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Abstract. An energy balance criterion of the Griffith type has been used to derive

conditions that are valid, in the isothermal noninertial approximation, for the growth

of cracks in viscoelastic bodies. These bodies are acted upon by general position and

time-dependent load. The conditions have the same form as the instability conditions

obtained for the corresponding problems in elasticity theory and, in particular, are

independent of crack velocity. The analysis relies upon an exact calculation of the

displacement and stress fields that is derived in the Appendix with the aid of exten-

sions to viscoelasticity of the Kolosov-Muskhelishvili equations of elasticity theory.

1. Introduction. Energy balance theories for crack growth in elastic bodies have

their origin in the work of Griffith [1, 2]. One notable feature of Griffith's result is

that, in the noninertial approximation, it gives no information on the velocity of crack

extension. This is not so if the surface energy, T, associated with crack extension is

presumed to depend on the velocity of crack growth. Experimental evidence for this

has been presented, for example, by Vincent and Gotham [3], Francis, Carlton, and

Lindsey [4], and in papers referred to by Knauss [5], while Gurtin [6] has provided

a theoretical foundation for the assumption. Willis [7], Kostrov and Nikitin [8], and

Blackburn [9] also considered this possibility. Graham [10, 11] gave a derivation of

the crack extension criterion for viscoelastic materials which indicated that it has a

form similar to that for elastic materials, the instantaneous moduli of the viscoelastic

body playing the role of elastic moduli. Kostrov and Nikitin [8] used an elaborate

analysis of energy balance at the crack tip to arrive at the same conclusion. However,

there is the work of Cherepanov [12] who, starting from unarguably valid energy

relations, obtains a criterion of different form to that of Graham.

Nuismer [13] points out the contradictory nature of these results and derives a

criterion which is in agreement with that of Graham. He also points to flaws in the

work of Cherepanov and others which explain why they obtained different results.
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More recent work (Christensen and McCartney [14] and references therein) sup-

ports the position of Graham and Nuismer if singular stresses are admitted.

On the other hand, several authors, on the basis of various phenomenological ap-

proaches, have given noninertial criteria which fix the velocity of crack extension.

Contributions to this development have been made and surveyed by Knauss [5, 15],

McCartney [16], Christensen and McCartney [14], Schapery [17, 18], Kaminskii [19],

Kaminskii and Pestrikov [20], Coussy [21], Schovanec and Walton [22], Goleniewski

[23], and Golden and Graham [24]; each of which contains further relevant biblio-

graphical information.

In the present paper, a simple transparent derivation of the result of Graham and

Nuismer is presented, which is based on a manifestly fundamental energy principle.

In fact, the results obtained generalize the earlier treatments in that tangential and

position-dependent applied stresses are included. It is hoped that this work will help

to further clarify the issue. Since it includes position-dependent stresses on the crack,

there is the implication that if one assigns structure to the crack tip simply by the

inclusion of cohesive, or indeed shear forces, the energy balance criterion, allowing

singular stresses, will not give a velocity-dependent criterion for crack growth. This is

also true if singular stresses are eliminated by the standard Barenblatt [25] argument

using a cohesive zone of negligible length (Golden and Graham [26]). If the length

of the cohesive zone is not allowed to go to zero, then it would seem from the work

of several authors, notably Schovanec and Walton [22], that a velocity-dependent

criterion is obtained. Note that this procedure amounts to constructing a model of

the velocity dependence of the surface energy.

The point of departure of this study, which is restricted to the linear isothermal

noninertial case, is an energy balance equation given by Erdogan [27], The develop-

ment of the implication of this equation is believed to be novel, though somewhat

similar ideas have recently been used in the context of elastic composites by McCart-

ney [28],

2. Energy balance criteria for crack extension in linear viscoelasticity. Goodier [29]

shows that for the case of fixed applied tension in the noninertial approximation, the

strain energy of a linear elastic body increases if crack extension occurs, but only

half the work done by the boundary forces goes to this increase. The other half is

available for creating new surface.

In order to discuss the linear viscoelastic case we adopt a more formal approach,

which incidentally also applies to the linear elastic case in the limit, and illustrates

the observation of the previous paragraph. Let us write down an isothermal energy

balance relation of the form

[ dscJijitjiij = S + H + 2T{b - a), (1)
J B

where ds is a surface element (becoming a line element in the plane strain case), S

is the rate of increase of stored mechanical energy and H is the rate of dissipation of

mechanical energy. Here, and throughout the paper, we have adhered to the standard

conventions of cartesian tensor notation. The crack, which is allowed to grow with

time, occupies the interval [a(/), b{t)] of the x-axis (see Appendix), while T, which
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is assumed to be a constant, is the surface energy per unit length. Since the quantity

on the left is the rate of work of the boundary forces this relation may be taken as

self-evident (see Erdogan [27], for example). In the noninertial theory, S(t) + H(t)

can be replaced by the space integral of oijsij (see Christensen [30] and Golden and

Graham [26]) and we have

J* dsojj{r, t)nj(r)iij(r, t) = J dva^r, t)eu(r, t) + 2T(b(t) - a{t)). (2)

For an elastic material (e.g., see Sokolnikolf [31])

H{t) — 0, S(t) = ^J^dsaij{r,t)nj(r)ui{r,t) (3)

and, instead of (2), we may take

J' dsai}{r, 0"/£)»,(£, t) = jB dso<M-> 0";(£)«,-(£. t) + 2T(b(t) - a{t)). (4)

A centrally important observation is that (2) is an identity, in the absence of crack

extension. In the presence of an extending crack, however, it becomes nontrivial, as

we shall see later. The former observation implies that all terms will cancel except

those that involve in some essential manner a derivative of the crack length.

Let us now adapt our notation more explicitly to the crack problem considered

in the Appendix for which the stresses vanish at infinity. The boundary B consists

of the two crack faces on which the tractions are assumed to be equal with opposite

sign. Thus

Ldsou(r, 0",(r)»,(£, t)17 v~' ' 7

rb(t)
= (-)

= (-)Im

royi)

/ dx{oX2(x, 0, /)A, (x, t) + a22(x, 0, t)A2(x, t)}
Ja(t)a(t)

b(t)

(5)

where

royi) _

/ dxl,(x , t)A(x, i
Ja(t)

Aj{x, t) = ut(x, 0T , t) - Uj(x, 0" , /); l(x, t) = (a22 - ial2){x, t), (6)

and

A(x, t) = (Aj + /A2)(x, t) (7)

is given by (A26). We decompose A(x, t) into an instantaneous portion and a

remainder, to obtain

A(x, t) = A0{x, t) + Ar(x, t) (8)

where

2 ik
\{x, t) = —^ / dy'Ziy , t)M(x, y ; t),

71 J a(t)
, (9)

2i rl '
A r(x,t) = — dtk^t-t') dy'l.(y', t)M {x, y \ t),

71 Jail')
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it being presumed that (see (A8) and (A 17))

k(t) = k0S(t) + k^tWit), (10)

where k{(t) is a smooth function. The function M(x,y'; t) is given by (A28).

Then

A(x, t) = A0(x, t) + \(x, t), (11)

where, by virtue of (A29),

2 ik fbO
A 0(x,t) = —Q- dy{i(y',t)M{x,y;t) + I.(y',t)M(x,y\t)}, (12a)

71 Ja(t)

\(x, t) = 2lk^ f dy'l{y' ,t)M{x,y';t)
^ Ja(t)

J: rt _ fb(t')

+ — / dt'kx(t - t) / dy'l.(y', t')M(x, y ; t'). (12b)
71 JtAx) J ait'),(x) J ai

We now consider the first term in the right-hand side of (2) and rewrite it as

/,
dvoij{r,t)-^-ul(L,t). (13)

'Jv"' 'dXj

In normal circumstances, and in particular for a crack that is not expanding, Green's

theorem, and the fact that oij . vanishes, gives that this is equal to the boundary

term on the left of (2). However the integral contains divergent terms, as a result

of crack extension, so that we must proceed with caution. The displacements off the

crack can be written down from (A13 (iii)) and (A 14) by transferring the hereditary

integral to the right-hand side of (A 13 (iii)). The explicit expression for <f>(z, t) is

given by (A20). All that is essential for our purposes is that it possess square root

singularities at the crack ends. Similarly, the stresses at points off the crack face may

be evaluated with the aid of (A13 (i), (ii)). These also have square root singularities

at the crack tips. Let us write at a general point

",•(£, t) = M/oin, t) + uir{r, t) (14)

where ui0(r, t) is the instantaneous portion of the hereditary integral that gives the

displacement and ujr(r, t) is the remainder, consisting of an integral with a smooth

kernel over the history of the real and imaginary parts of the right-hand side of (A 13

(iii)). Now the quantity (d/dXj)ujr(r, t) will possess at most a square root singu-

larity. This is so because the time derivative will act only on the kernel as in (12b).

This singularity, combined with that in the stresses gives rise to a linear singularity

which is integrable since the integral in (11) is two-dimensional. Thus, Green's the-

orem can be applied and what is obtained is the noninstantaneous portion of (5).

The noninstantaneous terms in fact cancel out of the equation. This observation is

the crucial one, for our purposes. It means that specifically viscoelastic effects do

not contribute. The above argument does not go through for the instantaneous terms

because of the presence of higher-order singularities. For the same reason Eq. (2) is

not suitable for dealing with these terms. However, the instantaneous response of a
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viscoelastic material is elastic (see Gurtin and Sternberg [32]). Therefore we can use

(4), instead of (2), in deriving the conditions for fracture.

Recalling the manipulations that led up to (5) we find that for the crack geometry

of this paper

1 _
S(t) = -~ Im / dxl(x, t)A0(x, t). (15)

Z Ja(t)

Remembering that the noninstantaneous portion of (5) has already been cancelled

we finally write (4) in the form

{ 2ik fb^ — rb^>
(-) Im <—- dxl(x,t) dy'[l{y , t)M{x, y ; t) + !(/, t)M(x, y'; /)]

{ 71 J a(t) J a(l)

d ( ik Cb_ fbO
= (-) -T- Im I —a / dxl{x , t) / dy'l(y',

"t ( 71 Ja{t) Ja(t)
t)M(x,y ; t)

-^{{K*{b) + K;(b))b(t) - {K{(a) + K-2(a))d(t)} = 2 T(b(t) - a(t)), (17)

+ 2 T(b(t)-a(t)) (»6)

with aid of (A26). Using the symmetry of M (see A28) together with (A29), (A30)

it is found that the terms not involving a(t), b(t) cancel and we are left with

*ko
2 U'MWTnjWWJ V"1 \") -r "2^

in terms of the stress intensity factors A'(, / — 1,2 defined by (A32), (A33). We

conclude that the conditions for crack growth at the respective crack tips are

nk0(K*(b) + K22{b)) = AT; itk0(K*{a) + K22{a)) = AT. (18)

If the middle point of the crack face is chosen as the origin and Z(x, t) is even

in x, these conditions reduce to the single condition

nk0(K2l(c) + K22(c)) = AT (19)

where c(t) = b(t) = —a(t) and , K2 are given in (A36). In particular if Z = l(t)

is independent of x it follows from (A40) that (19) becomes

nk0\L{t)\2 c(t) = AT (20)

which, in the case of purely normal stresses ~L{t) = -p(t) is

nk0p2{t)c(t) = AT. (21)

Equation (20) may more simply be derived by using Eqs. (A38)-(A41). Equation (21)

has been obtained by Graham [10, 11] and Nuismer [13] using different approaches.

Strictly (1) should be an inequality stating that the left-hand side is greater than

or equal to the right, in which case conditions (18)—(21) become inequalities. These

conditions have the same form as the Griffith criterion for crack extensions for ar

elastic body with kQ , which is an instantaneous inverse modulus, replacing the elastic

inverse modulus defined by (see (A 17))

1 - v
ko ~~
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for a material with a unique Poisson's ratio v , where /iQ is the instantaneous shear

modulus.

Note that in (16) the first term on the right is half the corresponding term on

the left. This is a manifestation of the theorem of Goodier [29] for elastic bodies

mentioned at the beginning of the section.

It may be confirmed that superposition of a prescribed time-dependent stress field

at infinity does not alter the form of conditions (18). Also, these results may be

extended to other crack geometries, for example, that of a growing penny-shaped

crack in an infinite viscoelastic body (see also Graham [10]).

What has been shown here is that energy considerations for a viscoelastic medium

in the noninertial approximation give no more than a Griffith instability criterion

similar to that for an elastic medium. One cannot, therefore, hope to obtain a con-

dition determining crack velocity from a noninertial energy equation, if the surface

energy T is constant.

Appendix. In this appendix we consider the problem of a single straight line crack

occupying the interval [a{t), b{t)] of the x-axis in an infinite linear viscoelastic body

that is in a state of plane strain in the (x, y) cartesian coordinate plane. Rehealing

of crack faces is not considered so that a(t) and b(t) are constant or monotone

decreasing and increasing with time, respectively. A position and time-dependent

distribution of normal and shear stress is considered to act on the surface of the

crack, while all the stresses are assumed to vanish at infinity. It is easy to verify that

the problem arising when a time-dependent stress field {an , er„ , on}(t) is applied

at infinity may be reduced to the above problem by superposition of solutions.

If we write

Z(r,t) = (o22-iol2)(r,t); D(r,t) = (ul + iu2)(r,t)-, (Al)

then the boundary conditions on the crack surface may be written in the form

l(x, t) = (o22-ia{2){x, t) = {-p + is)(x, t), a(t) < x < b{t). (A2)

If, at time t, the crack is open at the point x then p(x, t) and s(x, t) must be

prescribed and

u2(x+ , t) - u2(x , t) > 0. (A3)

On the other hand if the crack is closed at x at time t then

u2(x+, t) - u2{x~ , t) = 0 and p(x , t) > 0. (A4)

By resorting to the extended Correspondence Principle (see Graham and Sabin [33]

and the Kolosov-Mushkelishvili equations (see Green and Zerna [34]) we find that a

solution to the field equations of the quasistatic theory of viscoelasticity, for a body

containing a crack that may grow with time, may be written as follows (z — x + iy)

(G\ \ + an)(r, t) = 2[<f>(z, t) + 4>(z , /)] = 4Re[0(z, /)],

Z(r, t) = [on - ia]2)(r, I) = <p(z , t) + 4>(z, t) + z~tj>\z , t) + y7(z, t),

2 f dt n(t - t')D'(r, t) — I dt K(t - t)4>(z, t)
J — OO J — oo

-4>(z, t) - z(j)'{z, t) -y7(z, t),
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where

D (r, t) = —(u{ + iu2)(r, t) (A6)
d_

dx'

and tp{z, t), y/(z, t) are analytic complex functions at all points outside [a(t),

b(t)]. For the problem in hand, since the stresses and rotations vanish at infinity

and the resultant of all the forces acting on the crack face cancel to zero, it may be

assumed that (see Green and Zerna [34])

<f>(z, t) ~ O , yf(z,t)~o{^j (A7)

at large z.

The functions fi(t) and K(t) are both zero for negative time t and are related

to the relaxation functions of the material for shear and dilation (7,(0, G2(t) (see

Golden and Graham [26]) in the following manner

2^(0 = —t(H(t)G{(t)) = 8(t)Gx(V) + H(t)Gl(t);
d_
dtx

3X(t) = tf(/)(G2(0) - (7,(0) + H(t)(G2(t) - (7,(0); (AS)

0(a)) = —x— • k{(o) = 3 - 40(a>);
2 [X(co) + ji(co)]

where, for example,

/OO

dte~"'" fi(t) (A9)
-OO

is the Fourier transform of jj.; 5(t) refers to the Dirac delta function and H(t) is

the Heaviside unit step function. The functions /u(t) and X(t) are clearly zero for

t <0.
Since, for the problem under consideration, the stresses are continuous at every

point on the x-axis we find from (A5 (ii)) that

<P+(x, o + <T{x, t) + x<fr'(x, o + v~(x, 0

= <f>~ (x , 0 + . t) + x<j)+'(x , t) + y+(x, 0 (A 10)

where ^(x, t) are the limits of <t>(z , t) from above and below the real axis. Write

(A 10) as

<t>+ (x, 0 " <p+(x, 0 - X(p+'(x, t) - y+(x, 0

= <fi~ (x, 0-<t>~(x, o-x<j)~'(x, t) - y/"(x, 0 (All)

and it follows that the function {<f>(z, 1) - <f)(z, t) - z<j>(z, t) - ~y(z, 0} is analytic

everywhere. Since, by (A7), this function is zero at infinity it must, by Liouville's

theorem (see Ahlfors [35]), be zero everywhere. It follows that

Tj/(z, t) = <j)(z, 1) -4>(z, t) - 2(f)1 (z, 0 (A 12)
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and we write (A5) as

(er,, + cr22)(r, t) = 2{4>(z, t) + 4>{z, t)) = 4R e[(f>{z, *)],

Z(r, t) = (er22 - ial2){r, t) = <j>{z, t) + <p{z, t) + (z - z)(f>\z, t),

2d(r,t)= f dt'K{t - t')(j)(z, t') - <j)(z, t) - (z - z)<j) (z, t),
J — OO

where t

d{r,t)= ( dt'n(t - t')D'(r, t'). (A14)
J — OO

Approaching the x-axis from above and below in (A13 (iii)), and subtracting gives

2(d(x, 0+ , t) - d(x , 0 ,/))= [ dt'(S + K)(t - t')[(p+(x, t') - (f) (a-,/)] (A15)
J — OO

or

dt l(t - t')A'(x, t') = 4>+{x, t) - cf>~{x, t), (A16)
^ J — OO

where, by virtue of the Faltung theorem (see Sneddon [36]), / is defined by the fact

that its Fourier transform is given by

;<«») = t= = (A17)1 + K(a>) I - i'i'o} k(a>)

The quantity k(t), defined by (A17), is used extensively later and in the main body

of the paper. Also

A'(x, t) = D\x, 0+ , t)-D'(x, 0~ (A18)

If the left-hand side of (16) is zero at a given x then 0(z, t) is continuous at that

point. This will be true if A'(x, t') is zero for all t' < t and in particular at points

on the x-axis outside [a(t), b(t)]. From (A 13 (ii)) we have

(f>+(x, t) + (j)~ {x, t) = X(x, t) — {-p + is)(x, t), a(t) < x < b(t). (A19)

This equation and the continuity of <p{x, t) across the x-axis outside of the crack

specify a Hilbert problem whose solution is given by Muskhelishvili [37]

, X(z,t) [h(,) , , I(x', t)
<Kz>t) = ~!kz7J- dx

2ni Ja{t) " X+(x', t)(x'-z) ' (A20)

X(z, t) = {{z - a{t)){z - b{t))}~1'2,

where it is appropriate to choose the branch of {(z - a(t)(z - b(t)}~^~ which is such

that zX(z, t) —i- 1 as |z| —► oo .

On the real axis, for x e [a(0> b{t)]

X+(x, t) = -X~(x, t) = 1 /[im(x, /)], .....
1/2 (A21^

m(x, t) = {(x -a(t))(b{t) -x)} ,

and for x £ [«(/), b{t)]

X{x,t) = ±\/n{x,t),
1/2 (^-—2)

n{x, t) = |(x - a(t))(x - b(r))l ■
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It is positive for x > b(t) and negative for x < a(t), as a consequence of choosing

the branch of X(z, t) as specified above. We write

(A23)
ln Ja(t) X - Z

Note that it is singular at the end points of the cracks which implies that the stresses

will also be singular there.

Consider now the expression for the derivative of the gap. From (A21), (A23) and

the Plemelj formula (see Muskhelishvili [37]) we find that

, , . 1 fb(t) , ,I(x\ t)m(x, t)
(x, t)-4> (x,t) = / dx 7    (A24)

TlltYlyX , t) J alt) X X

1 jjl.(x', t)m(x , t)

u(t)

which is a principal value integral. Using (A16), we obtain

a if x 2 [' , i, f i. 1 /Z(x', (')m(x', t')
A (x, t) = — / dt kit - t ) r / dx — /—    , (A25)

Jtx(x) m{x,t)Ja(t') X -X

where is defined by (A17) and ?,(x) is the time that x crosses the crack tip.

Integrating (A25) from either crack tip and making a change in integration orders we

find, using the fact that the Hilbert transform of 1 /m(x, t) is zero on [a(t), b(t)]

(see Erdelyi [38]), that

2/ rl rb{t')
A(x, t) = — / dt'k(t-t') dy'"L(y', t')M(x, y ; t), (A26)

71 Jt,(x) Ja(t')

where

M(x, y'-,t') = m(y', t) f  -7-. (A27)
Jx (y —y)m(y, t)

The integral in (A27) may be evaluated to yield

M(x,y ■ t ) = log
sjy' - a(t')\Jb{t') -x-yj b{t') - / ^x-a(t')

\Jy' ~ a(t')^Jb(t') - x + \Jb(t')-y'yjx - a(t')

= M[y , x; t). (A28)

Equations (A27), (A28) imply that

M(a(t'), x; t) = M(b{t'), x; t) = A/(x, a(t'); /') = M(x, b(t'); /')

= 0. (A29)

Also, by differentiating (A28) we find that

b — x b-y' x - a !v' - a

M(X-; " = (F^) |"V —a\j7^-a ~ > ' (A30)

Equations (A29), (A30) are used in the main part of the paper.
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The complex stress 2(r, /) off the crack surface is given by (A13). On the real

axis, this has the form 0+(x, t) + </> (x, t). From (A22), (A23), and the Plemelj

formula (see Muskhelishvili [37]) we obtain

l(x,t) = ± I fb(,) dx'^ x?[a(t),b(t)], (A31)
nn(x, t) Ja(t) x - x

the upper sign referring to x > b(t). This is the same as in elastic theory. Note

that it is independent of material parameters. It is easily checked that this is true

everywhere, which, it will be perceived, is a consequence of Michell's theorem [39].

The complex stress intensities are given by

Kx(b) - iK2(b) = Limv_^{[2(.Y - b)]U2l(x, t)}

= (-)-
njm

and

(A32)
Ja(l) J

1 fb{,) i i {bit) - x 1 ' "
Kx (a) - iK2(a) = (-)—/ dx'l(x', t) u) } (A33)

nsjc{t) Ja(t) [X - a(t) j

where

= (A34)

It is easy to verify that if the crack is growing at x = a(t) at time t then Eq.

(A25) may be integrated to give

2knKAa(t))
A 2(x,f)^a(0 m(x,t). (A35)

Therefore, in view of (A3), (A4), we may conclude that in these circumstances

(a(t)) > 0 , depending on whether the crack is open or closed. It is noteworthy that

if the crack is stationary for a period before and including t then the right-hand side

of (A35) is replaced by an hereditary integral, with the consequence that K{(a(t))

may take negative values. The remarks of this paragraph, which apply equally well

at x = b(t), are due to Graham and Sabin [40, 41] who derive them for the case of

position-independent normal stress, by means of more explicit methods.

It is interesting to note the fundamental qualitative differences between extending

and stationary cracks. These are traceable to the fact that the dominant singular term

for an extending crack comes from the delta function part of the hereditary integral,

while this is not so for a stationary crack. Note that this "instantaneous" property

of singular terms, in the case of extending cracks leads to properties similar to those

found in the elastic case, while stationary viscoelastic cracks behave quite differently

to the elastic case. In the main part of this paper, dealing with propagation criteria,

the interesting similarity between elastic and extending viscoelastic cracks is further

manifested.

If the middle point of the crack face is chosen as the origin and Z(x, t) is even

in x over the crack face then (A32), (A33) give the same result, namely, choosing
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b(t) = -a(t) = C{t)

K<(e> ^ fZ dx'v^r ■ (A36)
The most interesting special case is where I(x, t) is independent of x on the

crack face. We write it as I(/). Then, (A25) gives, with the aid of standard integral

(see Erdelyi [38])

A'(x,t) = -2i [' dtk[t~,\\b{t) + a[t) (A37)
Jt,{x) m(x,t){ 2 J

which can be integrated to give

A(x, t) = —2i f dt k(t - t'yL{t')m{x, t). (A38)
Jlt(x)

The complex stress I(x, t), given by (A31), becomes

£(*, t) = £(/) 11 ± {b{t) *~ X } , xt[a(t),b(t)] (A39)

and the complex stress intensities are then given by

Kx[b) - iK2{b) = Kx{a) - iK2{a) = -cl/2(t)l{t). (A40)

In particular, for purely normal stresses acting on the crack face, X(?) = -p(t) and

Kl(a) = K](b) = cl/1(t)p(t). (A41)

The results presented in this appendix were first given in a special case by Kachanov

[42] and more generally by Kaminskii and Rushchitskii [43]; and by Graham [10,

11] using an alternative form of the elastic results, namely that described by Sneddon

and Lowengrub [44],
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