E be an isolated invariant set of system F, x e E and r (x)

be compact, A+(x)nM/0. Then A+(x) c M or A+(x) n (S+(M) - M) / 0 and

A+(x)n (S~(M)~ M)?0.
Proof. Let U(M) be an isolated neighborhood of M. Suppose A+(x) - M ^ 0.

Since A+(x) n M is nonempty and compact, we can select a neighborhood N of

A+(x)nM such that Nc U(M), A+ (x)(lb(N) ± 0, and N is compact. Because of

the property of A+(x), we can choose two time sequences {tk} , {sk} , tk > 0, sk < 0

such that tk —> +oo, xk = n(x, tk) —> A+(x) n M as k —> oc and n{xk , (s^O)) c N,

n(xk , sk) G b(N) for k = 1, 2, ... .

Let yk = n{x, tk + sk) = n(xk,sk). Since b{N) is compact, we can assume

vk —> y0 as k oo, y0 G b(N), and y0 <£ A+(x) n M. Similar to the method of

proof of Theorem 4.1 in [3], we can prove y0 G S+(M) and _v0 G A+(x). Thus we

obtain v0 G A+(x) n (5+(A/) - M), and therefore A+(x) n (5"+(M) - M) / 0.

Similarly, we can prove A+(x) n (S~(M) - M) ± 0 . This completes the proof.

Lemma 2. Let M c E be an isolated invariant set of system F, x G E, r~(x) is

compact and A"(x)nM/0. Then A~(x) c M or A~(x) n (S+(M) - M) / 0

and A~(x) n (S~(M) - M) / 0 .

The proof of Lemma 2 is similar to Lemma 1, and so we omit it.

Lemma 3. Suppose that hypothesis H holds, x G E, r (x) is compact and A (x) c

b(E). Then there is a Mn e {Mn \ a e A} such that A+(x) c Ma .

Proof. Since A+(x) is compact, by the hypothesis H there is only a finite subset

{My, M2, ... , Mk} of {Ma | a G A} such that A+(x)rW;. ^ 0 for i — 1, 2, ... , k .

Therefore A+(x) n ((jf=1 Mt) ± 0 and A+(x) n (U„e^ Mn - Uf=i M,) = 0 • Suppose

A+(x) - Ma / 0 for any a G A . Then there is MiX G {Mx , M-,, , Mk} such

that Mn n A+(x) ^ 0 and A+(x) - Mn / 0. By Lemma 1 we obtain A+(x) n

{S~(Mn) - Mn) ± 0. Choose px gA+(x)D (S~(Mn) - Mn). Then p, e B and

A+(P!) C U„<=4 , since A+(^,) is a connective set and all Ma are pairwise disjoint

sets. Therefore there is a Mj2 g {M,, M2, ... , Mk} such that A+(/j,) c Mj2. If

P\ e ' t'ien c Ml2, since A-^,) c Mn . Hence we must have Mn = Mn

and /?, G Mn . But this contradicts with p{ G S~{Mn) - Mn . Therefore this shows

that G S+(Mj2) n S~(Mn) and p{ £ Mn U Mj2.

Since A+(x)nM., ^ 0 and A +(x)-Mj2 / 0 , therefore we can repeat the preced-

ing arguments and obtain that there are p2 G A+(x) and Mj} G {M{, M2 , ... , Mk}

such that p2 G S+{Mi3) n S~(Mj2) and /?-, ̂  Mj2uMii. Continuing with these
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arguments, since Mx, M2, , Mk are finite, we can obtain a cycle {A/. , , Mj2 , ... ,

Mjm} c {A/, , M2, ... , Mk}. But this contradicts hypothesis H. Hence there is a

Ma e {Ma | a € A} such that A+(x) C Ma , completing the proof.

Similarly, we have the following lemma.

Lemma 4. Suppose that hypothesis H holds, x e E, r (x) is compact and A (x) c

b(E). Then there is a Ma e {Mn \ a € A} such that A~(x) c Ma .

3. Main theorems. In [2, 3], G. Butler et al. required that {Ma \ a e A} is a finite

set, all Mn are compactly isolated invariant sets, system F is dissipative on the set

E and B = b(E). Here we will weaken their conditions. We allow that {Mn | a e A}

may be an infinite set, all M may be noncompactly isolated invariant sets, system

F is only quasi-dissipative or dissipative on int£, and B may not equal b(E). We

have the following results.

Theorem 1. Suppose that system F is quasi-dissipative on int£\ hypothesis H

holds and B ^ 0 . Then system F is persistent if and only if S+(Mn) n int£ = 0

for any Ma € {Ma\ a € A}.

Proof. As it is easy to prove the necessary condition, we prove only the sufficient

condition. If system F is not persistent, then there is a x e int E such that A+(x)n

b(E) / 0. Since A+(x)n&(£) is a compact invariant set, then A+(x)nC ^ 0. By

hypothesis H we obtain that there is a finite subset {A/,, M2, , Mk} of {Ma \ a e

A} such that A+(x) n Mj / 0, and therefore that A+(x) n (U/=i M,) / 0 and

A+(x)n(UaGj4 Mn-U/Li Mj) = 0. Since S+(Mj) n int E = 0, then A +(x)-Mj ^ 0
for i = 1, 2, , k . Choose a MjX G {Af, , M1, ... , Mk}. By Lemma 1 we obtain

A+(x) n (5+(M;1) - Mn) ± 0. Choose px e A+(x) n (5+(M(|) - Mn). Then

/?, 6 b(E) n B and A~{px) C A+(x) n b(E). By Lemma 4 we obtain that there

is a Mi2 e {A/,, M2, , Mk} such that A~(/?,) c Mn . According to the proof

of Lemma 3, we have p{ <£ Mj2 . This shows that p{ € S+(Mj{) n S~(Mj2) and

p, ^ Mn U Mi2 .
For Mp , we can repeat the preceding arguments and obtain that there are p-, G

A+(x) and A/j3 e {Mx , M-,, ... , Mk} such that p2 e S+ (Mj2)r)S~(Mj}) and p^ ^

Mj2uMi3. Continuing with these arguments, since {Mx , M-,, , Mk} is a finite set,

we can finally obtain a cycle {A/(| , Mj2, , M nn} c {Mx, M2, ... , Mk}. But this

contradicts hypothesis H, showing that system F must be persistent. This completes

the proof.

Theorem 2. Suppose that system F is quasi-dissipative on int £" and B = 0. Then

system F must be persistent.

The proof of this theorem is easy, and so we omit it.

Theorem 3. Suppose that system F is dissipative on int E . hypothesis H holds and

B / 0 . Then system F is uniform persistent if and only if S+(Mn) n int E = 0 for

any M<t e {A/Jr* e A}.

Proof. The proof of the necessary condition is easy, and so we prove only the

sufficient condition. In the first place, the conditions of Theorem 1 hold when the
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conditions of Theorem 3 hold, and therefore system F is persistent. Let Q =

Uemt£A+W • Then Q c int£\ Q is compact and Q, Q are both invariant sets.

By hypothesis H, we obtain that there is only a finite subset {Mx , M2, , Mk} of

{Ma | a e A} such that On^/0. Thus Q. n (jf=i ^ 0 and Q n (UQ€/i -

U?=i Mi) = 0-
Consider M, n O, M2 n Q, ... , Mk n Q. Then they are pairwise disjoint

nonempty invariant sets. Let U(Ma) be an isolated neighborhood of M . We

can choose two compact neighborhoods Ui, Vj of Mi n £1 such that Uj c int Vj,

Mi n!)c Ui, Vj c U (Af.) for i = 1,2, ... , k and V2, , Vk are pairwise

disjoint.

Suppose that system F is not uniformly persistent. Then according to a similar

method of proof of the main theorem in [2], we can obtain that there are con =

r(pn) C Q, pn € int£, and a nonempty, compact, and invariant set co c Q such

that p(a>n, co) -* 0 as « —» oo and b' - co 0 C ^ 0, b' c U/=i Mjr\Q., where

p is the Hausdorff metric on K, where K — {A \ A c Q is nonempty and compact

subset}. Let b] = b' n MjX ± 0 and Mn e {A/,, M2, ... , Mk). Then there

is a px e b(Un) n b(E) such that A+(/7,) c Mn nfi, A ~(px) c co, and px e

Q. By Lemma 4, we obtain that there is Mr e {Mx , M2, ... , Mk} such that

A"(/>,) C Mn . Therefore px e S+ (MM)n5~(Mn) and px <£ MjlLlMn. Since b-, =

b' D Mj2 / 0, we can repeat the preceding arguments and obtain that there are p7 6

b(Uj2)rb{E) and s {M, , M2, ... , Mk) such that p2 e S+(Mi2)rS~(Mj}) and

p2 £ Mj2 U Mn . Continuing with these arguments, since {Mx , M2, , Mk} is a

finite set, we can finally obtain a cycle {MjX , Mj2, ... , Mim} c {Mx , M2, ... , Mk} .

But this contradicts hypothesis H, and shows that system F must be uniformly

persistent, completing the proof.

Theorem 4. Suppose that system F is dissipative on int£" and 5 = 0. Then

system F must be uniformly persistent.

The proof of this theorem is obvious.

4. Applications. In this section, the above theorems will be applied to obtain

criteria of persistence and uniform persistence for the general two-species and three-

species Kolmogorov systems. These systems may be predator-prey, competitive, co-

operative, etc. The work in applying the above theorems then is to check the isolated

invariant and acyclic conditions, i.e., the conditions a) and b) of hypothesis H. This

question will be obviously represented in the following discussions of this section. In
2 3

the first place, we have set E = R'+0 and R+0 (see Sec. 1), and the condition that

system F is quasi-dissipative or dissipative on int£ then becomes that all solutions

with positive initial conditions are bounded or ultimately bounded in future time.

Consider the general two-species system

dxx/dt =xxfx{xx, x2),

dxjdt = x2f2{xx, x2).

Suppose that the functions j\ , f2 are continuous on R2+Q and are such that system
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(1) satisfies existence, uniqueness, and continuability of solutions of initial value

o = b(R\0) •
2 2

problems. Let set A represent all equilibrium points located within R0 = b(R"

R20 is an invariant set of system (1). Let r\ - int/?^0. We have the following

theorem.

Theorem 5. Suppose that all solutions of system (1) with positive initial conditions

are bounded (ultimately bounded) in future time and there is a neighborhood U(A)

of A such that system (1) has no equilibrium in 17(A) n R+ . Then system (1) is

persistent (uniformly persistent) if and only if 5"+(/l) n R~+ — 0 .

Proof. We give only the proof of the sufficient condition. In the first place, since

S+(A) DR2+ = 0 we obtain S+(R2) n R2+ = 0 .

For any x G R2Q , if x is not an equilibrium, by the continuity of the fx and f2 ,

there is a neighborhood U(x) such that system (1) has no equilibrium in U(x)nR'^.

If x is an equilibrium then there is a neighborhood U{x) C U{A) such that system

(1) has no equilibrium in {7(x)n.K^. Let U(R20) = Uv6«2 ■ Then U(R2Q) is

2 ••••22
a neighborhood of Rq . System (1) has no equilibrium in U{R0)nR~+. For any

x e U(R20) n R\ , consider the positive semi-trajectory r+(x) and omega limit set

A+(x). Since S+(R2Q) n R\ = 0 , then A+(x) fl R2+ ± 0 . If there is no equilibrium

in A+(x), then A+(x) must be a closed trajectory. Since is an invariant set, it

follows that A+(x) c R2+ . Thus system (1) has an equilibrium p in the domain of

which the boundary is A+(x) and p e R2+ . Therefore p <£ U{Rl)r\R2+. This shows

A+(x) - U(Rq) / 0. If there is an equilibrium in A+(x) and if all equilibrium

in A+(x) is located in R^, by the properties of two-dimensional systems, for y ^

A+(x) n R2+ we have A+(y) c A , which contradicts 5+(^) n R"+ = 0. Therefore

there is an equilibrium p e A+(x) such that p e R2+ and p £ U(Rq) n R'+.

This shows that A+(x) - U(Rq) ^ 0. Therefore under all possible circumstances

r+(x) - U(Rq) ± 0. This shows that RI is a maximum invariant set in U(Rq) and

Rq must be an isolated invariant set.

Since S+(R2Q) n R2+ = 0 , Rl does not form a cycle. Thus by the above theorems,

we obtain that system (1) is persistent (uniformly persistent). This completes the

proof.

The following corollary is convenient for applications.

Corollary 1. Let all solutions of system (1) with positive initial conditions be

bounded (ultimatley bounded) in future time. If there are equilibria (x*, 0) and

(0, x*) where x* > 0, x* > 0, then assume that /2(x*, 0) > 0 and /,(0, x*2) > 0,

max{/,(0, 0), f2(0, 0} > 0. Then system (1) is persistent (uniformly persistent).

The proof of the corollary is clear and so we omit it.

Next we consider the general three-species system

dxjdt = x,/,(x, , x2, x3),

dx2/dt = x2/2(x, , x2, x3), (2)

dxjdt = x3/3(x, , x2, x3).
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Suppose that the functions fi are continuous on such that system (2) satisfies

existence, uniqueness, and continuability of solutions of initial value problems. Let

x = (x,, x2,x3), R^ix^xj) = {x|x; > 0.x] >0,xk = 0} and R\{xi , Xj) =

{x I xi > 0, Xj > 0, Xk = 0} , /?+(x,.) = {x I Xi >0,Xj = 0, xk = 0}, R\ = int r\0 ,
3 3 3 2 1

R0 = b{R+0). R0, R+Q{Xj, Xj), R+(Xj), etc., are all invariant sets of system (2).

Let the set A represent all equilibria located within R. We give the following

decomposition of the set A ,

■" = IK...
m

where every Cm is a connected component of set A. Set {Cm} may be an infinite

set. We need the following hypotheses:

Hp All Cm are isolated invariant sets of system (2).

H2. {Cm} is acyclic.

H3. there are no closed trajectories of system (2) in each R2+{xi, x.).

Lemma 5. Let the hypothesis H, hold. Then for any R > 0, there is only a finite

subset {C, , C2, , Ck} of {Cm} such that SRnC- / 0, where SR = {x | |x| < R} .

Proof. If there are infinitely many Cm satisfying SR n Cm ^ 0, choose pm e

SR n Cm ■ Then {pm} is a bounded infinite set of points. Therefore there is a

sequence {pmk} c {pm} such that pmk -* p as k — oo, pmk ±p for k = 1, 2, ...

and p € A n SR . Thus there is a Cm< e {C'm} such that p e Cm, n SR . Let U(Cm>)

be an isolated neighborhood of Cm<. If Cmr\U{Cm>) ± 0, then CWI/U(CmnC7(Cm/))

is an invariant set in U(Cm>). Hence Cm n U(Cm>) = 0 for m ± m . But there is

a K such that pmk e U(Cm>) for k > K. Hence Cmk n U{Cm.) ^ 0 for k> K.

This contradiction completes the proof.

Lemma 6. Let hypotheses H,-H3 hold, x e Rq, and r+(x) is bounded. Then

A+(x) C A .

Proof. There is a R > 0 such that A+ (x) c SR. By Lemma 5 there is a

finite subset {C,, C2, ... , Ck} C {Cm} such that A+(x) c \Jki=xCi ± 0 and

A+(x) n (Um Cm - Ul, C,.) = 0 . Let A+(x) c ^+0(x,, xy). By hypothesis H3 we

obtain that there is an equilibrium in A+(x) , and so A+(x)n.4 ^ 0. If A+(x)-.4 ^

0, then there is a C , c {C,, C2, ... , Ck} such that A+(x) n C(1 / 0 and

A+(x) - C(l ^ 0. By Lemma 1 we can choose a point q e A+(x) n (5+(C/1) - CiX)

where q is not an equilibrium. By the properties of a planar dynamical system,

there is a C/2 e {C, ,C2, ... , Ck} such that A^(^r) c Cj2- Hence q e S+(Ci{) n

S~{Ci2) and q £ Cn U Cj2. Similarly to the proof of Lemma 3, we obtain a cy-

cle {C(1, Cj2, ... , Cjm} c {C, , C2, , Ck}, contradicting hypothesis Hv Hence

A+(x) c A , completing the proof.

Theorem 6. Let hypotheses H,-H3 hold, and all solutions of system (2) with positive

initial conditions be bounded (ultimately bounded) in future time. Then system

(2) is persistent (uniformly persistent) if and only if S+(Cm) n R+ — 0 for every

Cme{CJ.
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Proof. Since A ^ 0, then B = {x\x £ R}Q,r+(x) is bounded} # 0. By

Lemma 6, we have that A — |Jy€B A+(x). We choose {Cm} as a covering of A .

By Lemma 5 and hypotheses H,-H3 we obtain that hypothesis H holds. Thus from

Theorem 1 and Theorem 3 we get that this theorem holds, completing the proof.

In this theorem, the boundedness of solutions shows that, although the popula-

tion may grow to infinity in the absence of predation and/or competition, every

population only grows to finiteness when all populations exist. This condition can

often be eliminated by constructing Lyapunov functions. The hypothesis Hj shows

that, if three populations near enough to the equilibrium station Cm (i.e., distance

d{{xx, x2, x3), Cm) is small enough) at some time tQ , then either they tend to Cm

or they tend away from Cm as t —> +oo. If every Cm is an equilibrium, then

hypothesis H, can be checked by computing eigenvalues of the linearization about

every equilibrium. The check of hypothesis H-, depends on the type of populations

being modeled (predator-prey, competitive, cooperative, etc.). One interpretation of

the work in [3, 6, 7] is that the principal effort was equivalent to verifying the acyclic

condition. The hypothesis H, shows that, in the absence of one of the three popula-

tions, the other two populations cannot occur in a periodic situation. This hypothesis

can often be eliminated by the Dulac Criterion.

Let sets Ai and Bk represent all equilibria located in i?+(x;) and R~+{xi, x-),

respectively. We give the following decompositions of A- and Bk .

4 = IK- ".-IK,,,.
m m

where every Ajm , Bkm is a connected component of A{ , Bk . We need the following

hypotheses:

H4. All Ajm , Bkm are isolated invariant sets of system (2).

H5. Every {Bkm} is acyclic.

H6. All solutions with positive intial conditions are bounded (ultimately bounded)

in future time.

H7. For every Ai, S+(Aj) n R\{xi, X-) = 0 or 5,_(^I) D R2+(xj, xy) = 0 .

Hg- For every Ajm , Bkm , S\AJ n R\=<Z>, S+(BkJ n < = 0 .

H9. /,(0,0,0)>0, /2(0, 0,0)<0, /3(0, 0,0)<0.

h10. /,(0, 0, 0) >0, f2(0, 0, 0) >0, /3(0, 0, 0) < 0.

Hu. /,(0, 0, 0) > 0, /2(0, 0, 0) > 0, /3(0, 0, 0) > 0.

We have the following theorems, which are convenient for applications.

Theorem 7. Let hypotheses H3-H9 and one of the following conditions hold:

a) A, =0,

b) A7 = A3 = 0 ;

c) for i — 2, j = 3, or / = 3, j = 2, Af = 0, and A) ^ 0, 5,+ (/4J) n

R2+{xl, Xj) = 0 or n R\(x{, xj) = 0;
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d) Ax , A2, and A} are nonempty, for / = 2,3, >S+(/4.) n R2+{xx , -*,) = 0 ;

e) Al , A2, and A3 are nonempty, for i = 2, j — 3 or i = 3, j = 2,

5+(^|.)n/?J.(*1,x|.) = 0 and n /?+(*,, *,.) = 0 .

Then system (2) is persistent (uniformly persistent).

We can obtain a theorem which is similar to Theorem 7 under the hypotheses

H3-Hg and Hm holding.

Theorem 8. Let hypotheses H3-H9, Hn and one of the following conditions hold:

a) one of Ax , A2, A3 is empty set;

b) there are i and j such that <S+(/i(.)n/?+(.x(., Xj) = 0 and , Xj)
= 0;

c) if S+(Aj) n R2+{xr Xj) ± 0, then one of the following conditions holds:

(1) $-(/!,) = 0; (2) S+{Ak)nR2+(Xi, xk) = 0; (3) S~(Ak)n

R2+(xk,Xj) = 0; (4) S+(Aj)nR2+(Xj, xk) = 0; (5) S~(Aj)r\R2+(xj,xi) = 0;

d) if S~(At-) n R2+{xj, Xj) / 0, then one of the following conditions holds:

(1) S+(Aj)nR2+(xi,xk) = 0-A2) S-(Ak)nRl(Xi,xk) = 0-(3) S+(Aj) n

R2+(Xj , Xj) = 0; (4) S~(Aj)r\R2+{Xj ,xk) = 0;{5) S+(Ak)nR2+(xk , Xj) - 0 .

Then system (2) is persistent (uniformly persistent).

The proofs of Theorem 7 and 8 are clear and so we omit them.

If every Ajm , Bkm is an equilibrium, then hypotheses H4, H5, H?, and Hg can

be easily checked, for example, by analysing the type of every equilibrium. The

hypothesis H5 also can be checked by the Dulac Criterion. The hypothesis H7 shows

that, for the two-dimensional subsystem which is formed by populations xi and

Xj, it cannot occur that population xt persists and population x} extinguishes at

t +00 and t —> -cxd (there are x , y € R2+{xi, Xj) such that A+(x)uA_(j;) c At).

The hypothesis Hg shows that, if all populations exist, then they cannot tend to the

equilibrium stations Ajm , Bkm on the boundary R^ as t —► +oo. The number

fj{0, 0, 0) represents the intrinsic growth of population xt, if ^-(0, 0, 0) > 0 (<

0), then population x; can survive (must extinguish) in the absence of populations

Xj and xk . Therefore hypotheses H9-Hn show that there is a population such that

its intrinsic growth is positive.

For the two-predators and a common-prey model, the three-species food chains

model, and the competitive model, the hypotheses and conditions of Theorem 7 or 8

can often be verified in order to obtain persistence and uniform persistence. For

the two-preys and one-predator model, a theorem which is similar to Theorem 7 can

often be checked in order to obtain persistence and uniform persistence. The works

about this can be seen in [6, 7],

We have obtained necessary and sufficient conditions for system F to be persistent

and uniformly persistent under certain natural hypotheses. If any of these principal

hypotheses are not satisfied, the system F may not persist or uniformly persist.

Examples may be found in the literatures [5, 10, 12, 13].
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