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Abstract. Solutions to the two, coupled, ordinary nonlinear differential equations

for a semi-infinite circular elastic tube subjected to edge loads and undergoing small

axisymmetric strains, but arbitrarily large axisymmetric rotations—the simplified

Reissner equations—are analyzed. First, with the aid of a Green's function, the

differential equations and boundary conditions are transformed to a complex-valued

integral equation. From this equation existence, uniqueness, boundedness, and rate

of decay are extracted for a dimensionless stress function, /, and an angle of rota-

tion, /?, for sufficiently small edge data. It is shown that these unique solutions must

decay at least as fast as the linear solution. Second, it is shown that any solution that

decays to zero must, at a sufficiently large distance from the edge, decay at the linear

rate. Third, rates of decay are established for any solution for which the or the

sup norm of /? has certain bounds. Finally, an energy (or Lyapunov) function E,

defined on solutions of the differential equations, is constructed and under certain a

priori restrictions on the angle of rotation, three different upper bounds on E are

obtained. These also provide exponential decay estimates for solutions. The energy

approach is examined with a view to more general shells where a Green's function

may not be readily available.

1. Introduction. We shall be concerned with a homogeneous, elastically isotropic,

semi-infinite circular tube (cylindrical shell) of constant thickness h and midsurface

radius R under axisymmetric edge loads. In classical, (first-approximation) theory,

the linear field equations can be reduced to the following coupled system of second-

order ordinary differential equations [1]:

f" - e2 f + /? = 0, p"-e2p-f = 0, 0 < x < oc. (1.1)

Here, / is a dimensionless stress function, /? is the angle of rotation of a generator
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of the midsurface of the tube, sRx is distance along a generator from the end of the

tube, and
2 h ....

e -   (1.2)
■^V 12(1 - v )

is a small parameter, where v is Poisson's ratio.

The decaying solutions of (1.1) can be conveniently expressed in the complex form

f+ifi = 4> = <K 0)e~px, p = (i + e2)l/2 = a + ib = ^- + 0(e2), (1.3)

where i is the imaginary unit and 0(0) depends on the boundary conditions at

x = 0. From (1.3), |</>(x)| = |0(O)|e~av. Because a = 0(1) and sRx = 0{VhRx)

is distance from the edge, the linear solution exhibits a (well-known) boundary layer

whose width is the geometric mean of the thickness of the tube times its radius.

Our aim herein is to characterize, as far as possible, the analogous solution for a

nonlinear version of (1.1), namely, the simplified Reissner equations [1,2],

f" - e2/+ sin/? = 0, /?" - e2 sin/? -/cos/? = 0, 0<x<oo, (1.4)

which assume that, while the elastic strains are negligible compared to one (as in

the linear theory), the rotations may be arbitrarily large. The classical boundary

conditions at the end of the tube associated with (1.4) prescribe the (dimensionless)

radial displacement or the horizontal stress resultant, i.e.,

f (0) + f/(0) sin /?(0) or /(0), (1.5)

and the moment or the rotation at the end of the tube, i.e.,

/?'(0) - 2v sin2[/?(0)/2] or 0(0). (1.6)

To concentrate on essentials, we shall assume that

0(0) = /(0) + ifi(0) is prescribed (1.7)

and that

fJo

oo
—ax, j / \i _/ . —ax.

e \4>{x)\dx < oo and e \<j> (x)| —> 0 as x —► oo. (1.8)

Note that (1.8), implies that

e~ax\(j)(x)\ —» 0 as x -+ oo. (1.9)

As we shall see in the next section, (1.8) are sufficient conditions for us to convert

the differential equations (1.4) with edge conditions (1.7) into an integral equation.

We note that the nonlinear terms in (1.4) allow for nonunique solutions. For

example, if the end loads are zero, a semi-infinite tube may be in the stress-free state,

f = /? = 0, or in an everted state in which f k 0 and /? n , except in a narrow edge

zone where / and /? change rapidly to meet the stress-free boundary conditions.

We also note that (1.4), g4.1 (1.7), and (1.8) admit an even simpler, nondecaying

constant solution, namely

f = \J 1 - e8/e2, /? = 7t/2 + sin ' e4. (1-10)
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(Of course, in a semi-infinite tube, this solution would violate the assumption of small

strain on which the simplified Reissner equations are based.) Thus, to guarantee

uniqueness and decay, it will not seem unreasonable if we impose either bounds on

the end data or an a priori bound on /?.

2. Existence and uniqueness. To prove existence and uniqueness, we first convert

(1.4) and the associated boundary conditions to a complex-valued integral equation.

We then show that we have a contraction for |0(O)| sufficiently small. To this end,

we first add (1.4)2 multiplied by i to (1.4) j and move nonlinear terms to the right

of the resulting equation to obtain

_g^ = -iN{4>), (2.1)

where

S? = d2/dx2 -p2 (2.2)

and

N = 2f sin2 fi/2 + p2(P - sin /?), (2.3)

with 4> and p defined in (1.3).

The Green's function associated with the linear operator and the boundary

conditions

G(0,<S) = 0, lim G(x, £) = 0 (2.4)
x—>oo

is given by

pG(x,() = l-e-plShPX' X<S- (2.5)
| -f "shp(, { <x

Thus, (2.1), (2.4), and (2.5) together with the edge and decay conditions (1.7) and

(1.8) imply that

<f> = 4>{0)e~px - i&</>{x) = J^^x), (2.6)

where
rOO

&<t>=\ G{£,x)N(4>{g))dS. (2.7)
Jo

The existence of the integral on the right of (2.7) follows from (1.8) j , (2.5), and Eq.

(A.4) of Appendix A.

To establish existence and uniqueness, it is convenient to multiply both sides of

(2.6) by epx . We thus obtain a new integral equation of the form

epX(f)(x) = 6 = <t>{0) - iJ?6(x) = 3°Q(x), (2.8)

where

rOO

5?d= K({,x)P(e({))d(,
Jo

~e"3px shpx, x < ^

-ep{i~4x) sh/7<^, £ < x

and

P = e3pxN = e3px[2 f sin2 fi/2 + p2(p - sin^)]. (2.11)

(2.9)

pK(x,Z) = eptpG(x,Z)e ipx = { '\ , (2.10)
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The analysis of the complex-valued integral equation (2.8) will be our main concern

in the remainder of this section.

The set of all bounded, continuous, complex-valued functions on [0, oo), with

norm
II ■ II = sup h|, (2.12)

0<x<oo

is a Banach space, B . If (// e B , then, from (1.3), (2.8)—(2.11), (A.5), and (A.14),

we have
r OO

\&y(x)\<\m\+ / I K({,x)\\P(v(Z))\d£
Jo

<\<l>(0)\ + M\\y, ||3, (2.13)

where

„ V9 + l-fl" v'5 2, ,, ...
M=JL__ = _ + 0(e). (2,14)

Hence, 3P maps elements of B into bounded functions.

To show that 9° maps B into B, we note by (2.8), (2.9), (2.12), (A.5), and

(A. 15) that
r OO

\&>V(x)-&yt{y)\< / \K(Z,x)-K(Z,y)\\P(vmdt
Jo

< (M/3)M\3e~2ay[3e2aiy-x) - 2 - e~2a(y-x) + |1 - e-My'x)\].

(2.15)

Because the right side of (2.15) approaches zero (uniformly) as y —► x , 3°y/(x) is

continuous on [0, oo).

Finally, to show that 9° is a contraction for sufficiently small values of |</>(0)|,

we consider the iteration

0„+i =3°Qn{x), n = 0,1,..., (2.16)

where permissible values of 60 will be specified presently. It follows from (2.8),

(2.9), (2.12), (A.13), and (A.14) that if

||0J2 < (1 -8)L], n = 0,1,..., (2.17)

where S is any positive number and

l] = l6a^P\ = 0.980 ■ ■ • + 0{e2), (2.18)

V~J + 2/r0^9 + \p\4

then
r OO

\0>em{x)-&en{x)\< yo m,x)\\p{emm-p{dnmd^ (219)

<(1-^-^11.

Taking the supremum on the left, we have a contraction.

To show that we can guarantee (2.17), note from (2.8), (2.13), and (2.16) that

||0fl+1||< |0(O)| + M||0J3. (2.20)
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If 0 < |0(O)| < 2/(3\/3M) = 0.728 —f 0(e2), Fig. 1 shows that the sequence of real

numbers generated by the iteration

©„+, = I0(O)| + M&1, ©0 = ||0O|| < L2 (2.21)

has a positive limit Lx satisfying

Ll(l-ML2l) = \m\, (2.22)

where

0 < Lx < 1/V3M < L2 < \/VM. (2.23)

(See Fig. 2.) Fig. 1. also shows that if 0 < ©o< L, , then Qn ] Ll. Because

||0,||< 10(0)1 + M||0o||3 = 01, (2.24)

it follows by induction that ||0J| < Qn < Lx . Choosing |0(O)| so that L{ < Lt, we

2/(3\/3M) + M63

|0(O)| +M03-

0o Li 1/\/3M 0q L 2

Fig. 1. The iteration ©n+1 = |0(O) | +A/0^ .



346 C. O. HORGAN, L. E. PAYNE, and J. G. SIMMONDS

2/(3v/3M)

I0(O)|

Fig. 2. Roots of and other constants associated with L(l — ML2) = |</>(0)|.

arrive at the

Theorem. If 00 = 0(0) and

|0(O)| <L,(1 -MLl) = 0.7l8--- + 0(e2), (2.25)

where Lt is given in (2.18), then the integral equation (2.8) has the unique solution

9 = lim 6(x). (2.26)
n—>oc n

3. Exponential decay estimates. The integral equation approach just described

provides existence and uniqueness of the differential equations (1.4), subject to the

auxiliary conditions (1.7) and (1.8), if the edge data satisfy (2.25). The exponential

decay estimate,

\<t>\ = e~ax\G(x)\ < Lyax , 0 < x < oo, (3.1)

then follows immediately from (2.8), (2.17), and (2.26), where a is given in (1.3).

Comparing (3.1) with (1.3), we see that solutions to the nonlinear differential equa-

tions, (1.4), subject to the boundary conditions (1.7), and (1.8), and the restriction

(2.25), decay exponentially at least as fast as do solutions of the linear differential

equations (1.1), subject to the same boundary conditions.

In fact, we can say more: if 0(x) is any solution of the integral equation (2.6)

that decays to zero, then as x —» oo, such a solution decays neither slower nor faster

than the linear solution. To see why, note that if 0(x) decays to zero, there must be

an x0 > 0 such that

\4>(x0)\<L.(l-MLl). (3.2)
Now let

x = x-x0, 4>(x) = <j){x + x0). (3.3)
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Since the differential equations (1.4) are invariant under the change of variable,

(3.3)j, it follows that all of the preceding results concerning solutions of the in-

tegral equations (2.6) or (2.8) continue to hold with x, <f>, and 8 replaced by x,

(j), and 6 = epx(p(x), respectively. Thus, because (3.2) is the same condition as

(2.25) except that (f)(0) is replaced by 0(0), (3.1) holds in the form

\4>\ = e ax\d(x)\ < Lte ax, 0<i:<oo, (3.4)

and the first part of our assertion is established.

To establish the second part, we note that (2.8), (2.9), (2.12), (A.5), and (A. 14)

imply that

|0(x)|> 10(0)1 -M\\e\\\ (3.5)
Further, since 8 = lim^^ 8n and ||0n|| < L, , we have, with the aid of (2.22),

\8{x)\>\m\-ML\ = 2\m\-Lv (3.6)

h

\(f>{x)\ = \8(x)\e~ax > j\(p(0)\e~ax, 0<x<oo, (3.7)

But Fig. 2 shows that L, < §|</>(0)|. Thus,

as claimed.

4. Exponential decay estimates with a priori bounds on norms of /?. If the initial

data violate (2.25), we can still deduce exponential decay estimates if we assume that

a solution of the integral equation (2.6) exists and if we assume that either (1) the

L2-norm of /? or (2) the sup norm of /? is suitably bounded.

(1) L2-norm of /? suitably bounded. From (1.3), (2.5)-(2.8), and (A.4) we have

\p\\e\<\p\10(0)1 + epx I G{S,x)N{m)dt

< |p|wo)| +

f

Jo

J shp£Nd£ + epx shpx J e~p^Nd£

< H0(O)| + 5 \/ 9 + |/?|4 ^ \shp^\/i2\(j)\d^ + \epx shpx\ j e aip2\(j>\d^

< \p\\m\ + + (J*\l-e~2p(\02dt + \e2px - l\J~e~2a(02d£

< \P\\m\ + L6\/9 + \p\4\\8\\ [°°fi2di. (4.1)
Jo

rOO

Jo

Taking the supremum of the left side of this inequality, and recalling that ||0|| =

sup[0 ^ \<f)(x)\eax , we conclude that if

p2K LS91 ... + 0(e2), (5>0) (42)

V9 + I^l4
then

\<f>(x)\<\\8\\e-ax <(l/S)\<P(0)\e~ax, 0 < x < oo. (4.3)

That is, no solution of the integral equation (2.6) can decay slower than the linear

solution, so long as (4.2) holds.
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(2) Sup norm of 0 suitably bounded. For some real number y e (0, a), we mul-

tiply both sides of (2.6) by eyx , so that

V = <t>eyx = me~(P~y)X - ieyx$<j>{x). (4.4)

Then, with the aid of (A.4),

\p\W(x)\ < |p||^(0)| + e (p y)x [X shp£N d£ + e/xshpx f°° e piNd£
JO Jx

<IpII^(0)| + ^9 + |/7|4||A||:

x (|e~(P~y)X\f0 e-«\*pi\di + e>x\*px\fe-^*dt

<\p\\m\ + ±j9 + \p\4\\p\\2

< (1 - e~(a~y)x i+e-(a'y)x\

X \ a-y , a + y J

o\/9 + |p|4 2
<\p\\m\+ j2 ,\m\m. (4.5)

6{a - y )

Taking the supremum of the left side of this inequality, we conclude that if

■S)\p\(a2

V9+\p\
||j?||2 < ——y(a 7 ) < 1.341 ■■■ + 0{e2), S> 0, (4.6)

then

\4>{x)\ < (l/S)\<K0)\e~yx, 0 < x < oo. (4.7)

From (4.6) we see that as we try to make the upper bound on ||/?|| bigger by making S

or y smaller, we either increase the amplitude or lower the rate of decay, respectively,

on the right side of (4.7).

5. Decay estimates using an energy approach. Differential inequalities for "energy"

(or Lyapunov) functions have been widely used to obtain exponential decay estimates

for solutions of linear and nonlinear partial differential equations on semi-infinite

strips and cylinders. Such estimates arise in the analysis of Saint-Venant's Principle

in elasticity theory (see, e.g., [3,4] for a review) and in establishing theorems of

Phragmen-Lindelof type. In this section, we present three different energy arguments

which lead to exponential decay estimates for solutions of (1.4) satisfying the edge

data (1.7). Our assumptions on asymptotic behavior as x -+ oo will be stronger

than (1.8). The results obtained are different from (3.1) both in structure and in the

magnitude of the estimated decay rate, and are established under different a priori

assumptions. We pursue the energy approach because we think it holds promise for

the analysis of more general shells where an integral equation formulation via Green's

functions may be difficult.
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We begin by constructing the energy function1

E(x) = /2 + g(fi), 0 < x < oo (5.1)

on the solutions of the coupled system of ordinary differential equations (1.4). Here,

g is, as yet, an unknown function. To guarantee that E vanishes when both / and

/? vanish, we shall require that g(0) = 0.

From (5.1), we find that

E' = Iff + (,dg/dfi)fi(5.2)

A further differentiation of (5.1) together with (1.4) yields

E" = 2(f)2 + (d2g/dfi2)(fl')2 + 2e2/2 + e2(dg/dp) sin fi

+ f[(dg/dfi) cos/? - 2sin/?]. (5.3)

Since the last line in (5.3) is of indefinite sign, we choose g so that the term in

brackets vanishes. That is, we set

dg/dp = 2 tan/?, (5.4)

so that, since g(0) = 0, we have

,§■ = lnsec2/?. (5.5)

Thus, (5.1)—(5.3) reduce to

E = f2 + In sec" P (5.6)

E' = Iff + 2 tan /?/?' (5.7)

E" = 2[(f)1 + (p'f sec2 p + e2(/2 + sin p tan p)\, (5.8)

for 0 < x < oo .

Result 1. We establish our first exponential decay estimate for E(x) under the

hypothesis that

-tc/2 < P(x) < n/2, 0 < x < oo. (5.9)

This restriction is motivated by the existence of the nondecaying solution (1.10). If

(5.9) holds, it follows that

sin p tan p > In sec2 p > sin2 p , 0 < x < oo. (5.10)

Using (5.6)—(5.8), we find that

EE" - i (E')2 = 2 e2(f2 + In sec2 p)(f2 + sin p tan fi)

+ 2{(f2 + In sec2 fi)[(f)2 + (p')2 sec2 fi] - (ff + fi' tan fi)2}.
(5.11)

Employing both inequalities of (5.10) on the right in (5.11), we obtain

EE" - I(E')2 > 2{e2E2 + (f2 + sin2 fi)[(ff + (fi')2 sec2 fi] - (ff + fi' tan /?)2}

>2 e2E2, (5.12)

'The strain energy density for the elastic tube associated with the simplified Reissner equations is propor-

tional to (f')2 - lev f f sin p + e2f2 sin^ /? + (/?')2 - 4vep' sin2 /J/2 + 4e2 sin4 y?/2 .
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where Cauchy's inequality has been used to obtain the last line. The second-order

differential inequality (5.12) can be written as

(El/2)" > e2E1/2, 0 < x < oo, (5.13)

and integrated once to yield the first-order differential inequality

(£1/2)' + e£1/2 < 0, 0 < x < oo, (5.14)

if
lim e ex(E'/2E1'2+ eE1'2) = 0. (5.15)

X—KX>

The inequality (5.14) implies

E'(x)< 0, 0<x<oo, (5.16)

so that E(x) is a monotone decreasing function of x for E(x) > 0. On further

integration of (5.14), we obtain the decay estimate

E(x) < E(0)e~2ex, 0 < x < oo, (5.17)

where

E(0) = /2(0) + In sec2 /?(0) (5.18)

is an explicit function of the edge data.

The decay estimates (3.1) and (5.17) have been established under very different

hypotheses. The asymptotic behavior as x —► oo assumed in (5.15) is more restrictive

than (1.8). Also, assumption (2.25) restricts the magnitude of the edge data while

(5.9) assumes that |/?(x)| < n/2 for all x > 0. It would be desirable to establish

conditions on the edge data that would guarantee that (5.9) holds, but such a result

has not yet been found. The major disadvantage of (5.17) compared to (3.1) is that

the decay rate in the former is much slower than in the latter. Thus, we now consider

an alternative argument which provides a larger decay rate than does (5.17).

Result 2. The second decay estimate for E{x) is established by hypothesizing that

cosy? > y > e2/2, 0<x<oo, (5.19)

where y is a constant. It is clear from (5.17) that if |/?| < nil, then, in fact, cos/?>

exp[-£(0)/2]. Thus, if e is sufficiently small and \fi\ < n/2, the inequality (5.19)

will automatically be satisfied for some suitable y. Since (5.19) ensures that (5.9)

holds, we may use (5.14) to deduce that both E(x) and E(s)ds are boundedJx
for x > 0. We shall show that

E{x) < E{0)e k,x , 0 < x < oo, (5.20)

where the estimated decay rate is given by

kx=2 17y/2 + <9(e2). (5.21)

The proof of (5.21) makes use of (5.10), the inequalities

/?2 < In sec2 P < /? tan/?, (5.22)
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and the identity

ifP' ~ Pf)' = -£2/(j8 - sin P) + /? sin P + /2 cos P, (5.23)

which follows from the differential equations (1.4). On integrating (5.23) and assum-

ing

lim {f P' - Pf) = 0, (5.24)
x—+oo

we obtain the identity

poo roc

/ {f + ptanP)cosP ds = e / f(P - siny?) ds + pf - fp'. (5.25)
J X J X

Using the arithmetic-geometric mean inequality in the first term on the right in (5.25)

and the same inequality with weight a, i.e.,

2ab < aa2 + b2/a, a > 0, (5.26)

in the second term, we get

/ (f2 + PtanP)cospds < (e2/2) [ [f2 + (P - sin/?)2]ds
Jx ix (5.27)

+ (a/2)[(/)2 + (P')2] + (l/2a)(/2 + p\

Using the inequalities (5.19) and (5.22) in (5.27), we find that

rOO

2{y - e2/2) / (f2 + In sec2 P) ds < ot[{f)2 + {P')2] + (1/q)(/2 + In sec2 p)
J X

< <*[(f)2 + (P')2 sec2 p] + (1/q)(/2 + In sec2 p),

(5.28)
where a > 0 is an arbitrary constant.

Since (5.17) implies that

X—>00

we now write

lim E(x) = 0, (5.29)
C—>00

rOO

E{x) = - E'(s)ds, (5.30)
J X

and use (5.7) to obtain
poo

E =-2 {ff + p' tan p)ds. (5.31)
J X

Applying first Cauchy's inequality and then (5.26) with weight 5 > 0, we find

rOO

E< 2 (/2 + sin2 P)>,2[(f)2 + (P')2 sec2 p]1^2 ds (5.32)
Jx

/OO 1 poo(/ + sin P) ds + -^ J [(f)2 + (P')2 sec2 p]ds. (5.33)

Adding and subtracting

e2(/2 + sin/? tan/?) (5.34)
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in the integrand in the second integral on the right in (5.33), and using (5.10), we

obtain
rOO

E(x) < (S - e2S) / (/2 + In sec2 P) ds
J X

! roo

+

rOO

/ [(/)2 + (P')2 sec2 P + e2(/2 + sin /? tan P)] ds,
J X

(5.35)

(5

where S > 0 is an arbitrary constant. If S is chosen so that

S-e2/S>0, (5.36)

we may, in view of the right-hand inequality of (5.19), use the inequality (5.28) in

(5.35) to deduce that

££f^l(/,! + (^sec^]+^| + ± fV(S,„ ,,37,
2(y - e /2) 2a{y-e/2) l(> Jx

Rewriting (5.37) in the form

t (S-e2/d)

2a(y - e2/2)
E < (* e2/f^[(/)2 + (fi'f sec2 P + e2(/2 + sin p tan p)]

2(7 - £ /2)

ae2(<5 - e2/S)(f2 + sin /? tan P) + T ^ d$ ^

2(7 - e2/2) 25 _
(5.38)

using the left-hand inequality of (5.10), and recalling (5.8), we deduce from (5.38)

that

{d -e2/d)(l/a-e2a)

2(y-e2/2)

E<(S-e2/S)aE,l + l_rE"{s)ds. (5.39)
" 4{y - e /2) 23 Jx

If
lim E'(x) = 0, (5.40)

x—»oo

then the inequality (5.39) can be written as

E" - AE' - BE > 0, 0 < x < oo, (5.41)

where the constants A and B are given by

. = 2<r ~ eV2) (5.42)

aS(5 - e /S)

B 4(y-£2/2)

a(d-e2/S)

l {d - e2/S)( \ - 62q2)

2a(7 - e2/2)
(5.43)

The second-order differential inequality (5.41) may be integrated using (5.29) and

(5.40) to yield the estimate
  A- y

£(x) < £(0)e , 0 < x < oo, (5.44)

where

k = i (^\/a2 + 4B-A) . (5.45)
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If B is positive, then the constant k is positive, and so (5.44) is a decay estimate.

We see from the right-hand inequality of (5.19), (5.36), and (5.43) that this will be

true if

1 - (8 - £2/S){\ - e2a)/2a(y - £2/2) > 0. (5.46)

We have established (5.44) with the decay rate (5.45) under the assumption that

y satisfies (5.19) and that the asymptotic limits in (5.24), (5.29), and (5.40) hold.

Choosing the arbitrary positive constants a and 5 to maximize k, subject to the

constraints (5.36) and (5.46), can be shown to lead to the second decay estimate,

(5.20) and (5.21). We note that (5.19) implies that (5.9) holds which in turn yields

(5.29), and so we see that

f{x) and /?(x) —+ 0 as x —* oo. (5.47)

Thus, (5.24), (5.29), and (5.40) will be satisfied if we impose the requirement that

lim e~2£x{[/(x)]2 + [P\x)f} = 0. (5.48)
x —►OO

Result 3. The third decay estimate for E(x) is also established under the hypoth-

esis (5.19). We shall show that

E(x) < (2k2flQ(0)e'k'x, 0 < x < oo, (5.49)

where
k2 — 2I/4y1/2 + 0(e2), (5.50)

and (2(0) can be explicitly bounded in terms of the edge data, /(0) and /?(0). (See

(B.17) in Appendix B.) Comparing (5.21) with (5.50), we see that the decay rate in

(5.49) is larger than in (5.20), although the constant multiplying the exponential in

(5.49) is more complicated than the analogous factor in (5.20).

The proof of (5.49) and (5.50) is similar to the proof of (5.20) and (5.21) and

uses the inequality (5.28), established under the assumption (5.24). In contrast to the

second-order differential inequality (5.41), we here construct a third-order differential

inequality for the function
roo r oo

F(x)= / (/ + In sec" /?) ds = / E(s)ds. (5.51)
J X J X

From (5.51) and (5.6)—(5.8), we have

F' = -(/ +Insect) - -E (5.52)

F" = -2(// + /?/tan/?) = -£' (5.53)

F'" = -2 [iff + (/?')2 sec2 /?] - 2e2(/2 + sin p tan fi) = -E". (5.54)

The inequality (5.28) can be written as

(y-e2/2)F< - {(a/4)[F'" + 2e\f2 + sin p tan fi)\ + {\a)F'} (5.55)

< -[(a/4)F"' + i(l/Q-e2a)f'], (5.56)

where the left side of (5.10) has been used to obtain (5.56) from (5.55). We write

(5.56) as

F"' + {2/a){l/a-e2a)F' + {4/a){y-e2/2)F <0, 0 < x < oo, (5.57)

which is the desired third-order differential inequality for F(x).
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To integrate (5.57), we rewrite it as

Q'+ mQ < 0, 0<x<oo, (5.58)

where

Q = F" - mF' + [rn + (2/a)(l/c* - e2a)]F (5.59)

and m is a root of the cubic equation

(a/4)w3 + j(l/a - e2a)m — {y — e2/2) = 0. (5.60)

On integrating (5.58) and assuming

lim Q(x) = 0, (5.61)
x—► oo

we obtain

Q{x) < Q{0)e mx, 0 < x < oo. (5.62)

It is easily seen that the assumption (5.48) is a sufficient condition to guarantee that

(5.61) holds.

To ensure that (5.62) is, indeed, a decay estimate and to find the largest possible

decay rate, we maximize m,(a), the positive root of (5.60). Differentiating (5.60)

implicitly with respect to a, we obtain

\m\ -+ e2)ml = 0, (5.63)

where a{ is the value of a that maximizes m{(a). Thus,

a] = 2l{m]-2e2). (5.64)

Insertion of this value of a, into (5.63) yields

m{ — 21/,4y1/2 + 0(e2). (5.65)

Thus, (5.62) has been established with the estimated decay rate m, given above.

To obtain the final result (5.49), we observe that with a and m given by (5.64)

and (5.65), Q(x) in (5.59) may be written

Q = F" -mlFl + 2{m]-2e2)F. (5.66)

But, from (5.51), F(x) > 0, and so (5.66) yields

Q > F" - mlFl. (5.67)

By virtue of (5.62), the inequality (5.67) may be written as

(F'e~m'*)' < Q(0)E'2m,x. (5.68)

On integrating (5.68) and recalling (5.52), we arrive at the desired decay estimate

(5.49) with decay rate m, = k2, given by (5.50). We show in Appendix B how to

bound Q(0) explicitly in terms of the edge data /(0) and y?(0).
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Conclusions. We have obtained decay estimates for solutions of the coupled non-

linear differential equations (1.4) subject to the boundary conditions (1.7) and var-

ious decay conditions as x —► oo including (1.8) which allowed the boundary value

problem for the differential equations to be replaced by a complex-valued integral

equation. For sufficiently small initial data satisfying (2.25), we found that the inte-

gral equation had a unique solution that had to decay as fast as the linear solution.

Moreover, we showed that any decaying solution of the integral equation could de-

cay no slower or faster than the linear solution as x —> oo. Alternatively, instead of

assuming decaying solutions of the integral equation, we found that merely assuming

the existence of a solution such that (1) the L-,-norm of the angle of rotation satis-

fied a certain bound guaranteed decay at a rate at least as fast as that of the linear

solution whereas (2) if the sup norm of the angle of rotation satisfied another bound,

then decay, but at a slower rate than the linear solution, was guaranteed. Finally, by

working with an "energy" (or, perhaps, more properly, a Lyapunov) function, defined

on assumed solutions of the nonlinear differential equations, (1.4), we obtained three

other decay estimates. The energy methods were developed with an eye to obtaining

decay estimates for more general shells for which an integral equation formulation

might not be easy to obtain.

There remains the open question raised in Sec. 5: If we start with edge data such

that |/?(0)| < n/2, will \fi{x)\ remain less than tt/2 for all x?

Appendix A.

Bounds on the nonlinear function N. Note that | sin < |/?| implies

|/sin2 P/2\ < |/| min(l, p2/4). (A.1)

Further,

(A.2)

2
where k = 2 sin /?t/2 = 1.46 • • • , /?t being the smallest positive root of /? = tan /?.

Also,

|/? - sin/?| = [ (1 - cosy)dy = 2 [ sin21-dy < ~ [
Jo Jo 1 2 Jo

y2 dy <l/?|3/6. (A.3)

Since |0| = \J'f2 + /?2, it follows from (2.3), (A. 1)-(A.3), and Cauchy's inequality
that

|JV|<|0|min \j4 + k\p\*, ^9 + \p\AP~ , 0 < x < oo. (A.4)

Moreover, because 6 = epx(j)(x) and P = eipxN,

|/>|< £\/9 + Lp|Vl\ 0 < jc < oo. (A.5)

Bounds on \P(Om) - P(0„)\ ■ Using elementary inequalities, we have

\fm sin2 ^m/2 - /„ sin2 /?„/2| = |/m(sin/?m/2 - sin/y2)(sin/?m/2 + sin/?„/2)

+ (4-/Jsin2A„/2| (A.6)

< WmWPn, - Pn\(\Pm\ + 14,1) + IL " fn\fnl
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Introducing the shorthand notation

■Md/J + I/J). = Pm\ + \Pn\)> Af= M =
(A.7)

interchanging m and n in the last line of (A.6), and adding (to obtain an inequality

symmetric in m and n ), we obtain

14 sin2 (SJ2 - fn sin2 /?„/2| < I[2ffiAfi + $(/£ + /?>/]• (A.8)

Furthermore, using an obvious modification of (A.2), we find that

Pm-sin£J-(^-sin^) / (1 - cosy)dy
h.

<Wm-K\

<il Pl + PJn + tiW-

(A.9)

Thus, by an appeal to the Cauchy and arithmetic-geometric mean inequalities, we

have

WJ - N^n)I < W9 + blV^(A/)2 + 2M/A0 + I/(^)2

< (5/6)^9+

where

(A. 10)

^ = i(/?2+/?2)2, n = fhf}2m + P2n),

V = *f2p2 + \P2m + PmPn + ti\2>

(A.n;

and

S = \J\{v + l.) + ̂ \(v-rf + p2. (A. 12)

Finally, setting 0 = , P = eipxN, and supposing that there exists a positive

constant Lt such that \6n\ < Lt , we have

IP(0J - ne„)\ < i\!i + 2vT0\/9 + \p\4L2jem - en\. (A.i3)

Bounds on integrals of K. From (1.3) and (2.10),

\p\ f \K(£,x)\d£ = [ \e~3pi shp£\d£ + \epx shpx| [ e~4at d£
Jo Jo J x

J (e~2ai + e~4ai)d£ + eax\shpx\ J<L2 e"™- dt, (A-14)

= (l/8a)(3 - 2e 2ax - e 4ax + e 3<"|sh/7x|)

< (3/8a), 0 < x < oo.



NONLINEAR THEORY OF ELASTIC, EDGE-LOADED, CIRCULAR TUBES 357

If x < y, then from (2.10)

roo r>y

|p| J |Kg, x) - Kit, y)I \e~3pi shpi - ep(x~4{) shpx\d£

•/v*+ ^\e2py-e2pxi

<(e~2ay/8a)[3e2a{y-x)-2-e~2a{y-x)

+ \i-e-wy-x)h y>x.

If y < x, (A. 15) holds with x and y interchanged.

Appendix B.

An upper bound on 0(0). From (5.52), (5.53), and (5.66), we have

(2(0) = F"{0) - mxF\0) + 2{m\ - 2e2)F(0) (B.l)

= - ^ifofo + /^tan fi0) + m,(^2 + In sec2 fiQ) + 2(m2 - 2e2)F(0), (B.2)

where

f0 = f( 0), fi 0 = m, /o = /(0), fi'0 = fi'(0). (B.3)

On using the arithmetic-geometric mean inequality (5.26) with weight a > 0, we

find that

<2(0) < a[(/0)2 + (fi'Q)2] + (1 /a)(f2 + tan2 fiQ)

+ m\(fo + In sec2 fi0) + 2{m\ - 2e2)F(0).

We now find an upper bound for the first term on the right in (B.4) in terms of

f0, /?0,and F( 0). To this end, we multiply (1.4), by /, (1.4)2 by fi', add the

resulting equations and integrate. Using (5.47) and assuming also that / and fi'

approach zero as jc —> oo, we get

/»OO

(/of + (P'o)2 = e2(/o + 4 sin2 fiJ2) + 2 (/sin fi- ffi' cos fi) dx. (B.5)
J o

Using the arithmetic-geometric mean inequality (5.26) with weight 10, we find

(^)2 + (Kf ^ e2(/o + 4sin2 fio/2) + co /°°[(/)2 + (fi')2 cos2 fi]dx
J 0

1 f°° 2 2
H / (/ + sin~ fi) dx,

w Jo

(B.6)

for any a> > 0. On adding to and subtracting from the integrand in the second term

on the right in (B.6) the quantity e2(/2 + sin fi tan fi), and using the inequality (5.10),

we get

(f0)2 + (fi'0)2<e\f2 + 4sm2fi0/2)
r OO

+ (o [(/)2 + (fi')" sec" fi + e2(/2 + sin fi tan fi)] dx (B.l)
Jo

+ (l/co- e2co)F(0).
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On recalling (5.54), we see that the integral on the right is equal to

1 f°° 1
~2j0 F"'(x)dx=2FW> (B'8)

and so using (5.53), we deduce from (B.7) that

(/of + (P'0)2 < £2(/o + 4sin2 P0/2) - co(f0/0 + ^tan/?0) + (l/co- e203)F(0). (B.9)

Using the arithmetic-geometric inequality (5.26) with weight i in the second term

on the right in (B.9), we obtain

(1 - cor/2)[(f0)2 + (/0)2] < e2(f2 + 4 sin2 PJ2) {

+ (a>/2r)(/02 + tan" /?0) + (I/to - £2o>).F(0),

for arbitrary positive constants a> and r. On recalling the definition of F(x) in

(5.51), we obtain from (5.28), with x = 0, the inequality

^(0) < \{y - t/2 )~l{a[(/Q)2 + (ft'/] + (1 /a)(f2 + In sec2 /?0)} , (B.l 1)

where a > 0 is an arbitrary constant. On substituting (B.l 1) into (B.10) and assum-

ing that 1 /to - e co > 0, we obtain

[1 - coz/2 - a/2(y - e2/2)][(fQ)2 + {^f] < e2(f2 + 4 sin2 0o/2)

+ (to/2r){f2 + tan2 /?0)

(1 /to - e2co) . -2 , 2 o \
+ T1, T7rMo +lnsec Po)-

2a(y - e /2)
(B.12)

For simplicity, we now choose

03= 1, t = i, a = \{y - e /2), (B.13)

so that (B.12) reduces to

{[{/q)1 + (^o)2] < e2(/02 + 4sin2/?0/2) + /02 + tan2 fiQ

(l-£2) ^2 . (B-14)
+ 7 27^2 (/o +lnSeC fio)-

(y - £ /2)
With a chosen as in (B.13), (B.l 1) reads

^(0) < \[(/0)2 + (/tfi + (y - +ln sec2 p0) > (B-15)

which, by virtue of (B.l4), can be written as

2F(0) < e2(/02 + 4 sin2 pJ2) + f2 + tan2 + In sec2 0Q). (B. 16)
[y -e /2)

Substituting from (B.14) and (B.l6) into the right side of (B.4) and choosing a = 1

for simplicity, we obtain the bound we sought:

0(0) < (3 + m] - 2e2)(f2 + tan2 /?0) + e2(2 + m] - 2e2)(f2 + 4 sin2 fi0/2)

+ m, +
2 - 8e2 + m2(3 - e2) + 2e4

' (7 - e2/2)2

2 2 (B.17)
(/0 + In sec" /?„),

where m. is given by (5.65).
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