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Abstract. We obtained sufficient conditions for all positive solutions of the equa-
tion in the title to oscillate about the positive equilibrium N . We also found suffi-
cient conditions for the global attractivity of N™.

1. Introduction. The scalar autonomous ordinary differential equation

N(z)er(t)[l—y] , r, K e (0, o) (1.1)
commonly known as the logistic equation is most frequently employed in modelling
the dynamics of population of single species with N(¢) denoting the density (or
biomass) of the population at time ¢. The per-capita growth rate in (1.1) is a linear
function of the density N and this growth rate decreases as a linear function of the
density. Equation (1.1) has occupied a position of central significance in formulat-
ing several multispecies models of interacting populations, especially Lotka-Volterra
systems. An alternative to (1.1) has been proposed in the form

%
N(t)=rN(1) [1 — (%) ] , r,K,8¢e(0, o) (1.2)

by Gilpin and Ayala [4] in order to incorporate the effects of nonlinearity in the
per-capita growth rates. While the per-capita growth rate in (1.2) is not linear (when
6 # 1), positive solutions of (1.2) converge monotonically to K as t — co.

The logistic models (1.1) and (1.2) are based on the assumption that the density
has a negative effect on the per-capita growth rate. However several species often
cooperate among themselves in their search for food and to escape from predators.
For instance some predators form hunting groups (packs, prides, etc.) to enable
them to capture larger prey; fish and birds often form schools and flocks as a defense
against predators; some parasitic insects aggregate so that they can overcome the de-
fense mechanism of a host. A number of social species such as ants, termites, bees,
humans, etc., have developed complex cooperative behavior involving division of la-
bor, altruism, etc. Cooperative processes such as the above have a positive feedback

Received August 5, 1988.
! On leave from Flinders University, Bedford Park, S.A. 5042, Australia
©1990 Brown University
433



434 K. GOPALSAMY aAND G. LADAS

influence since they provide individuals a greater chance to survive and reproduce
as density increases. Moreover in sexual populations cooperation among individuals
is necessary for mating, nest building, rearing the young, etc. Aggregation and asso-
ciated cooperative and social characteristics among members of a species had been
extensively studied in animal populations by Allee [1, 2] who had demonstrated what
is now known as “Allee effect” in which reproduction rates of individuals decrease
when density drops below a certain critical density; in other words, when the density
is small, an increase in density enhances an individual’s contribution to the average
growth rate, an aspect which is not contained in the logistic models (1.1) and (1.2).
The model (1.3) which is proposed below amply illustrates the viewpoint that an in-
dividual’s reproductive potential attains a peak (maximum) at an intermediate level
of density rather than at the minimum density as in (1.1) and (1.2). When the den-
sities are not small, the positive feedback effects of aggregation and cooperation are
dominated by density-dependent stabilizing negative feedback effects due to intraspe-
cific competition due to excessive crowding and the ensuing shortage of resources;
in other words intraspecific mutualism dominates at low densities and intraspecific
competition dominates at higher densities (for details we refer to Watt [8]).

The purpose of this article is to propose a model of a single-species population
exhibiting the Allee effect in which the per-capita growth rate is a quadratic function
of the density and is subject to time delays. In particular we study the oscillatory
and asymptotic behavior of the positive solutions of

N(t) = N(O)[a + bN(t — 1) — cN°(1 - 1)] (1.3)

where a,c € (0,00), b € R and 7 € [0, co). Let us briefly consider (1.3) with
t=0. If a>0, b<0,and ¢ = 0, then (1.3) simplifies to one of type (1.1)
and if 7 =0 and b = 0, then (1.3) is of the type (1.2) with 6§ = 2. Beyond the
foregoing relevance of (1.3) in modelling the dynamics of a single-species population,
one can interpret (1.3) as a single-species model with a quadratic per-capita growth
rate and such a per-capita growth rate is a “first order” nonlinear approximation of
more general types of plausible nonlinear growth rates with single humps.

In Sec. 2, we discuss the oscillations of all positive solutions of (1.3) about its
positive equilibrium; also, we establish that all nonoscillatory positive solutions of
(1.3) converge to the equilibrium as ¢ — oo. In Sec. 3, we consider the asymptotic
behavior of all oscillatory solutions and obtain sufficient conditions for the global
attractivity of the positive equilibrium of (1.3). As special cases, our results will
contain several results known for the usual delay-logistic equation

N(t)=rN(1)<l—ivLK_—Q>‘ r.K.,7€(0, ) (1.4)

and we comment on this aspect in Sec. 4 below.

For a discussion concerning the importance of delays in the logistic equation see
Hutchinson [6].

In the sequel we will consider only those solutions of (1.3) which correspond to
initial functions of the form

N(1) = o(1), —1<1<0 withge C[[-1.0].R"]and ¢(0) > 0. (1.5)
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Clearly (1.3) and (1.5) have a unique solution which exists and is positive for all
t>0.

As is customary, a solution N(z) of Eq. (1.3) is said to oscillate about N* if the
function N(f) — N* has arbitrarily large zeros.

2. Oscillations about the positive equilibrium. Consider the delay-differential equa-
tion (1.3) with
a,ce (0, o00), beR and 71€[0, o). (2.1)

Then Eq. (1.3) has a positive equilibrium N* given by

« b+ Vb’ +4dac
B 2c '

N (2.2)

Set
N(t) = N*e"".
Then
(1) =N """ = 1]+ (N [e¥"" " —1]1=0 (2.3)

and N(¢) oscillates about N* if and only if x(f) oscillates about zero.
The first lemma deals with the nonoscillatory solutions of Eq. (2.3).

LEMMA 2.1. Assume that condition (2.1) holds. Then every nonoscillatory solution
of Eq. (2.3) tends to zero as t — co.
Proof. Set

F(u)=cu2—bu—a

and observe that
F(u)>0 foru>N" (2.4)

and
F(u)<0 forO<u<N". (2.5)

In view of (2.4) and (2.5), (2.3) yields that, eventually,
x(t)<0 ifx(t)>0

and

x(t) >0 if x(¢) <O.
It follows that every nonoscillatory solution of Eq. (2.3) tends to a finite limit ¢ as
t — oco. Then, from (2.3) we find that

Jim [(1)] = N[ — 11+ bN"[e" - 1]
= F(N"e).

Hence, ¢ must be zero, or else, in view of (2.4) and (2.5), F(N*ep) # 0 which
implies that |¢| = co. This contradiction completes the proof of the lemma.
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THEOREM 2.1. Assume that condition (2.1) holds and
(2cN" = b)N"1 > 1/e. (2.6)
Then every positive solution of Eq. (1.3) oscillates about the positive equilibrium
N*.
Proof. 1t suffices to show that every solution of Eq. (2.3) oscillates about zero.

Assume, for the sake of contradiction, that Eq. (2.3) has a nonoscillatory solution
x(t). Then, in view of Lemma 1

’lircr’lo x(t) =0.

We rewrite Eq. (2.3) in the form

¢(1) + |2¢(N*)? S BV (t—1)=0

X ¢ 2x(t—1) x(1—1) AE-T=
or

x(H)+P()x(t-1)=0 (2.7)
where
lim P(1) = (2cN* = b)N™ > 0.

Hence

t

liminf [ P(s)ds = (2cN" —b)N"1 > %

—o00 —1
and by Ladas [7]every solution of (2.7) oscillates. This is a contradiction and the
proof is complete.

3. Global attractivity. In this section we derive sufficient conditions for all positive
solutions of Eq. (1.3) to converge to the positive equilibrium N* as t — oco.
The transformation

N(t)= N[l +y(D)] (3.1)
reduces Eq. (1.3) to
y(t) =-A)y(t - 1), t>0 (3.2)
where A (which depends on y ) is given by
A(1) = [(2cN" = BYN™ + ¢(N*)*y(t = OI[1 + »(1)]. (3.3)

As N(t) >0, (3.1) implies that
yt) > -1 (3.4)
and from (3.3) we see that
A(t) > (cN" = b)N'[1 + y(1)] > 0. (3.5)
It follows from (3.1) that
Jlim N(1)= N" if and only if lim y(1) = 0.
First we will show that under the condition
cN"—b>0 (3.6)

every nonoscillatory solution of Eq. (3.2) tends to zero as ¢ — co.
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LeEMMA 3.1. Assume that (2.1) and (3.6) hold. Then every nonoscillatory solution of
Eq. (3.2) tends to zero as { — o©.

Proof. Assume that y(¢) is a nonoscillatory solution of Eq. (3.2). We will assume
that y(¢) is eventually positive. The case where y(t) is eventually negative [because
of (3.4) and (3.5)] is similar and will be omitted. From Eq. (3.2) and because of
(3.5) we see that eventually,

(1) <0
and so
L= lim y(1)

t—00

exists and is nonnegative. If L > 0 then
lim [(0)] = —[(2cN" = b)N" +¢(N")L]L < 0

which implies that y(¢) is eventually negative. This is a contradiction and the proof
is complete.

Next, we will show that under the condition (3.6) the oscillatory solutions of Eq.
(3.2) have certain global lower and upper bounds. For simplicity we set

L=2cN"-b
and
M =[LN" +¢(N )P = D)et™ - 1.
LEMMA 3.2. Assume that condition (2.1) holds and
cN"=b>0. (3.7)

Let y(¢) be an oscillatory solution of Eq. (3.2). Then there existsa 7 = T(y) >0
such that

e M < +y(1) < N fort>T. (3.8)

Proof. Let 2t <t, <, <--- beasequence of zeros of y(¢) with lim,_ ¢, =oo.

Our strategy is to show that (3.8) holds in each interval (¢,,1,,,). Let ¢, €(¢,. ¢, )

be a point where y(t) obtains its maximum or its minimum in (¢, ¢,, ). It suffices
to show that in either case

e Mty <™, m=1,2,... (3.9)

As y(&,) = 0, it follows from (3.5) and (3.2) that p({, —7) = 0. Dividing both sides
of (3.2) by 1+ y(#) and integrating from ¢, — 7 to ¢, we obtain

é" * *
In[l +y(¢,)] = —/ [LN +c(N )2,v(s —Dy(s —1)ds (3.10)

g, —1
¢ .

< - LN y(s—1)ds
&= 1

< [ LN"ds

g, -1

=LN'1.
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This shows that

L+yE)<e™ ,  n=1,2,...
and so
L+y()<e™ T, t>T. (3.11)

Now returning to (3.10) and using (3.11) and the definition of M we find

-1

é" * *
—In[1+y(&,)] = /c [LN" +c(N*)’y(s = D)ly(s — 1) ds
<Mt
which implies that
e M <14yE), n=1,2,...

The proof is complete.
An elementary consequence of (3.5) and (3.8) is that

—Mr

A(t) > (cN" = b)N'e fort>T. (3.12)
On the other hand, (3.3) and (3.8) imply that
A)<M fort>T (3.13)
where )
*.2, LNt

M=[LN" +c(N) (™ — 1))tV

The following result provides sufficient conditions for the global attractivity of the
positive equilibrium N* of Eq. (1.3).

(3.14)

THEOREM 3.1. Assume that conditions (2.1) and (3.6) hold and that
Mt <1 (3.15)
where M is defined by (3.14). Then all positive solutions of Eq. (1.3) satisfy
lim N(t) = N".

— 00
Proof. In view of (3.1) it suffices to show that for every solution y(¢) of (3.2)
which satisfies (3.4),
lim y(t) = 0. (3.16)

— 00

In Lemma 3.1 we proved that (3.16) holds for the nonoscillatory solutions of Eq.
(3.2). It remains to show that (3.16) also holds for every oscillatory solution y(t) of
Eq. (3.2). To this end, we define the nonnegative function

! 2 t !
v(y(t)) = [y(t)—/_ A(s+r)y(s)a’s] +/_ A(s + 21) [/ A(u+t)y2(u)du ds
(3.17)
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and observe that

SOWI=2 50 - [ ats+ () ds] 1=t + (0]

—A(t+71) /I A(u + 1)y (1) du

+ /’ A(s + 20)A(t + 1)y’ (1) ds

t

= —2A(t+r)y2(t)+2A(t+r)/ A(s + T)y(s)y(t)ds

-1

—A(t+1) /[ A(s+t)y2(s) ds

+A(+ r)yz(t)/t A(s + 27) ds. (3.18)

-1
Using the inequality , )
2y(y(s) Sy () +y (s),
(3.18) yields

%[v(y(t))] < —A(t+ )y (D) [2 - /t; A(s+1)ds - /I; A(s + 2t)ds]
which, in view of (3.13) and (3.5), gives
%[v(y(t))] < =2(1- AN/Ir)A(t + r)yz(t) <0. (3.19)

Integrating both sides of (3.19) we see that

t

v(y(8) +2(1 - ﬁf)/r A(s + 1)y (s)ds < v(y(T))

where T is as in Lemma 3.2. Hence,
At + 1)y (1) e L'[T, o) (3.20)
and
[ 2
[y(t) - [ e r)y(s)ds] < u(y(1)) < v((T)).

-1

From this and (3.13) we find

1/2

OIS [ po)lds+ o) (3:21)

Set

p(t) = _max, [y(s)].

Then from (3.21) and (3.15),

[v(y(T))]"?
p(1) < A
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which shows that y(¢) i1s bounded. As A(t) is also bounded, it follows from (3.2)
that y(¢) is bounded. Hence A(t+r)y2(t) is uniformly continuous. This and (3.20)
imply, by Barbalat’s Lemma [3], that

Tim[A( + 1)y’ (0] = 0

and so by (3.12)
lim y(t) = 0.

—00

The proof is complete.

4. Some remarks. The techniques proposed in Secs. 2 and 3 for the derivation of
conditions respectively for the oscillation and asymptotic convergence as ¢t — oo of
positive solutions of (1.3) can be easily modified to obtain the corresponding results
for the delay-logistic equation (1.4); this can be done by assuming a > 0, b < 0,
¢ = 0 in (1.3) and deriving the corresponding results. If this is done, it will be
found that a sufficient condition for all positive solutions of (1.4) to oscillate about
K > 0 is that rte > | and a sufficient condition for all positive solutions of (1.4)
to converge to K as t — oo is that rre’" < 1. If the delay 7 is sufficiently large,
periodic solutions exist and this aspect is discussed by Gopalsamy [5].

It is well known that construction of positive definite Lyapunov functions and
functionals for nonlinear equations is usually difficult. In Sec. 3 we have shown
a simple way to overcome this difficulty (for a class of equations) by constructing a
degenerate or Lyapunov-like functional which is not necessarily positive definite; this
does not guarantee boundedness of solutions; but boundedness can be established by
exploiting other properties of solutions. We conclude with the note that this technique
is not restricted to scalar equations or equations with a single delay; this method can
be used for vector matrix systems. A detailed application of this technique for such
systems will be considered in a subsequent investigation.
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