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1. Introduction. Varley and Day have considered the problem of determining
deformations that can occur in a homogeneous, isotropic elastic body at constant
pressure on the boundary and null Cauchy deviatoric stress and have found certain
solutions to this problem [1] which possess constant principal stretches. Ericksen
[2-3] has conjectured that the solutions obtained in [1] should be at best neutrally
stable. This conjecture was proved for plane deformations by Adeleke [4].

In a recent paper [5] nonconformal plane deformations characterized by the re-
quirement that the ratio of the principal stretches of the deformation is constant were
shown to be Varley-Day type solutions (in the absence of body forces) for certain un-
constrained isotropic elastic solids. By employing the stability criterion due to Beatty
[6] the solutions in this class were also shown in [5] to be at best neutrally stable.
The solutions found in [5] however are not the only plane nonconformal' Varley-Day
solutions with nonconstant principal stretches. Such solutions may occur whenever
the Baker-Ericksen (B-E) inequality [7, Sec. 51] is violated but the weakened B-E
inequality is not [5].

One of the implications of the requirement that a Harmonic material [9] admits a
regular state of uniaxial tension in plane strain is that the B-E inequality cannot be sat-
isfied at all states of deformation [10]. Specifically, at deformations characterized by
the condition that the sum of their principal stretches is a certain material-dependent
constant the B-E inequality fails but the weakened B-E inequality does not [9, 10].
As it will become clear in the following this condition characterizes the class of plane
Varley-Day solutions for Harmonic materials.”*

In this paper we show by means of examples that among the Varley-Day solu-
tions for Harmonic materials which admit a regular state of uniaxial tension there
are solutions with nonconstant principal stretches. Then, by using Beatty’s stability

Received October 14, 1988.

'In the absence of body forces all conformal equilibrium solutions for unconstrained homogeneous isotro-
pic elastic solids that satisfy the classical Pressure-Compression inequality [7, Sec. 51] must necessarily be
homogeneous [8]. As such, they possess principal stretches that are both constant and equal.

2'l“hroughout this paper the body forces are taken to be zero.

3There is an abuse of language here; the conformal (Varley-Day) solutions at which the B-E inequality is
satisfied are not considered in this paper.
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criterion for the infinitesimal stability of equilibrium configurations of unconstrained
elastic solids subject to uniform hydrostatic loading everywhere on the boundary [6],
we show that the Varley-Day solutions can be at best neutrally stable and, in particu-
lar, that the Varley-Day solutions with constant principal stretches are unstable. An
illustrative example is considered in the last section of the paper.

2. Preliminaries. Consider the plane deformations described by a suitable smooth
and invertible transformation
x = x(X) (2.1)

where X and x are points that belong, respectively, to the domains D and D of
the two-dimensional Euclidean Space R”. Associated with such deformations is the
deformation gradient, given by

Jx
F = X (2.2)
for which
detF >0, (2.3)

where det(-) stands for determinant. The deformation gradient can be uniquely
represented in the form

F =VQ, (2.4)
where Q is a proper orthogonal tensor and V is a symmetric, positive-definite ten-
sor often referred to as the left-stretch tensor. By the spectral theorem there is an
orthogonal basis {el , ez} such that

V=ie ge +ie’ e, (2.5)

where ® denotes the tensor product of two vectors. The scalars 4,, 4, are called
principal stretches while the vectors el s e’ are the principal axes of strain. One set
of invariants of V is related to the principal stretches by the relations

uVi=l=i+2,  detV=J=44,, (2.6)

where tr denotes the trace operator.
The plane part of the stress-deformation relation for a plane deformation of an
isotropic homogeneous elastic solid can be written in the form

T=t(V)=g,1+0¢,V. (2.7)

In Eq. (2.7) 1 is the identity tensor, ¢, and ¢, are scalar-valued functions of the
invariants of V., and T is the Cauchy stress tensor. When a strain-energy function
W exists, then

W =W, J)=W(i. k), (2.8)
and oW 20W
iy S (29

If we combine (2.5), (2.7). and (2.9) we find that

T=t1e e +ne’ e, (2.10)
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where the principal stresses ¢, f, are given by
LN 21 oW
T eJ 0 J oI
The equilibrium condition, in the absence of body forces, is

divT=0, onD, (2.12)

i=1,2. (2.11)

where div(-) denotes the divergence operator with respect to x.
Harmonic materials are unconstrained elastic solids with a strain-energy density
function in plane strain given by [9]

W, J)=2u[HQ)-J], Q=I+2J)"7=1+4,, (2.13)
where u is a constant and H(-) € C2(0, oo0). Combining (2.7), (2.9), and (2.13) we
find

_ o [HQO _ H(Q),
T_2u{[ 0 1}1+ 07 } (2.14)

The requirement that both the strain-energy and the stress vanish in the undeformed
configuration (i.e., for 4, = 4, = 1) vyields

H2)=H'(2)=1. (2.15)
A material is strongly-elliptic at F if [7, Sec. 44]4
A,p,sa,a,b50,>0,  a,B,7,0=1,2, (2.16)

for every pair of nonzero vectors a(a,), b(b,). Here A 5,0 denote the components
of the elasticity tensor A which is the Fréchet derivative of the Piola stress’

S(F) = J(p,F " +¢,F). (2.17)

If Cartesian coordinates are assigned to D and D the components of A are given
by [11]

2 2

oW 9w 1 o'w
=4——F F 2J F, F F F_. F
afyo 01 af + ()]dJ[ po © o + af”ay ] + J F 0.]2
—1 -1
275,”,5,,0 [ W ES ETE (2.18)

where F“ﬂ denote the components of F, F”_ﬂ the components of F', and 5“/3
the two-dimensional Kronecker symbol.
We shall suppose that strong ellipticity holds for infinitesimal deformations of
Harmonic materials. As shown in [11], this is the case if and only if
"

©>0, H'Q2)>0. (2.19)

“The summation convention over repeated indices is employed throughout the text.
SE s the transpose of F and F~ ' is the inverse of the transpose of F.



458 M. ARON

It then follows [10] that the strain-energy density (2.13) is positive, except in the
undeformed state, if and only if

2
H(Q) > QT Q€ (0, 00)—{2}. (2.20)
From (2.6), (2.7), and (2.10) we find that at conformal deformations (with 4, =
Ay =4)
t=1,=0,2J, 1)+ J9,(2J,J)=t=1). (2.21)

The classical Pressure-Compression inequality is the requirement that ¢ be a strictly
increasing function of A [7, Sec. 51]. Slightly stronger than this is the requirement
that

di ,
71> 0 A€(0,00). (2.22)
For Harmonic materials this condition becomes
QH"(Q)-H'(Q)>0, Q€(0,x). (2.23)

At a deformation with A, # 4, the stress-deformation relation (2.7) is said to
satisfy the B-E inequality if [7, Sec. 51]

¢, >0 (2.24)
and the weakened B-E inequality if
¢, >20. (2.25)

At conformal deformations B-E inequality reduces to (2.25) [7, Sec. 51].
The inequality (2.24) is satisfied by the constitutive equation of Harmonic mate-
rials (2.14) if and only if

H'(Q)>0, Qe (0, ). (2.26)

However, we shall suppose that the Harmonic materials admit a regular state of uni-
axial tension in plane strain [10]. As shown in [10], for this condition to be satisfied
by the Harmonic materials which obey (2.15), (2.19), and (2.23) it is necessary and
sufficient that there exists a number Q, € (1, 2) such that

H'(Q,) =0, H'(Q))0—1 asQ—oo and H'(Q)>1 forQe(Q,, ).
(2.27)
A simple continuity argument shows that (2.27), implies

H'(Q)>1.° (2.28)

An inspection of (2.14) and (2.12) now shows that the Varley-Day solutions for the
class of Harmonic materials under consideration are characterized by the condition

A4y =0, (2.29)

®Note that at deformations with 4y + 45y = (g the Coleman-Noll (C-N) convexity condition [7, Sec. 87]
merely requires //”(Qg) > § [10].
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3. Nonconformal Varley-Day solutions with nonconstant principal stretches. We
start with the deformation
r=Rf(2), 0=¢g(R,Z2), (3.1)

where (r, 8) and (R, Z) are spatial and referential polar coordinates, respectively.
The functions f(-) and g(-, -) are to be determined such that the conditions (2.3)
and (2.29) are satisfied.

The physical components of the deformation gradient corresponding to (3.1) are

given by
f f=

" RS R /g Z
where, (-) stands for differentiation with respect to (-) (whether it is partial or total).
From (2.4), (2.6), (3.2), and (2.29) we find the condition

22 2,2 2 2 2 2 2
I+2) ="+ [+ R [ gr+/8=+2(/8=-Rffz8 =0y (3.3
To obtain our first example we assume that g, , =0 so that (3.3), reduces to

F (3.2)

Fl+g )+ =00 (3.4)
Taking f - =k, k =const. , k € (0, Q;), we obtain from (3.4)
f=kZ+k, g=k 'O -k InkE+k)-Z+k,, (3.5)

where k, > 0 and k, are constants of integration. Using (2.4), (2.6), (3.2), and
(3.5) it is easy to show that

[-2J = 4(kE+k,)" — 4/ Q2 — KX (KE + k,) + Q # const . (3.6)

Since there exists a number & , independent on Q, > such that, for k, € (0, k), the
condition (2.3) is satisfied it follows that (3.1) and (3.5) define a deformation which
meets our requirements.

Next we suppose that, in addition to (3.3), the functions f and g satisfy

fz=-Rf¢ . (3.7)
Combining (3.7) and (3.3) and taking
[ =agexp(a,Z), a,, @, = const. , (3.8)
in the resulting equation yields
g = = ' \/Q2exp(~2,E) — 4ala’ — 1, (3.9)
where we assumed
dajal < QF exp(—da, 7). (3.10)

From (3.7), (3.8), and (3.9) we deduce

g(R,=2) = ol 02 exp(—2a E)—4a2a2—E—a InR
0 M 0 1 0% I

+ 2arctan [2_1(10—|al_l\/Q§ exp(—2a,Z) — dala’| +¢c,  (3.11)

¢ = const .
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As condition (2.3) is satisfied if and only if g - > 0, we choose «;, a, so that

O<ay<1, 4(1(2)af+ao§exp(—4al7r). (3.12)

Noticing that
I1-2J] = a(z)(l - g_E)2 exp(2a,Z) # const. , (3.13)

we conclude that (3.8), (3.11), (3.1), and (3.12) define another deformation of the
type sought here.

4. Stability. A criterion for the infinitesimal stability of equilibrium configurations
of unconstrained homogeneous elastic solids subject to uniform hydrostatic loading
p everywhere on the boundary has been obtained by Beatty in [6]. The specialization
of this criterion to plane deformations of isotropic bodies takes the form

K= /_{tr[Ht(V)HT] +H - C(F)[H] - p[2detE + tr(RR")]} dD > 0 (4.1)
D

for all nonzero plane infinitesimal displacements u. Here H(H“ﬂ) is the gradient of
u, E and R the symmetric and skew-symmetric parts of H, respectively, and
1
H C(F)[H] = (7F/3,,FO¢A;@.,, - 5”;,lﬂa> H ,H. . (4.2)

where lgg denote the components of t(V) and A, are given by (2.18). If K
becomes negative for some u then the equilibrium configuration is unstable while if
K = 0 for some u # 0 but nonnegative for all u the equilibrium configuration is
neutrally stable [6].

If F = VQ is the deformation gradient corresponding to a Varley-Day solution
for a Harmonic material it follows from (2.7) and (2.14) that

d:y(V) =pl = -2ul. (4.3)

A straightforward but lengthy computation based on (2.18), (2.13), (4.2), (4.1), (4.3),
and

o°wW o'W A, Ag\ o'W
oion, =l v (ﬁ*?ﬂ o107
JEotw oW oW
/1”/11} 5 2(5”,; 01 + (1 5"/’)(‘)J (4.4)
leads to’
A 2 A 2
K= 2;1/5 { [/T;H"(QO) — 1] E;, +2H"(Q))E, Ey + [ﬁH"(QO) 1] En} dD
(4.5)
Since there exists a nonzero displacement vector u such that
E,=E;»=0 (4.6)

the deformation with deformation gradient F can be at best neutrally stable.

. . 2
7 F,p are the components of F with respect to the basis {e' e}
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From (4.5) we deduce that a Varley-Day deformation with constant principal
stretches is neutrally stable if and only if

" — }« 1"
[H"(Q)1 < 3+ < H'(Qy) (4.7)
2
d
" H"(Q,) <§l + /-1%) <1 (4.8)
O\L, T )T :
Since8

(A, A 1A + 4, =0y, H'(Q)A A + 2,47 ) <1, H'(Q) 21} =0, (4.9)

the condition (4.8) is violated in any Varley-Day deformation. In the case of Varley-
Day deformations with constant principal stretches this fact precludes neutral sta-
bility as clearly, given any such deformation, an infinitesimal displacement u which
renders K < 0 must always exist.

5. An example. The Harmonic material with

_l 2 0 2\" 1+m
H(Q)—-EQ +m(§> +1_m, m>0, m#1, (5.1)

which was recently considered in [12], satisfies the restrictions (2.15), (2.19), (2.20),
(2.23), and (2.27) with

Qo _ 2m/(m+l) (52)
and
H'(Q)=1+m. (5.3)
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