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MINIMUM ENERGY SOLUTION

FOR THE SPHERICAL SHELL

By

R. W. DICKEY

University of Wisconsin, Madison

Abstract. A Galerkin procedure is used to prove the existence of a minimum energy

solution for the problem of the spherical shell under constant normal pressure. It is

shown that if the pressure is sufficiently small the trivial solution is the minimum

energy solution and if the pressure is sufficiently large a nontrivial solution furnishes

the minimum energy solution. Bounds are obtained on these critical pressures.

1. Introduction. In this paper we shall discuss rotationally symmetric solutions of

the spherical shell under constant normal pressure. Experimental results indicate (cf.

[1]) that as the normal pressure is increased the spherical shell shrinks into a smaller

spherical shell until at some critical value of the pressure buckling occurs in the form

of a small dimple. This buckling occurs at a pressure significantly lower than that

predicted by linear shell theory and the form of the buckled state differs from that

predicted by the linear theory.

The spherical shell problem has generated a large literature (cf. the references in

[2-4]). Much of this literature is devoted to describing the bifurcation structure,

which numerical evidence indicates is quite complicated (cf. [3]), and in obtaining

qualitative information on the various nontrivial solutions (cf. [2, 5]).

In this paper we will show that if the applied normal pressure is sufficiently large

there exists a nontrivial solution whose energy is less than the trivial solution. Bounds

will be determined on the critical pressure at which the bifurcation occurs. It will be

shown that the critical pressure is always less than or equal to the lowest eigenvalue

of the linear shell theory. In certain cases, depending on the shell thickness, the

critical pressure is definitely less than the lowest eigenvalue of the linear shell theory.

The method is essentially A Galerkin procedure similar to that used in treating the

nonlinear bending of circular plates (cf. [6]).

Equations describing the axisymmetric behavior of a spherical shell under constant

normal pressure were derived in [3], These equations can be reduced to a pair of
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322 R. W. DICKEY

nonlinear ordinary differential equations

1 2
Lq + vq = -v - -v cot 6 (1.1a)

Lv - w = y(—Pv + q + qv cot d) (1.1b)

where
»2 i

L = —j + cot 0-^ - (cot d)2. (1.2)
dd2 dd

In (1.1) q is a quantity proportional to the radial bending moment and

dw
V = » + W <L3)

where u is the displacement in the 6 direction and

w=W(6)-W0 (1.4)

where W is the displacement in the negative radial direction and WQ is the radial

displacement of the unbuckled state

WQ = (l-u)P.

The other quantities given in (1.1) are

n Pa \ -v2 1 (h\2
F=4m- t = ~iT ■ k = l{a> (1'5)

where p is the applied normal pressure, a is the radius of the middle surface of

the shell, 2h is the thickness of the shell, E is the Young's modulus, and u is the

Poisson ratio. The boundary conditions on (1.1) are

q( 0) = q(n) = v(0) = v(n) = 0. (1.6)

Once q and v are determined from (1.1) and (1.6) other quantities of interest such

as radial and circumferential stresses and radial and circumferential displacements

can be determined by quadrature (cf. [3]).

2. Reduction of the equations. It is convenient to rewrite Eq. (1.1) in terms of the

new independent variable

x = cosd. (2.1)

The differential operator L (cf. (1.2)) becomes

(2 2)

and the two equations (1.1) can be rewritten

(L + v)q = -v - \v2 X (2.3a)
2 VI-x2

X
(L + v)v = 2vv - yPv + yq + yqv —== (2.3b)

VI -x2
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with boundary conditions

g(-l) = 0(l) = v(-l) = t;(l) = O. (2.4)

The normalized associated Legendre functions (cf. [7]) are defined by

a;\x) = (i -x2)—-i^±m -xT"K\\ (2-5)

where Pn(x) is the Legendre polynomial of order n . In particular

a\ = An = yJl-x2P'j\\(l - x2)l/2P'j (2.6)

('= d/dx). The functions An are the eigenfunctions of the problem

LAn + (n(n+l)-l)An = 0 (2.7)

An{-\) = An{\) = Q. (2.8)

Equation (2.7) may be rewritten in the form

(L + v)An = -XnAn (2.9)

where

= n(n + 1) - (1 + v) (2.10)

for n > 1 . Equation (2.9) with boundary conditions (2.8) can be rewritten as a

Fredholm integral equation

An=kHGAH (2.11)

where G — ~{L + v)~y . The operator G is simply the integral operator whose kernel

is the Green's function for — (L + v) with boundary conditions (2.8), i.e.,

Gu = fgix^M^di (2.12)

where g(x, £) is symmetric and continuous (cf. [8]). Introduce the inner product

(u,v) = J u(x)v(x)dx. (2.13)

It is an immediate consequence of the above remarks that G is symmetric, i.e.,

(Gu, v) = (u, Gv), and positive, i.e., (Gu, u) > 0 for all u ± 0.

The pair of equations (2.3) can be reduced to a single nonlinear integral equation

for the determination of v . Using the fact that (L + v)~l = —G, rewrite Eq. (2.3a)

in the form

1 xv2
q = Gv + -G (2.14)

mlldP^ 2ml2pl

2 TIT?'
Combining (2.3b) and (2.14) we find

(L + v)v = 2vv - yPv + yGv

xv2 yxv _ 1 yxv _ xv2 (2.15)

+ 2 7T^7 + 7T^7 v + W7^7 7T~?'
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Rewriting (2.15) as an integral equation yields

v = - 2vGv + yPGv - yGGv - JG (G XV
\ V1 - x2 J

,/G( ™ Gv) rG( xv 0 xv2 \ (2.16)

V7 1 - X1 J 2 \ yj 1 _ x2 yj J _ X

F(v).

3. The Galerkin expansion. Assume for the moment that Eq. (2.16) has a solution.

If this solution is sufficiently smooth it can be expanded in a series

OO

V = 12anAn> t3-1)
n= 1

This series would satisfy Eq. (2.16), i.e.,

00 00 n o° n

Y,UnAn= -2»Y,fAn + yPI2fAn
n= 1 n=1 " n= 1 "

-ycj ,XV Gv)-lG( XV - XV* ^

VI - x2 J 2 V n/ 1 - X1 JC

where we have used (2.11) and v is given by (3.1). If we multiply (3.2) by one

of the eigenfunctions An and integrate from -1 to 1 we obtain the infinite set of

nonlinear algebraic equations for the determination of an

-ylG(-£L=Gv\ ,An\ (3.3)""n

for n = 1,2,.... Using the symmetry of G, Eq. (3.3) can be rewritten

(3.4)

^7 ' "/
n = 1,2,
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4. Approximate solutions. The initial object is to prove that the system of Eq. (3.4)

has a nontrivial solution. For this purpose we will consider the truncated system

+ 2uan ~ VP<*n + ^ + ' An

(4-"

\ - yf. + rf^ + 2

.2

/ -XV1-* vi->

for n = 1, 2, ... , N and

VN = J2anAn- (4-2)
n= 1

The finite system (4.1) always has the trivial solution ax =■■■ = aN = 0. The object

is to show that under some circumstances there is a nontrivial solution.

We introduce a function EN{ax, , aN) which is essentially the energy associated

with (4.1),

en= Ekti-rf + f
n=\ V

.2 \ /  2 ..2

V "

^ „\^y/ r XVN XVN

(4.3)

+ 7 (G^==>vn +7 G-
7 4\VT=P' n/T^1

The symmetry of G implies that Eq. (4.1) is

1 dEx"N
= 0, n=l,2,...,N. (4.4)

2 dan

Thus the solutions of Eq. (4.1) are critical points of EN, and conversely. In

order to prove the existence of a solution to (4.1) it suffices to show that EN has a

minimum. For this purpose it is convenient to rewrite (4.3) in the form

N
2

En= £a„ + 2z,-y/X2

Since G is a positive operator, (4.5) implies that EN > 0 if A, + 2v - yP > 0, i.e.,

if (cf. (2.10))

1,, , 1 //zx2
P <_(! + „)=   _ . (4.6)

y 3(1 - v) \aj

If P satisfies the inequality (4.6) the minimum of (4.3) occurs for a, = ■ • • = aN — 0.

Thus if P satisfies (4.6) the minimum energy solution is the trivial solution.

The quantities

/> = !(*,.+ 2«/) + i
y J k

j

are the eigenvalues of the linear shell theory (cf. [3]). Assume min^ P} occurs for j =

n . In this case Pn < Pn_, and Pn < Pn+l . It follows that a necessary and sufficient
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condition for Pn to be the smallest eigenvalue is that the thickness parameter y

satisfy

We shall show that if P > pn (« odd) or P > Pn {n even) there are values

{ax, , aN) such that EN{al, ... , aN) < 0. In particular

E„( 0,...,a„...,0) = (in + 2 u-yP + f\ay,y(a^- " \

4 / a 2/ „ xA_ xA„
(4.7)

+ -7- { G

4 \ vt ■ X

and (cf. (2.6))

la XAl A \ - 1 / ^

v/TT?' 7 \vT-jc 2 *«) = r fxv-x2)(K)3dx- (4-8)

If n is odd the integral in (4.8) vanishes since the integrand is odd. If n is even

the integral in (4.8) does not vanish (in fact it is positive, cf. [10]). In this case

£■^(0, , an, ... , 0) < 0 even in the case Xn + 2v - yP + y/Xn = 0 for the ap-

propriate choice of an . Thus a sufficient condition to guarantee the minimum of

EN(ax, ... , aN) is nonzero is

P<Pn=l-(ln + 2v) + j-. (4.10)

We will prove the existence of a solution to (4.1) by proving that EN{ax , ... , aN)

has a minimum. Given this result it is a consequence of (4.6) and (4.10) that there

is some value P = PQ

U\+u)<P0< X-(Xn + 2v) + ±- (4.11)
y y An

(where the inequality becomes a strict inequality if n is even) such that if P > P0 the

minimum of EN is negative, i.e., the solution of (4.1) which minimizes the energy

is nonzero.
2 2 1 / 2

There is no difficulty in showing that EN —► oo as («,+••• + aN) —>• oo (cf.

(4.3)). We would also like to show that EN has a lower bound which is independent

of N. An immediate consequence is that EN has a minimum. This minimum

furnishes a nontrivial solution of (4.1) if P > PQ .

In order to find a lower bound on EN it is useful to rewrite (4.3) in the form

EN=i:Un + ̂ -yP+j-)a2n + l(G^4-
n= 1 K) " 8\ v/TT?' s/T X

2

+s (c Ur^?+4"") • tS?+4»») -
(4.12)
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Equation (4.12) can be simplified by noting that

(«v») = Er (4.i3)

so that

n=] ^

fLUn + ̂ -y-J-)"2-
n=l n'

y L( xvl^A„\ xvl

+nn7TT?+N'7rf?+N (4-i4)
.2 ..2rr

+ ^ ( G
y/n xvN xvN

V1 - x2 V1 - x2 /

Since > A, = 1 - z/, Eq. (4.14) can be replaced by the inequality

£,>t (<>„ +2" - yr - T~^ ^ a1-
n= i ^

{4'15)

.2  2
, , XI

+ ^ ( Gy / ^ x^v

\/1 — x2 V\ - x2,

In order to simplify the notation define

N
n= 1

N
2

a„= E K +2" - yp - r

= /, ("nXXVU <** + (2l/~rF"r^) J_,vl"dx

or, using (2.9),

Fn = ~ J { vn(L + v)vn dx + (2z/ - 7^ - 737) J ( WA'

.2  2n'

+ ^ ( G
y / ^ x?;A, xt^

\/1 — jc2 \/1 - x2,

(4.16)

(4.17)

After an integration by parts (4.17) can be rewritten

F» = {(* -^2)(^)2 + - (y^ + 7377)^} dx~ (4-l8)

Thus (4.15) can be written

En>Fn + lU( ?HlL^ + 4v„) , _^= + 4<;v\
^ I (4.19)
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In order to obtain our lower bound on EN we note that if g(x) is any continuous

function on — 1 < x < 1 we have

/c «L. »L_^ «
\ \/ \ - X1 \J\- X11 \ \V 1 - x2 J V \ - x~

+2{ttl7'Gs)~{Gs's)'

Combining (4.19) and (4.20) we find

E„>H„ + 1(g( XVn . + 4v^ , + 4v V

(4.20)

N)'>/r=?
(4.2i;

where

H" = F" + i{^7,Gs)' (422)

The object is to choose g(x) in such a way as to guarantee that HN > 0 for all N .

If this is possible for some fixed g it will follow that (cf. (4.21)) EN> -y{Gg, g)/8 ,

i.e., we would have a lower bound on EN which is independent of N. For this

purpose we note that

min Hn
al aN

> min H
v^O

= + + " - + rb) + ̂ =i) "'} dx

(4.23)

where the minimum on the right side of (4.23) is taken over all v G C2[—1 , 1]

satisfying v(-l) = u(l) = 0. The variational characterization of eigenvalues (cf.

[8]) guarantees that

H > n J v2 dx (4.24)

where fi is the smallest eigenvalue of the linear Sturm-Liouville problem

((1 - x2)v')' + I n —- - v + yP + —  7^=^ I v = 0 (4-25)
v 1-* x~v 4vI — x J

with boundary conditions

v(-l) = f(l) = 0. (4.26)

The smallest eigenvalue of

((1 - x2)v')' + (fi - j - vJ v = 0 (4.27)

x2 , _ , y yxGg
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with boundary conditions (4.26) is n = 1 + u > 0 and the corresponding eigenfunc-

tions is v = A{(x) = (1 -x2)1/2. If we could choose g(x) so as to reduce (4.25) to

(4.26) it would follow that HN > 0. However, this is not possible since

X°8 = f(x) (4.28)
4\/l -x2

vanishes at x = 0. Instead we will choose f{x) so that Eqs. (4.25) and (4.26) agree

over most of the interval — 1 < x < 1 . In particular for small s > 0 define /(x) by

/(*)= (p + r^;)/2(x) (4-29)

where
f 1, e < |x| < 1

Kx)= \ (x,2 ,(X^,(X\6 , , . (4-3°)
I 3(f) -3(f) + (!) . M <e-

It is easily verified that f{x) e C2[-1, 1] and /(0) = 0. We must verify that there

exists a continuous function g(x) such that (4.28) is satisfied, i.e, we must show that

4x/l - x2
g(x) = -(L +  f(x) (4.31)

is continuous for -1 < x < 1 .

If e < |x| < 1 Eqs. (4.29) and (4.31) imply that

1 \ , r v VT - x
2

g(x) = -4[P+—j(L + V)^ . (4.32)

The right side of (4.32) may be calculated to show

g(x) = -4 (f + Tl_) (V±2VEZ + ) ,4.33)
x

when e < |x| < 1 . Thus g(x) is continuous for e < |x| < 1 . If |x| < e Eqs. (4.29)

and (4.31) imply that

g{x) = -4^P + (L + v)\j\-X21If _ ̂  + . (4.34)

There is no difficulty in showing from (4.34) that ^(x) is continuous for |x| < e . In

addition g(x) is continuous at x = ±e since /(x) is twice continuous differentiable

over the whole interval.

It remains to show that when e is sufficiently small the smallest eigenvalue of

(4.25) and (4.26) is close to the smallest eigenvalue /u = 1 + f of the problem

(4.27) and (4.26). It would follow that the smallest eigenvalue of (4.25) and (4.26) is

positive when e is sufficiently small. It is possible to calculate the smallest eigenvalue

of (4.25) and (4.26) by perturbation. The actual calculation is carried out in the

Appendix (Sec. 6). In any case the result is

= 1 + i/ + l(p + e + 0(e2) (4.35)

where c is a positive constant.
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In view of the above remarks the inequality (4.21) implies that when e is suffi-

ciently small

M(N)= min EN{ax, ... , aN) > -\{Gg, g) (4.36)
a\ ' ••• ' aN O

where g(x) is given by (4.33) when e < |x| < 1 and (4.34) when |x| < e. The

bound on M(N) is independent of N. It is also possible to obtain an upper bound

on En which is independent of N. In particular

M(N) = min EN(al, ... , aN) < mmEN(a], 0, ... , 0)
d | ..... d \ r CI I' (4-37)

= min£, (a.) = M( 1).
a.

We have already noted that if P > P0 (cf. (4.11)) is satisfied then M( 1) < 0.

5. The exact solution. In Sec. 4 we have shown that the finite system (4.1) has a

nontrivial solution ax(N), , aN(N) if P>P0. We wish to use this fact to prove

the existence of a solution to the infinite system (3.4). The solution of the finite

system satisfies the inequalities

-\{Gg, g) < EN{ax{N),..., aN(N)) < M( 1) (5.1)

where M( 1) < 0 if P > P0 . In addition a{{N), ... , aN(N) satisfies the identity

£ (a„ + 2*-yp+£) aim + f

yJ xvliN) xvl(N)\
n=l

2 \ -x2 ' ZTT 2

where

vN(N) = J2an(N)An(x). (5.3)
n= 1

The identity (5.2) is obtained by multiplying (4.1) by an and summing over n .

The identity (5.2) can be rewritten

n= I
Y,(K+2"-y+r)":m

-%(Gvn(N),vn(N)) = 0 (5.4)

or using (4.13) and the positivity of G

N

■£U+2^-yP-^r)a'„(N)<0. (5.5)
n= 1 ^ "
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It is a consequence of (5.5) that

N / 1 s N

£»2a>>s?K+8(T3To )£«>>■ <5(,>
n=1 \ V // n=l

It remains to bound the right side of (5.6). This bound comes from (5.1). It

follows from (4.24) that

• l

,(ai(N),...,aN(N))>vJ_v2N(N)dx (5.7)

where n > 0. Thus (4.21) implies

En>h J v2N{N)dx - \{Gg, g)

N

= ̂ ^2aUN) - s)-
(5.8)

n= i

Combining (5.8) and (5.1) we find

N

X]an2(7V)<i(M(l) + |(Gf,^)). (5.9)
u

n= 1 ^

The inequalities (5.6) and (5.9) imply the existence of constants Kx and K2, inde-

pendent of N, such that

N N

53al(N) < Kx , ^«\2(7V)<^2. (5.10)
n=1 n=1

Define a vector

VN = (ai(N),...,aN(N),0,...). (5.11)

We wish to show that the sequence {VN} has a convergent subsequence. For this

purpose let f2 be the infinite dimensional real vector space with elements x =

(xx, x2, ... ,xn, ...) and norm

/oc \ 1/2
2

X>; • <5-12>

In addition we consider a subset of /2

x ef2

\n= 1

oo
2 2

n'xn <K2\.

n= 1 J

Let x 6 J and let x* = (x,, ... , xn , 0, ...). The fact that x e s implies that
2 2

x, < K2/j from which it follows that

OO OO ,

r (513>Ix-x'W1 ,
j=n+1 j=n+1
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The right side of (5.13) can be made arbitrarily small by choosing n sufficiently

large. This result proves that 5 is a compact subset of ^ (cf. [9]). The sequence

{VN} c s . Since 5 is compact there exists a subsequence {VN } such that

VN^V* = {a\,a2,...,an,...), (5.14)

and V* e s, i.e.,
OO

X>2«)2 <Kr (5.15)
n= 1

Define the function

V* = J2anAnW- (5-16)
n=1

The function v*(x) is continuous and the sequence of functions vN(Nj) —> v*

uniformly. The proof of these two facts is essentially identical to the proof given

in [6]. The components a* of the vector V* given in (5.14) are a solution of the

infinite system of algebraic equation (3.4). In order to show this we use the fact that

*s a SC)lution of the finite system (4.1) to write

' K) " 2\ /TT? ,
/ xv* ^ * , \ y xv* ^ x(v*)2 . N

+ 7 ( 7 T > 4, ) + £ ( , ' An/rr? ' 7 2\\^7 vt
(a„ +2*-,/> + £) (a;-o„W))

X

+ 7

+!

' XV* x(v*)2 \ lXVN{Ni) XVliNi)
(5.17)

The right side of (5.17) tends to zero as Nt. —> oo . Thus a*n satisfies (3.4).

In order to prove that v*, defined in (5.16), is a solution of (2.16) we note that

v* — F(v*) = h(x) (5.18)

where h(x) is a continuous function. However,

(h,An) = {v* -F(v*),An} = 0, n = 1,2,... (5.19)

since V* is a solution of (3.4). The associated Legendre functions An form a

complete set of eigenfunctions. Thus we conclude that h{x) = 0, i.e., v* satisfies

(2.16). Recall that EN < M{ 1) < 0 for all N so that the solution is not zero.
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6. Appendix. In this section we will compute the smallest eigenvalue of (4.25)

with boundary conditions (4.26). It is convenient to rewrite (4.25) in the form

((i_xy)' + L_I/ + i__L +yP+y ?£L=)v = o. (6.i)
V 1 — X 1 - " Wl-x2J

We will compare this equation to the equation

((1 -x2)v')'+ (n-v + 1 - ^-2)^ = °- (6-2)

The solution of (6.1) and (6.2) is to satisfy the boundary condition (4.26). The

smallest eigenvalue n of (6.2) satisfies

H-u+ 1 = 2 (6.3)

and the corresponding eigenfunction is v = A{(x) = (\ - x2)1/2.

We want to describe a perturbation scheme which will allow us to compute the

smallest eigenvalue of (6.1) in terms of £ (cf. (4.30)). We begin by rewriting (6.1)

in the form

((1 - x2)v')' + y(p + T~y (1 - A(*))) v = 0. (6.4)

We will compute <5 as a series in £, or equivalently the smallest eigenvalue ^ =

l-i1 — 8 as a series in e .

There is no loss of generality if we replace the boundary conditions (4.26) by the

condition

u(-l) = t/(0) = 0. (6.5)

If (6.4) and (6.5) are satisfied on the interval -1 < x < 0, the solution on 0 < x < 1

is easily obtained by reflection. We begin by solving (6.4) on the interval —e < x < 0

with boundary conditions

v(-e) = l, v'(0) = 0. (6.6)

Introduce the change of variable

Equation (6.4) with boundary conditions (6.6) becomes

d_

dt,
2x2.dv

('-«« )3j

+ 2 £2 2 / „ 1
(2 - <$)£ = -—jTi + ey[p +1— (1 - 3<r + 3r - <r

1 - £ i V 1 - v,
v = 0

(6.8)

/ i\ 1 dv = 0. (6.9)
(=0

The problem (6.8) and (6.9) will have a solution of the form

v({) = v0(£) + e2v .(() + ■■• (6.10)
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where v0 is a solution of the problem

d2
^wo = ° (6-1J)

V-]) = 1' Jlvo

and

= 0 (6.12)
i=o

d2 /. , 1
5?„1 = -^l-i + ^P + _jjWo (6.13)

ui(-1) = 0'

This pair of problems is easily solved to find

= 0. (6.14)
(=o

w0=l, vl = Ul-S + y(p + ri-))(1^0 (6.15)

t, = l + i- + )+... (6.16)

((1 - X )v ) + [ I - S -   2 ) ^ = 0 (6-17)

so that

?! = 1 4- — I 1 — i54- V I P4. Ill*
\ — v ) ) \ V e

for -e < x < 0.

It remains to solve the problem on the interval -1 < x < -e. On this interval

Eq. (6.4) is
2,../N/ . /, c-  1_

1 -

and we will apply the boundary conditions

w(-l) = 0, v(-e)= 1. (6.18)

The problem (6.17) and (6.18) has a solution which may be written in the form

v = vQ + <5vl H  (6.19)

where

((1 - x2)v'0)' +(2- ^ = 0 (6.20)

((1 - x2)v[)' +(2- w, = v0. (6.21)

The boundary conditions are

v0(-l) = 0, v0(-e)=l (6.22)

u,(-l) = 0, u,(-e) = 0. (6.23)

The solution of (6.20) satisfying the conditions (6.22) is

Vl -x2V°'7T=7- <6'241
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The solution of (6.21) is technically more difficult. It can be solved by variation of

parameters, but first we need the general solution of the homogeneous equation. One

solution of (6.20) is

m, = yj l-x2. (6.25)

In order to determine another independent solution let v — u2 = uxw . Placing this

in (6.28) we fine

" 4 v ,
w = 0. (6.26)

l-x2

This equation is easily solved to show

w' = (6.27)
(l-x2)2

where c is an arbitrary constant. After integrating (6.27) and multiplying the result

by Mj we have a second independent solution of the homogeneous problem

("8)

A particular solution of the inhomogeneous problem (6.21) is of the form v = cxu{ +

c2u2 where c, and c2 must satisfy

c\ul+c'2u2 = 0 (6.29a)

11.11

Vl - e2Vl - x2
C\UX+c2u2 =—;==—!==. (6.29b)

c. and c2 are determined from (6.29) to be

, 2x + (l -x2)ln(j±f)
c\ = J , (6.30a)

Vl -£2(3 + x2)

2(1-x2)

V\ -e2(3 + x2)
c' = *2) - (6.30b)

so that

1 [* 2{ + (l-{2)ln({iJ)
c. = .—== /  5 —d£ (6.31a)' (3 + £ )

2 fx 1 - <f2
c2 = -==\ —A2d{. (6.31b)

\/1 - e J-1 3 +
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The solution of (6.21) satisfying (6.23) is

vTT? r 2£ + (l-£2)ln(i±§)
CIQvt = - r ^iv' srvi"^^

+ 2 ( * + \\J\-x2\n (j r -—di
V1 - e \ \/l - x ^ \1 X))J-i3 + £

r 7/ i r~£ 2£ + (1 - £2) ln(|z|)

+ ̂ -x\7Tr?L 2

+ HH))£'l7?4 <«2>Vl -e2 V 1 — e 2 \i-eJJJ_i 3 + £

For our purposes it is only necessary to retain terms of sufficiently small order in e

and S . In particular (cf. (6.24))

v0 = \J\ - x2 + 0(e2) (6.33)

r J r 2{ + (l-^)ln(|±f)
vx=-\J\-x'J  r—-y — ^1 V I-1 3 + £2

+ Wl - xz In
2vT^x

\/l - x32 j

(j±£))£i^« (6.34)

2£ + (l-£2)ln({±§)
+ V 1 - x 2 /   izi! + 0(e).

3 + £2

In the interval -1 < x < -e the solution of (6.4) and (6.5) is given by (6.19)

where and are given by (6.33) and (6.34). In the interval -e < x < 0 the

solution of (6.4) and (6.5) is given by (6.16). There is one more requirement. We

need to determine 8 so that v(x) has two continuous derivatives at x — -e. We

already know that v(x) is continuous at x = —e. Thus we determine 3 so that

v'(x) is continuous at x = -e . The continuity of the second derivative follows

from the differential equation.

Equation (6.16) implies that

lim v'(x) = e(l-S + y(p + —-—) J H 
Xl_£ V V 1-f// //- -J r \

= e (l + y (p+ T~)) + ■ "

where the remainder in (6.35) consists of a term which is quadratic in the two pa-

rameters e and S . Turning to (6.33) and (6.34) we find

v' = -=L= + 0(e2) (6.36)
x
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x fx 2£ + (l+£2)ln({±§)
Vl(X) = ~^=j    72 —dZ

Vi-x2 J-i 3+r

- f 2x + {l -x2)ln({±^)

3 + x2

1 1 1 x . f\+x\\ fx I-Z2
+ 2I~ ~7 + T / T ~ T ln I 1 Zlll Z 

)/:S\-x2)3'2 2x/^2 \1-xJ) J-i 3 + £2

X f0 2£ + (l-£2)ln({±§)x r
dt

3 + £2

There is no difficulty in showing that

v'0(-e) = s + 0(e2) (6.37)

v[(-e) = 3 [° iZ?dZ + 0(e).
J — i J ~f-

Combining (6.37) and (6.38) with (6.19) we find

rO | _ k2

lim v'(x) = e + 3(5 /  ^ dt; +
*t-£ J-i 3 +£

where the remainder is quadratic in the two parameters s and d . Comparing (6.35)

and (6.39) we find that continuity of v'(x) at x = -e requires

(6.38)

(6.39)

6 + 3d f-Md(=e(i+y(F+>^))+"- <64o)

Equation (4.35) follows from (6.40).

Added in proof. In showing that the constructed function v* is a solution of the

integral equation (2.16) it was indicated that the proof is identical to that given in [6].

This proof requires that the eigenfunction be bounded independent of n . Actually

the functions An grow with n and therefore a modification is required.

The function

^,{) = ?(x,{)-tk(xM/{) (1)
j=\ J

generates a nonnegative operator, i.e., (HU, U) > 0. It follows that

00 1

^ Taj^2 ~ g("x^

7=1 J

(cf. [8, p. 38]). This result in conjunction with (5.10) and (5.15) is sufficient to

guarantee that vN —► v* pointwise as Ntf —► oo. It also follows that v* is bounded
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since

V

oo oo .
»,2v^ ! „2

1/2

sl£wiZj/A • <3»
The sums on the right of (3) are bounded (cf. (2) and (5.15)).

We wish to show that a*n is a solution of (3.4). Since is a solution of (4.1)

we take the limit as TV,. —> oo to find

A„ + 2v + vP + j-\ a*

I / XV XV*

tih=±fci=%''1. =°- (4>

N.—XOC

2\srr7 Vi-x

in each case is similar. Since vN —► v

lim g(x, {)  L_ = g(x, <*)     (5)

It remains to show that the limit can be taken inside the integrals in (4). The argument
*

v

%VNi . e, £(V*)
g(X,<,) —

V
when E, ± ±1. In addition

g(x, £)-  

>/l-{

h

nated convergence theorem implies

< ' *°) 1 (6)

y/i^T2

where C is a bound on (v*)2. The right side of (6) is integrable so that the domi

lim / g(x,a J—dZ= / g(x,S)-2£J=dZ. (7)
N,—*oo

The same argument shows that

A similar argument can be used to show that the limit can be taken inside the integral

in each of the terms occurring in (4). Thus an is a solution of (3.4) and it is a

consequence that (cf. (2.16))

(v*-F(v*),An) = 0, « = 1 , 2, ... . (9)

Thus v* is a solution of the integral equation (2.16).
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