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1. Introduction. Varley and Day have considered the problem of determining

deformations that can occur in a homogeneous, isotropic elastic body at constant

pressure on the boundary and null Cauchy deviatoric stress and have found certain

solutions to this problem [1] which possess constant principal stretches. Ericksen

[2-3] has conjectured that the solutions obtained in [1] should be at best neutrally

stable. This conjecture was proved for plane deformations by Adeleke [4],

In a recent paper [5] nonconformal plane deformations characterized by the re-

quirement that the ratio of the principal stretches of the deformation is constant were

shown to be Varley-Day type solutions (in the absence of body forces) for certain un-

constrained isotropic elastic solids. By employing the stability criterion due to Beatty

[6] the solutions in this class were also shown in [5] to be at best neutrally stable.

The solutions found in [5] however are not the only plane nonconformal1 Varley-Day

solutions with nonconstant principal stretches. Such solutions may occur whenever

the Baker-Ericksen (B-E) inequality [7, Sec. 51] is violated but the weakened B-E

inequality is not [5].

One of the implications of the requirement that a Harmonic material [9] admits a

regular state of uniaxial tension in plane strain is that the B-E inequality cannot be sat-

isfied at all states of deformation [10]. Specifically, at deformations characterized by

the condition that the sum of their principal stretches is a certain material-dependent

constant the B-E inequality fails but the weakened B-E inequality does not [9, 10].

As it will become clear in the following this condition characterizes the class of plane

Varley-Day solutions for Harmonic materials.2'3

In this paper we show by means of examples that among the Varley-Day solu-

tions for Harmonic materials which admit a regular state of uniaxial tension there

are solutions with nonconstant principal stretches. Then, by using Beatty's stability

Received October 14, 1988.

1 In the absence of body forces all conformal equilibrium solutions for unconstrained homogeneous isotro-

pic elastic solids that satisfy the classical Pressure-Compression inequality [7, Sec. 51] must necessarily be

homogeneous [8], As such, they possess principal stretches that are both constant and equal,

throughout this paper the body forces are taken to be zero.

3There is an abuse of language here; the conformal (Varley-Day) solutions at which the B-E inequality is

satisfied are not considered in this paper.
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criterion for the infinitesimal stability of equilibrium configurations of unconstrained

elastic solids subject to uniform hydrostatic loading everywhere on the boundary [6],

we show that the Varley-Day solutions can be at best neutrally stable and, in particu-

lar, that the Varley-Day solutions with constant principal stretches are unstable. An

illustrative example is considered in the last section of the paper.

2. Preliminaries. Consider the plane deformations described by a suitable smooth

and invertible transformation

x = x(X) (2.1)

where X and x are points that belong, respectively, to the domains D and D of

the two-dimensional Euclidean Space R~. Associated with such deformations is the

deformation gradient, given by

for which

det F > 0, (2.3)

where det(-) stands for determinant. The deformation gradient can be uniquely

represented in the form

F = VQ, (2.4)

where Q is a proper orthogonal tensor and V is a symmetric, positive-definite ten-

sor often referred to as the left-stretch tensor. By the spectral theorem there is an
1 2

orthogonal basis {e , e"} such that

V = ^e' 0 e' + A7e~ 0 e", (2.5)

where 0 denotes the tensor product of two vectors. The scalars A, , X2 are called

principal stretches while the vectors e1 . e" are the principal axes of strain. One set

of invariants of V is related to the principal stretches by the relations

trV2 = / = a; +x], detV = 7 = A,A2, (2.6)

where tr denotes the trace operator.

The plane part of the stress-deformation relation for a plane deformation of an

isotropic homogeneous elastic solid can be written in the form

T = t(V) = <Pq\ + V2. (2.7)

In Eq. (2.7) 1 is the identity tensor, cp0 and cp] are scalar-valued functions of the

invariants of V, and T is the Cauchy stress tensor. When a strain-energy function

W exists, then

W= W(I, J) = tV(A,,A2), (2.8)

and
OW 2d W

*» =1)T- = (2"9)

If we combine (2.5), (2.7), and (2.9) we find that

T = ^e' 0 e' + t-,e2 0 e", (2.10)
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where the principal stresses t{, t2 are given by

, aw , ik]aw , ,
+ , = 1'2' (2'n)

The equilibrium condition, in the absence of body forces, is

divT = 0, on D, (2.12)

where div(-) denotes the divergence operator with respect to x.

Harmonic materials are unconstrained elastic solids with a strain-energy density

function in plane strain given by [9]

W(I, J) = 2n[H(Q)-J], Q = (I + 2J)U1 = A, +A2, (2.13)

where n is a constant and //(•) € C (0, oo). Combining (2.7), (2.9), and (2.13) we

find

"H\Q) {
T = 2/u

Q
l + ̂ M. ,2.14)

The requirement that both the strain-energy and the stress vanish in the undeformed

configuration (i.e., for A, =A2 = 1) yields

H(2) = H'{2) = 1 . (2.15)

A material is strongly-elliptic at F if [7, Sec. 44]4

A»pyaanaybpba > °> a, p , y, a = 1,2, (2.16)

for every pair of nonzero vectors a(a„), b(&t). Here denote the components

of the elasticity tensor A which is the Frechet derivative of the Piola stress5

S(F) = J(tp0F~T + 0>,F). (2.17)

If Cartesian coordinates are assigned to D and D the components of A are given

by [11]

d2W d2W -i _i 2 -i _i d2W

+ 2Jdfdl[F.» F?° + W°y] + J V F°1 JJT

+ 2JBa + J^r[FolF~l (2.18)
r) J P& () J P(* G7 P/

where Fnp denote the components of F, F~p the components of F 1 , and

the two-dimensional Kronecker symbol.

We shall suppose that strong ellipticity holds for infinitesimal deformations of

Harmonic materials. As shown in [11], this is the case if and only if

// > 0, H"{2)>0. (2.19)

4The summation convention over repeated indices is employed throughout the text.

5 F7 is the transpose of F and F is the inverse of the transpose of F .
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It then follows [10] that the strain-energy density (2.13) is positive, except in the

undeformed state, if and only if

Cr
H(Q)>^~, Q £ {0, oo) - {2}. (2.20)

From (2.6), (2.7), and (2.10) we find that at conformal deformations (with A, =

A2 = A)

t\ = t2 = <p0{2J , J) + J(px{2J , J) = t = ?(A). (2.21)

The classical Pressure-Compression inequality is the requirement that t be a strictly

increasing function of A [7, Sec. 51]. Slightly stronger than this is the requirement

that

-ry > 0, A e (0, oo). (2.22)
d a

For Harmonic materials this condition becomes

QH"{Q)~ H\Q)> 0, <2<E(0,oo). (2.23)

At a deformation with A, ^ A-, the stress-deformation relation (2.7) is said to

satisfy the B-E inequality if [7, Sec. 51]

^,>0 (2.24)

and the weakened B-E inequality if

<px> 0. (2.25)

At conformal deformations B-E inequality reduces to (2.25) [7, Sec. 51].

The inequality (2.24) is satisfied by the constitutive equation of Harmonic mate-

rials (2.14) if and only if

H'(Q)> 0, <2e(0,oo). (2.26)

However, we shall suppose that the Harmonic materials admit a regular state of uni-

axial tension in plane strain [10], As shown in [10], for this condition to be satisfied

by the Harmonic materials which obey (2.15), (2.19), and (2.23) it is necessary and

sufficient that there exists a number Q0 e (1, 2) such that

H'(Q0) = 0, H'(Q)/Q->1 as Q ̂  oo and H"(Q)>1 for Q e {Q0 , oo).

(2.27)
A simple continuity argument shows that (2.27)3 implies

//"(Go) ^ 1 •" (2-28)

An inspection of (2.14) and (2.12) now shows that the Varley-Day solutions for the

class of Harmonic materials under consideration are characterized by the condition

Aj + A2 = Q0. (2.29)

6Note lhat at deformations with A, + ).2 = Q0 the Coleman-Noll (C-N) convexity condition [7, Sec. 87]

merely requires n"(Q0) > j [10].
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3. Nonconformal Varley-Day solutions with nonconstant principal stretches. We

start with the deformation

r = Rf( E), 6 = g(R,E), (3.1)

where (r, 6) and (R, 5) are spatial and referential polar coordinates, respectively.

The functions /(•) and g{-, •) are to be determined such that the conditions (2.3)

and (2.29) are satisfied.

The physical components of the deformation gradient corresponding to (3.1) are

given by

' f f, "
Rfg,R fg.E.

where, (•) stands for differentiation with respect to (•) (whether it is partial or total).

From (2.4), (2.6), (3.2), and (2.29) we find the condition

/ + 2 J = f2 + f\ + R2f2g2R + f2g2s + 2(f2g E - Rff -=g R) = Qo ■ (3.3)

To obtain our first example we assume that g, R — 0 so that (3.3), reduces to

/2(1 + £h)2 + /2e = 202. (3.4)

Taking / _ = k , k = const. , k e (0, Q0), we obtain from (3.4)

f = kZ + klf g = k~l \JqI - k2 ln(A:H + kx) - E + k2, (3.5)

where kx > 0 and k2 are constants of integration. Using (2.4), (2.6), (3.2), and

(3.5) it is easy to show that

I - 2J = 4(kE + k{)2 - 4\JQq - k2(kz. + /:,) + Q'0 / const . (3.6)

Since there exists a number k , independent on Q0 , such that, for k] e (0, k), the

condition (2.3) is satisfied it follows that (3.1) and (3.5) define a deformation which

meets our requirements.

Next we suppose that, in addition to (3.3), the functions / and g satisfy

fs = -Rfg,R■ (3-7)

Combining (3.7) and (3.3) and taking

/ = q0exp(a,E), a0,a,=const. , (3.8)

in the resulting equation yields

8,z = ao ' V Qo exp(-2a,E) - 4a20a\ - 1 , (3.9)

where we assumed

4«oq2 — 2o exP(—4a, ̂ ). (3.10)

From (3.7), (3.8), and (3.9) we deduce

g(R,E)= - a0 'q, '^/Qgexp(-2a,E) - 4 a2a2 - E - a, \n R*0 1 "" LXi

t 1 1 / ^

+ 2 arctan > exp( —2a,E) — 4a2-2 + c, (3.ii:

c = const .
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As condition (2.3) is satisfied if and only if g _ > 0, we choose an, a, so that

Noticing that

*o' "1

2 2
0 < aQ < 1 , ^aoa\ + ao - exp(-4a,7r). (3.12)

/- 2J = 1 - g -)2 exp(2a1H) ^ const. , (3.13)

we conclude that (3.8), (3.11), (3.1), and (3.12) define another deformation of the

type sought here.

4. Stability. A criterion for the infinitesimal stability of equilibrium configurations

of unconstrained homogeneous elastic solids subject to uniform hydrostatic loading

p everywhere on the boundary has been obtained by Beatty in [6]. The specialization

of this criterion to plane deformations of isotropic bodies takes the form

K = [_{tr[Ht(V)Hr] + H • C(F)[H] - p[2det E + tr(RR7')]} dD >
Jd

o (4. i;

for all nonzero plane infinitesimal displacements u . Here H(//^) is the gradient of

u, E and R the symmetric and skew-symmetric parts of H, respectively, and

H ■ C(F)[H] . (jFt„F,(A^ ~ V*)

where denote the components of t(V) and Ay(ai> are given by (2.18). If K

becomes negative for some u then the equilibrium configuration is unstable while if

K = 0 for some u / 0 but nonnegative for all u the equilibrium configuration is

neutrally stable [6].

If F = VQ is the deformation gradient corresponding to a Varley-Day solution

for a Harmonic material it follows from (2.7) and (2.14) that

d?(V) = pi = -2n\ . (4.3)

A straightforward but lengthy computation based on (2.18), (2.13), (4.2), (4.1), (4.3),

and

d2W , d2W ^ (X,. . kp\ 02 W
— 4A Ao ^—K 2J I + ——

didx,, - p di2 \kpkn)didj

J2 d2w _ ow s dw

+ IJpTF + + (1 " 5^] ~dl (4'4)

leads to7

K = 2/iL ^H"(Q0)-l
a2 E2u+2H"(Q0)EuE22 + fff (Qq) - 1 e;2 \ dD.

(4.5)

"^2

L,

Since there exists a nonzero displacement vector u such that

En=E22 = 0 (4.6)

the deformation with deformation gradient F can be at best neutrally stable.

7 Fnp arc the components of F with respect to the basis {e1 . e"} .
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From (4.5) we deduce that a Varley-Day deformation with constant principal

stretches is neutrally stable if and only if

[H"(G0)] ' < A

and

[H1'(G0)] < r < H''(Go) (4.7)A2

""<e«)(3i+?;)sl- (48)

Since8

{(A1,A2)|Ai+A2 = G0, //"(Go)(A1A2"'+A2A71)< 1, H"(Q0)> 1} = 0, (4.9)

the condition (4.8) is violated in any Varley-Day deformation. In the case of Varley-

Day deformations with constant principal stretches this fact precludes neutral sta-

bility as clearly, given any such deformation, an infinitesimal displacement u which

renders K < 0 must always exist.

5. An example. The Harmonic material with

"(e' = k + ̂ 7(|)"i + T^- f5'11

which was recently considered in [12], satisfies the restrictions (2.15), (2.19), (2.20),

(2.23), and (2.27) with
G0 = 2",/(w+l) (5.2)

and

H"{Q0) = l+m. (5.3)
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