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Abstract. The propagation of wave packets on the surface of a magnetic fluid of

finite depth is considered in (2+1) dimensions. It is shown that the evolution of

the envelope is governed by two coupled partial differential equations with cubic

nonlinearity. The stability analysis reveals the existence of more than one region of

instability. The enveloping soliton and the "waveguide" solutions are derived in the

regions of instability wherever they exist in one space dimension. The instability

regions are sensitive to the applied magnetic field strength. The evolution of the

envelope is governed by a (2+1 )-dimensional nonlinear equation which leads to a

self-focussing singularity. Examined also is the long wave/short wave resonant inter-

action in magnetic fluids. Our study shows that the application of the magnetic field

decreases the region of instability where this resonance occurs.

1. Introduction. Because of the wide range of important industrial applications,

there has been a growing interest in recent years in the study of the magnetic fluids

when subjected to the normal and the tangential magnetic fields. The theoretical

as well as the experimental development of the linear theory governing the effect

of a tangential magnetic field on the interface between magnetic fluids was initially

conducted by Zelazo and Melcher [1] (see also [2-4]), where it was shown that the

magnetic field has a stabilizing influence. Later, Malik and Singh [5, 6], investigated

the nonlinear evolution of the wave packets in one-dimensional space on the free

surface of a magnetic fluid. It was proved that there exist different regions of in-

stability and that the magnetic field and permeability have varying effects in these

regions of instability. Using a geometrical method, Shen and Sun [7] examined the

surface waves for a ferromagnetic fluid of variable depth, and reported the existence

of edge waves over a uniformly sloping bottom.

The aim of this paper is to present the nonlinear wave propagation on the free

surface of a magnetic fluid of finite depth in (2+1) dimensions when it is subjected to

a tangentially applied magnetic field. In hydrodynamics, such a problem has already

been studied by Davey and Stewartson [8], Djordjevic and Redekopp [9], Ablowitz

and Segur [10],
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In Sec. 1, we outline the fundamental equations and the perturbation procedure

for obtaining the successive higher-order nonlinear equations with the use of the

method of multiple scales. The two coupled equations which yield the evolution of

the amplitude are derived in Sec. 2. These equations, in general, are not integrable.

However, these equations can be integrated by the inverse scattering technique [11]

in the long wave limit.

The stability of the two coupled equations for the evolution of the amplitude is

put forth in Sec. 3. In Sec. 4, we discuss the stability of the solution. In confining

to one space dimension and for moderate values of the magnetic field strength, there

exist three regions of instability and three regions of stability. If the propagation

is along the direction of the applied magnetic field, the envelope solitons are shown

to exist in unstable regions. With the increase in either the strength of the applied

magnetic fluid or the permeability of the magnetic fluid, the height of the solitons

increases in some regions and decreases in others. However, the speed of the solitons

in all regions always increases. On the other hand, if the wave packet is modulating

in the y-direction only, the 'waveguide' solutions, similar to nonlinear Fraunhofer

diffraction in Optics [12], are generated which are in fact envelope solitons. The

height and speed of the "waveguide" both increase with the increase in the magnetic

field strength.

The one-dimensional solutions mentioned above are unstable against transverse

perturbations. The growth rate of such an instability is influenced by the applied

magnetic field, and may give rise to a self-focussing phenomenon [13]. (See also [14-

16].) The wave field becomes singular at a certain point, referred to as the "focus." At

this singularity, the wave amplitude becomes infinite and may lead to the appearance

of turbulent bursts. This phenomenon has been developed in Sec. 5.

In Sec. 6, we have investigated the interaction of the long and the short wave

resonance in magnetic fluids. Benney [17, 18], has discussed this type of interactions

for ideal fluids where the physical mechanism is that of three waves interaction out

of which two are short capillary waves and the third being a long gravity wave. This

process is operative when the phase velocity of the long gravity wave coincides with

the group velocity of the short waves, and the energy transfer takes place from one

mode to another. Benney [18] describes these interactions by two coupled evolution

equations, and obtains a permanent wave solution with the capillary gravity wave

phase-locked to the crest of the gravity wave. The short waves act as a generator of

long waves by means of the sideband instability process analogous to that of Benjamin

and Feir [19]. Another interesting model dwelling on wave interactions has been

discussed by Newell [20] which admits solution through inverse scattering transform.

Djordjevic and Redekopp [9] have also studied the resonance mechanism in the

shallow water limit. In our study of extending the above phenomena for magnetic

fluids under the influence of an applied magnetic field, the conditions for triad wave

interactions are also met. Like [9], we also employ the time scales for interactions

which are faster than those used by Benney [17], We show that the presence of the

magnetic field enhances the region of stability. The long waves which, if they are

initially absent, can be suppressed much more easily in magnetic fluids by either
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increasing the strength of the applied magnetic field or using the magnetic fluids with

higher permeabilities.

2. Fundamental equations. We consider an inviscid, homogeneous, and incom-

pressible magnetic fluid of uniform depth b. The magnetic fluid with density /?,

and permeability occupies the half space z < 0, whereas the medium z > 0

has negligible density and magnetic permeability n2. The system is subjected to an

applied uniform magnetic field H(1, 0, 0) along the fluid interface, and the gravi-

tational force g(0, 0, -1). The magnetic fluid is assumed to be initially quiescent

with linear magnetization properties.

We shall investigate the propagation of weakly nonlinear waves, confining ourselves

to a wave train that has a principal direction along the x-axis although modulations

in both the x and y directions shall be allowed.

The basic equation governing the irrotational motion is

V'(f) = 0 for - oo < x < oo, -oo<y<oo, and — b < z < t](x, y, t). (1)

Here, <f>{x, y, z, t) is the velocity potential (v = V</>), and z = rj(x, y, t) is the

elevation of the free surface. The perturbation generates an additional irrotational

magnetic field h represented by the potential i//(x, y, z, t) (h = —Vy/) such that

vV(l> = 0, -b < z < //(x, y, t) (2)

and

V~y/(2) = 0, t](x, y, t) < z < oo. (3)

Since the motion away from the interface and at z = —b vanishes, we have

IV0I — O, |V<//(1)|-^0 as z->-b, (4)

|Vv^<2)| —>• 0 as z —► oo. (5)

At the free surface z = t](x, y, t) the relevant boundary conditions for this three-

dimensional problem are

drj d(j) d<j) drj d&dr]^

dt dz dxdx dy dy

nH(n'] = H™, (7)

] = H\1], (8)

and

|f+CT+jW)2
Tt?JL(, , 7 dt1dtl

dx2 V \dy) ) <9y2V \dx) ) dxdydxdyP .dx

>+m2+(Mr"2
PiSP ~ ])

8 np
+ (n - l)(H{nl])2 (9)
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Here, n = n{/fi2, and T is the surface tension whereas //(l) and HU) are the

magnetic fields in two media. In the derivation of the last term in Eq. (9), we have

eliminated the magnetic field term HU) by using Eqs. (7)-(8). The quantities IIn

and Ht represent the normal and the tangential components of the magnetic field,

respectively.

To obtain approximate solutions governed by Eqs. (l)-(9) for small but finite

amplitudes, we use the method of multiple scales and therefore introduce

x = e"xn, y = s"vn+l, t = ztn, n = 0,1,2, (10)

N

a>(x ,y,z,t) = J2 ' xo' xi' x2' y i' y 2; 'o' V li>
n= I

+C>(eyv+I), (11)

<t> can be any of the physical quantities 4>, V, fh ar|d where the small parameter e

is the steepness ratio of the wave. We shall also assume that (kb) e , where k is

the characteristic wavenumber along the x direction.

3. Derivation of the amplitude equation. The solution to the first-order or linear

problem, as developed in (6), is

= -icok~] cosh k(z + b)F + cc + BiU , (12)

y/\X) = iBH s'mh k(z + b)F + cc, (13)

= iBH exp{-k~)A exp{id) + cc, (14)

r/t = A exp (id) + cc, (15)

where

F - (sinh(kb)) 'Aexp(id), (16)

d = kx0 - a>t0, (17)

B= (1~/<) , (18)
H(j(b) + 1

a(b) - coxh(kb). (19)

The amplitude A is a function of x, , x2, v, , v2, t] ■ and t2. The constant B " ,

which is a function of the slower scales, has been introduced to eliminate the secu-

larises at the higher orders. The solution above gives rise to the dispersion relation

0. (20,

where

v; = thUl. (2i)
A 4 np

with
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For higher-order problems, we again follow the procedure outlined by Malik and

Singh [6], The requirement that the second-order solution be bounded yields the

nonsecularity condition

= (22)

where Vg = is the group velocity of the wave packet. The quantity B( 1', which

represents the induced mean motion or the zero frequency correction to slow mod-

ulation of the fundamental mode, is given in the second-order problem by

d2B(l) u(d2Bw , d2B(l)\ 0/I/ , ,u,,d\A\2

-^r-gb{—xr+^rJ=2(^+<oM',,)i^- (23)

where

qx = l-[oj\a2(b) - 1) + (// — 1 )k2V2{(na2(b) + 1 )B2 + - 1) + 2B^ia{b)}]. (24)

If we put VA = 0 in Eq. (23), we recover the result of Davey and Stewartson [8] for

hydrodynamics.

Introducing the transformations £, = (a-. - V t.) and rj = y. , Eq. (23) reduces to

{gb ~ V^)d~S~ + gb^T~ = "2(*i Vs + (25)
oQ or]

Equation (25) is elliptic for M(= V2/gb) < 1 and hyperbolic for M > 1 . For water

waves, the flow is subsonic when M < 1 . However, in ferrofluids even for T — 0,

the flow is supersonic (M >1) for moderately strong values of the magnetic field.

The surface tension effect is required to investigate the significant interactions of large

and small waves. It is shown in Fig. 1 that the transition curve S(k) = Vg — gb = 0

changes significantly due to magnetization for small values of kb . Unlike negative

dispersion obtained for water waves, we get here a positive dispersion for small values

of kb, leading to lump solutions which are localized waves in (2+1) dimensions

[26].
To develop the amplitude modulation for the progressive waves, we need to go to

the third-order problem. By substituting the first- and second-order solutions into

that of the third order, we obtain the solvability condition

.OA B2A „ d2A ^ , 2 , „ ,dB(X)

where

'7J7 + p+ PlJ^~Q[ jAjA + QlA~dT' (26)

1 d v

p = 2-d' <27>

P, = ^f>0, (28)
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Fig. I. The stability diagram showing different regions of stability

S, . S2 , .S"3 and regions of instability U[ , U2 . U3 . ■ and R2

for the values of I'?=0. 1.2,3.4.5 with // = 1.5 .
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<2< -
2coa(b)

co2(2(A - ko(b))( \ - a(b)cr(2b)) + A + £2 - ^ko(b)) + ~k4T

- aj2a{b)(A{2(j(2b) + a{b)) + £2cr(6) + ^-(3 - Aa{b)a{2b)))
k

k2V2
+ -^-(/u- 1) 4q2(([ia(b)(a(2b) + 1 )B + {n+ \)a[2b))

+ 2BA(2fi — \)o{b)-2{\+n) + 2BZ2(j{b)

+ kBa(b)(4B{ti+l) + 3)

+ 4 k{fi- 1)5 +
2(/| - l2)o{b)

Ho(b) + 1

with

A =
1

2 V2 -1
+ k~(/x - \)-^-{-4B(n + o{b)) x (/uo{2b) + 1)

+ B2( 1 - no2(b)) + (1 - n) + 2Bo(b)(2 - /i)}

o,= A
2coa(b)

2 Tr2

co2(l - C2(b)) + '^-(v - l)(2Ba(b)
kv

| 2((M-l)2i?, -B(\+a(b))a(b)

(29)

/, =(A + Z2)(h- 1)25, +2(<?3-//^)-|.A-51(l -//), (30)

l2 = 2(^(26) + <73) + ({2 - X)B{ 1 + ff(6)), (31)

(1 -/z)[A-k(/i + a(b))B{]

"> = >,a(2b) + I 1 (32)

= <72 + /cfl,(<7(6) +1)(1-/*), (33)

^2 = — 2<§r~1 <7!, 5, = (1 +^{b))~l, (34)

DIM,, 2k)

(35)

D(2m, 2k) = + 4^- + +'|) . (36)

^ '-2<u<j(A)). (37)
//er(6) +1 j° j

Equations (25) and (26) are the coupled nonlinear interaction equations. Since our

interest is in waves propagating only in the principal x-direction, we have evaluated

all the quantities at 1 = 0, where / is the wavenumber of waves propagating in the

y-direction. By virtue of Eqs. (29) and (35), the nonlinear interaction coefficient

becomes singular whenever D(2a>, 2k) = 0. In magnetic fluids, this phenomenon

can be studied further following the procedure outlined by Kant and Malik [21], ex-

cept that shorter time scales than used in this paper shall be required. The interaction
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coefficient Q-, also has a singularity when M = 1 . For this value of M, there is

a resonance interaction between the long and the short waves. The solution in the

vicinity of such a resonance phenomenon is obtained in Sec. 6.

In this section, we consider D(2a>, 2k) / 0 and M / 1 .

Setting

>(D

5= (2Vgqx+ojo{b)\A\2ygb-V2gy{ + (38)

where

dB<

and substitution for S in Eqs. (25) and (26), yields

'^ + FW+P'W = QIAl2A + a2SA' m

^-^+^'M2v°\+aTsY^4- m
8 <9<r drj \ gb - Vg J dt]

Q2(2Vq + (oa(b)g)
Q = Q, + 2 2 7 • (41)

g ~8b

It is interesting to observe that Q in Eq. (41) is singular at V~ = gb . Physically, it

represents the resonance between the long and the short waves. Our solution is not

valid in the vicinity of such a resonance. We aim to discuss this resonance in Sec.

6. For ideal fluids, such types of resonance have been investigated by Benney [18],

Djordjevic and Redekopp [9], and Newell [20].

In deep magnetic fluids, i.e., kb —* oo, Eqs. (25) and (26) furnish

2%+r'<w+''>wmtfi4fA- l42)

where

'\ = o ~TJ7" ' (43)

1 dvg

2 dk

P'2 = ^, (44)

Q'=j-
4<x>

l ' f ^ . I .,2 1) 1 / ^ I - I ■!2A{m -k VA +2k(a) -k VA)} --Tk

A' = -co1 + k2V2An-\)l(n+ 1) 2 k--g

A'A, (45)

(46)

2 2
along with the boundary condition that A vanishes as + rj~ —> oo . Equation (42)

gives rise to a focussing singularity.

4. Stability of solution. We shall discuss now the solution of the coupled equations

(25) and (26). With a view to describe the stability of the one-dimensional solution

against transverse perturbations, we first review the solution in one space dimen-

sion only [6]. In the special case when the propagation is only in the „x-direction and
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^Q(1>(k)=0

9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1 0 0.0

kb

-i 1 1 1 1 1 1 1 r
0 0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1-0 0.0

kb

j E(k)=0

~i i I i I 1 1 1 r
0 0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1 0 0.0

kb

Q(2) (k)=0

/

9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

kb

Fig. 2. The three-dimensional stability plots of various surfaces

across which the coefficients P, Q{l) , E . 5, Q[change sign.



424 S. K. MALIK AND M. SINGH

when the modulation in the v-direction is not taken into account, Eq. (25) reduces

(rs2-g b)

and, therefore, with Eq. (26) we get

idA+pd_A =q\ai2a. (48)
Or

Malik and Singh [6] examined the stability of the solution (48) by normalizing all the

physical quantities in Eq. (48) with respect to the characteristic length (T/pg)i/2
3 1 / 2

and the characteristic time {T/pg ) . Figure 1 shows the stability diagrams for

p. = 1.5 . The curves correspond to the group velocity P, the nonlinear interaction

parameter Q, the second harmonic resonance E(k) = D(2co, 2k, p., V2) = 0, and

resonance of the long and the short waves given by S(k) = V ~ gb — 0 when

the coefficients P and Q of Eq. (48) change sign across these curves. Here, it is

interesting to note that there are two branches Q[>\k) = 0, Q[1\k) = 0 across which

Q(k) changes sign. The three-dimensional stability diagrams are exhibited in Fig.

2. Furthermore, the figures exhibit the existence of three regions of stability S- and

three regions of instability Ui, i = 1 , 2, 3 for moderate strengths of the magnetic

field. The higher values of the magnetic field generate two new regions of instability

indicated as /?, and R2 in the figures.

In this paper, our objective is to investigate the stability of the soliton solutions of

Eqs. (25) and (26) in (2+1) dimensions. In one space dimensions, Eqs. (25) and

(26) reduce to a single equation (48). The one soliton solution of Eq. (48) is given,

as in [21], by

A = a Sech ^(f - 260t)^ exp(ib0£ + iP{a~ - b2Q)r), (49)

where h = {IP/Q)~X,~ represents the height of the soliton and where a, bQ are

constants. The constant b is a measure of the correction to the basic wavenumber to

the O(e), and is therefore taken equal to zero. The height of the soliton depends on

the group velocity rate P and the nonlinear interaction parameter Q . The height of

the envelope soliton decreases in the region (7, and increases in regions U2 and U}

when the magnetic field strength is increased. However, the speed of the envelope

soliton increases with increase in the magnetic field strength in all the unstable regions.

The number of these solitons and the structure of the associated tail is completely

determined by the initial data. For a pulse initial condition, the tail is not very

important and decays as /~l/2 times the amplitude.

We now turn our attention to the "waveguide" solution of Eqs. (25) and (26) when

the wave propagates in the principal direction of the A'-axis and the modulation takes

place in the v-direction. The "waveguide" solutions are essentially the envelope

solitons. In such a case, O'A/i= 0 and Eqs. (25) and (26) reduce to a one-

dimensional Schrodinger equation similar to (48) with £ replaced by ij . Since

P\ > 0 and Q] < 0, these solutions exist in the regions U2,S3, and C/3. Both
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speed and height of these "waveguides" increase with increase in the magnetic field

strength.

For a general case when d2 Afd^' and d2A/drf are both nonzero, there may be

a crossover from one region to another.

We shall now discuss the stability of soliton solutions subject to transverse per-

turbations. Following procedures established by Zakharov and Rubenchik [23] and

Ablowitz and Segur [10], we seek the solution of the form

A = (S + u + iv) exp(iPa2z), (50)

where u, v are assumed to be real and S. With A in Eq. (50), the Eqs. (25)

and (26) are linearized. We further assume that

u, v a exp{iKrj ± /Qi). (51)

The analysis of the stability of the solution can be simplified by looking for the solu-

tion in terms of odd and even functions of £ , denoted respectively by the subscripts

(-) and (+). In a medium with cubic nonlinearity, the growth rate for the even and

the odd modes comes out to be

Q.l = -2 PP.a, (52)

and

Qi = 5 Pa2

+ — j ,

_ 2 Q2(Vq+(0ga(b))
P, + g

' (gb - V2)
(53)

For deep magnetic fluids, Q1 = 0 . We shall now investigate the effect of the increase

in the magnetic field strength on the unstable regions Ut, R, , and sketched in

Fig. 1.

Firstly, we look at the regions (7,, R{ , and R7. In the one-dimensional case, we

have envelope solitons as PQ < 0. This soliton which has amplitude a is unstable

against long perturbations which are antisymmetric in t,. The growth rate of this

perturbation with wavenumber K is given by

4 2 2 (^1+2Q-,{Veqx+ (0go{b)) 4
Q~ = --K~a"\P\— ~ g 1 , — + 0(K). (54)

3 (gb-Vg2)

The numerical search reveals that the growth rate of instability increases in regions

[7, and R{ whereas it decreases in region R-, when there is an increase either in

the magnetic field strength or the permeability of the medium. The growth rate of

the instability of a mode which is sinusoidal in // and antisymmetric in £ gives

rise to the bending of the wave crest, i.e., producing a "snake effect" or "sausage

instability" about its undisturbed position. The crest of the disturbances oscillates

to and fro in the - ^-plane about the equilibrium position. Whether this effect

is enhanced or checked depends on the effect of the magnetic field in the unstable

regions (7, , R{ , and R2. In the instability bands U2 and U3, the group velocity rate

P is positive and the envelope soliton is unstable with respect to long symmetric even

perturbations. The growth rate of instability with wave number K and frequency

Q is furnished by

Q2 = -2K2 a2 PP. + 0(A'4). (55)
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Such a growth of this mode induces periodicity in modulation of the wave amplitude

a in ij. In the region U2, the growth rate increases with increase in V, for small

depth limit, and decreases with V2 for deep depth limit. In the region U2, the

growth rate decreases with increase in the magnetic field strength thus asserting a

destabilizing influence.

The one-dimensional waveguide solutions are possible in the regions U2, S3, and

t/3 because P, P; are both positive and <2, is negative. The effect of the magnetic

field is similar to that in the case of envelope solitons but with the role of £ and rj

interchanged. The instability described above may lead to a focussing phenomenon.

5. Nonlinear focussing. We shall now dwell on the nonlinear focussing which

emerges out of the solutions of Eqs. (25) and (26) obtained in the previous section.

Following Zakharov [14], we define the two integrals of motion

N = IJ\A\2d£dih (56)

II! dA

dZ

2

+ r>
OA

dr] + lLMI4

(v'-gb)g
0

d<j>

dQ

1 d<t>
dt] q\

(57)

dqd>\,

fi = {2Vgqx+ coo(b)),

where N is the wave action and H is the Hamiltonian. Using (56) and (57) into

(25) and (26), we deduce the virial equation

32I—2=4H, (58)
ax

where the moment of inertia / is defined as

/

Equation (58) upon integration yields

II(<f + rf')\A\2 dZdtj. (59)

2r 2H

where

(/) = —+ C, r + C2, (60)

«")

The constants C] and C2 in (60) are determined by the initial conditions

d
c< - s<7> c2 = </)U_0 = 1(0). (62)

T = 0

Note that C2 is always positive. The sufficient condition for the collapse to occur

in finite time is that (/) tends to zero. That happens anywhere where \A\ —» 0

except at the point of the collapse called the focus. The condition for the focussing

or the emergence of singularity is the vanishing of the right-hand side of Eq. (58)
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at a certain time. This requirement can be satisfied by a wide class of initial data.

When H < 0, the quantity Q < 0 in Eq. (57), leading to a singularity at a time, say

r = r*0 . The quantity Q decreases further when the magnetic field is increased in the

region U2. In this region, it is easier to observe the self-focussing phenomenon for

magnetic fluids as compared to ideal fluids. In other regions, no specific conclusions

can be drawn, and the problem is still open.

6. Long-short wave interactions. We shall now investigate the nonlinear resonant

interactions between the long and the short waves. Equation (25) has a singularity

when the group velocity of the wave packet in the magnetic fluid coincides with the

phase velocity of the long gravity waves. This resonant interaction results in the

breakdown of the usual perturbation expansions taken in Sec. 2. To surmount this

difficulty, we introduce the multiple scales

x, = e2/3x0, x2 = e4/3x0, (63)

/,=e2/3/0, t2 = e4/3/0. (64)

The variables (p, y/ , and rj are represented in terms of asymptotic series

6
^ = E£("+2)/3^ + °(£3)' (65)

n=0

y/ = £V"+2)/V„ + 0(fi3), (66)

n= 1

, = ...Ofc,'). (67)
n= 1

We will restrict ourselves to the one-dimensional case only. It is interesting to

observe that by choosing the scales as above, the lowest order mode <t>0 and the

next order mode describe the long and the short wave free modes, respectively.

The interactions between these two modes will occur at the higher order. Up to

0{e2), the long wave mode is not influenced by the presence of the short wave mode.

Proceeding as in the previous section, we realize that the significant interactions occur

at 0(e7/i), and the nonsecularity condition for the amplitude is

dr d? d£ ' ( )

where

k
X = ~ 2<x>cr(b)

oj2(\ - o2(b)) +

x („ - d{2j0(6)++°i f}) ks'1 - 2^b\ m

t2, t = xt-V,tr (70)
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Fig. 3. The stability diagram for the long and the short wave reso-

nance interactions for vari

depicted below the curves.

nance interactions for various values of I'f . The stability region is
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To find the evolution of the long wave mode, we proceed to 0(e^3). From the

kinematic condition (6), we obtain

d2 _ . k2 / 1 \5|^'2

dTd£(°o) 2 \ o2) d£ ' (71)

The resonant interaction between the short and the long wave is governed by the two

coupled equations (68) and (71). On setting B = x(d$>0/dQ , we find

.dA nd~A
i——b P—j = BA , (72)

Or

and
dB _ d 2
dx ad( ^

where

a = ^2(1-^)' (74)

The progressive wave train solutions of Eqs. (72) and (73) are unstable (see Benney

[18] and Djordjevic and Redekopp [9]) when

P2k3 < 33/2|a|l4/, (75)

where AQ is the initial value of the amplitude. The inequality (75) is still valid even

if the long wave amplitude is initially absent, implying thereby that the short waves

of finite amplitude interact among themselves to produce a long wave mode.

In Fig. 3, we have sketched the transition curve for = P2Ki - (3)3^2|a| |^40|2 = 0

with |v4Q|2 = 0.01 and \AQ\2 — 0.001 in the neighbourhood of the wavenumbers satis-

fying the resonance condition. Compared to ideal fluids, the presence of the magnetic

field decreases the region of instability, thereby exerting the stabilizing influence. As

remarked earlier, this phenomenon is absent in the deep magnetic fluid limit.

The set of Eqs. (72) and (73) can be integrated in terms of the Jacobian ellip-

tic function. The phase jump and the solitary wave can then be derived as special

cases. Ma [24] has demonstrated that for ideal fluids, these equations can be solved

by using the inverse scattering technique resulting in soliton solution. For the mag-

netic fluid case, the coefficients appearing in Eqs. (72), (73) are dependent upon the

magnetic permeability and the applied magnetic field strength. Like ideal fluids, an

arbitrary initial disturbance for magnetic fluids will also lead to a series of solitons.

By increasing the strength of the magnetic field, the generation of solitons can be

suppressed.

7. Conclusions. We have shown that the solitons and "waveguides" which ex-

ist in one space propagation are unstable to transverse perturbation in a magnetic

fluid. When compared with ideal fluids, the growth rate of instability is enhanced in

some regions and suppressed in others with an increase in the applied magnetic field

strength or by using the magnetic fluid of higher permeability. Such an instability

may lead to a self-focussing phenomenon, and can be easily observed in magnetic

fluids. In ideal fluid experiments this kind of instability has not been seen so far.
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On the other hand, if (kb) < e, i.e., long wave approximation, an equation

similar to that of Kadomstev and Petviashvibi [25] for magnetic fluids can be derived.

In the corner of the region Ul , in Fig. 1, we obtain KdV solitons in one space

dimension [27-30]. Such a solution shall be unstable to transverse perturbations.

The "lump" solutions are predicted in the region S3 [26].

In the last section, we have revealed that, like ideal fluids, the long-short wave

resonance phenomenon exists in magnetic fluids also, and gives rise to a significant

energy exchange between a short wave mode and a long wave mode. The linearized

analysis exhibits an instability, provided inequality (75) is satisfied for wavenum-

bers in the vicinity of the resonance. The terminal stage of this instability predicts

the generation of solitons. The presence of the magnetic field inhibits the soliton

production in the regions where they happen to exist.
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