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Abstract. The determination of the free streamline of a jet of ideal fluid flowing

past a wall of arbitrary shape is considered. A transformation technique is used to

formulate the fluid mechanics problem by relating the deflection of the free surface

to the angle made by the wall to the undisturbed jet which is found as a solution

of a nonlinear integral equation. Linearized solutions, based upon small elevations

or depressions in the wall, and nonlinear numerical solutions to this equation are

presented for a variety of wall shapes. Some inadequacies of both this linear theory

and shallow water theory are found.

1. Introduction. This paper considers the problem of determining the free stream-

line of a jet of ideal fluid which is flowing steadily over an arbitrarily curved wall.

The mathematical importance of this arises from the limitation of the classical hodo-

graph techniques to dealing with flows which have a polygonal wall geometry. The

practical applications of this type of flow arise both in the hydraulic engineering of

fast flow in a channel or a river where the free streamline flow is a leading order

approximation to the true flow and also to the aerodynamic interference of a jet by

a symmetrical rigid body placed on the centre line of the jet.

Free streamline flows of an ideal fluid are essentially nonlinear problems due to the

constant speed condition on the free surface and until the introduction of the con-

cept of a streamline of discontinuity by Helmholtz [1] and the hodograph method by

Kirchhoff [2] very little progress on this type of fluid mechanics problem was made.

The hodograph method was further developed and applied to both free streamline and

cavitation problems by various authors. The limitations of the hodograph method

were quickly recognised and arise from the necessity of transforming a polygon in

the hodograph plane onto a half-plane by means of the Schwarz-Christoffel trans-

formation. Unless the polygon is of a very simple shape the transformation cannot

be integrated explicitly and no analytic solution to the problem can be calculated.

Surveys of the successes of the hodograph method can be found in Von Mises [3],

Birkhoff and Zarantonello [4], Gilbarg [5] and Gurevich [6], The recent widespread
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availability of fast digital computers has given some new impetus to the hodograph

method as the numerical integration of the Schwarz-Christoffel transformation even

in the most complicated geometries is easily accomplished, e.g., Trefethen [7], and

numerical solutions to jet and free streamline problems have recently been obtained

by various authors, e.g., Dias and Ekrat [8],

The adaptation of the classical hodograph method to flow around a body with

a curved boundary was considered by Levi-Civita [9] who obtained a semi-inverse

solution to the separated free streamline flow around a curved body in a fluid of

infinite extent. A direct formulation of this problem as a nonlinear integro-differential

equation for the angle made by the fluid velocity vector was derived by Villat [ 10] and,

in a slightly modified form, was used by Nekrasov [11] to prove both existence and

uniqueness of flows around a small circular arc. Nekrasov also found approximate

solutions to the equation for this case. Further approximate solutions for flow around

circular and elliptic cylinders were given by Brodetsky [12]; an extension and survey

of these methods can be found in Birkhoff and Zarantonello.

A generalization of the Schwarz-Christoffel transformation which will transform a

half-plane into a region bounded by both polygonal segments and smooth curves was

demonstrated by Bloor [13] who used the transformation in the problem of periodic

water waves on a fluid of finite depth. This transformation technique has been applied

to free surface flows over a step by King and Bloor [14], and to the determination

of the cusped free surface flow due to a submerged source, King and Bloor [15], and

in all cases results in an integral or integro-differential formulation of the problem.

This paper uses the generalized Schwarz-Christoffel transformation to map the region

occupied by the fluid onto a half-plane where a simple complex potential can be

written down. The free streamline condition of constant speed and the specification

in the (x, _y)-plane of the shape of the wall geometry result in two coupled integral

equations for the tangential angles made by the free surface and the wall. A Fourier

transform technique is used to decouple the equations and a new nonlinear integral

equation for the tangential angle to the wall is derived. Linearized solutions, based

upon small elevations or depressions in the wall, and nonlinear numerical solutions

are presented for a variety of wall shapes. Some inaccuracies in both this linear

theory and Dressler's shallow water theory [16] are noted although the general trend

in the free streamline elevation predicted by linear theory is seen to be adequate.

2. Mathematical formulation. The steady two-dimensional free surface flow of an

inviscid, incompressible, and irrotational fluid over an arbitrary wall geometry is now

considered. It is assumed that no body force such as gravity is acting. A cartesian

coordinate system (X, Y) has its origin at some point within the wall which far

upstream is taken to be parallel to the undisturbed jet which has uniform speed

U and thickness h . The above assumptions allow the introduction of a velocity

potential O and stream function 4* such that the complex potential W = 0+ i*¥ is

analytic in the domain occupied by the fluid. Bernoulli's equation can be applied to

the free surface on which pressure is constant to give the fluid speed q as a constant

there. The stream function 4* is chosen to have the value zero on the free surface

and hence the value -Uh on the wall.
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Fig. 2.1 (a). The nondimensional physical plane.
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Fig. 2.1 (b). The corresponding transform plane.

This problem is now nondimensionalized using the transformations

. X + iY O + /'4* ,~ ..
x + iy =—^—, w = <p + iy/ = uh . (2.1)

The geometry of this dimensionless flow together with appropriate boundary condi-

tions is shown in Fig. 2.1 (a). The process of finding a complex potential for this type

of flow in which some of the boundary conditions are to be satisfied on an a priori

unknown curve is simplified by transforming the region occupied by the fluid in the

physical z-plane onto the upper half on a C = £ + it]-plane. With the correspondence

between the planes shown in Fig. 2.1(a) and (b), the transformation can be written

dz -1 \ \ [°° d(t) ,
(2.2)

This transformation is the generalization of the Schwarz-Christoffel formula first

considered by Bloor [13] and 6{t) is the tangential angle to the free surface or wall

at the point corresponding to £ = t. In the C-plane the complex potential is that of

a sink of strength \/n at the origin so

w{Q = ~ logf. (2.3)
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It is seen from this that on // = 0, <p = — 1 /ttlog|<^|, and y/ = //(£) - 1 where H

is the Heaviside step function. The complex velocity can be found from (2.2) and

(2.3) as
/e dw j 1 [°° 9(t) \

«-'» = «<• = ^=exp{i/,,_oorr7<i<}- (2'4)

where 0 is the angle made by the fluid velocity vector at the point corresponding to

C. As C approaches the real axis the limiting form of (2.4) is

,e~'e=expU£-oof^rf'~'('}' (2-5)

or

exp{^/°° ^idt}' & = 9' (2.6(a), (b))

Equation (2.6(b)) shows that on the free surface or the wall the velocity is tangential

to the free surface or wall as is required. Application of the free surface condition,

q = 1 , gives from (2.6(a))

-/°° P^dt = 0, 0<£<oo. (2.7)
^ J t = ~ OO ^

The meaning of Eq. (2.7) is clearer when the contributions which arise from the free

surface and wall geometry are shown individually,

i f° mdt+Lrp.dt=o, o<%<oo. (2.8)
n Jt=-oo i-t n J t=o C - t

Contributions to the first integral appearing in Eq. (2.8) arise solely from the wall

geometry; those in the second integral are the response of the free surface to wall.

Equation (2.8) is a singular integral equation of Wiener-Hopf type.

It is convenient at this stage to introduce some new notation and new independent

variables which are helpful in the solution of (2.8). Define

(p =--log£, 0(£) = 6 (<p ), 0<£<oo,
* , (2"9)

<p_ = —log(-£), #(£) = 6_{(p_), -oo<£<0,
it

so that the subscripts ± on the potential and on Q show clearly whether they arise

from the free surface (which maps into the positive real axis) or the wall (which maps

into the negative real axis). Using some elementary transformations, Eq. (2.8) can

be rewritten as

6_(s)ds f°° 6,(s)ds
= + ■ -oo<p,<oo, (2.10)

£ 1 +e-*(*+-'> Js=-oo \ - e~n(^-s) '

i.e.,
6_*k_=9+*k+ (2.11)

where the standard definition for a convolution product has been used and

kAo) = !——.±v >
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Apart from the convenience of recasting (2.8) into a convolution integral equation

over the whole of the real line, the change of variables (2.9) has an effect on the

transformation (2.2). The limiting form of (2.2) as £ approaches the real axis is

dz 1 f 1 f°° 6{t)dt .J
® = "<e,pr;LTT+,8J' -oo<^<oc.

Introducing <p+ and <p_ on d; $ 0, respectively, and using (2.7) gives

dz

dlft -«pO"0+(n)}.

-oo < <p+ < oo, (2.12)

and

dz I f°° «,(!)('> njsjd-i I= exp I -1-„ + '«-<»-> J ■

—oo < <p_ < oo. (2.13)

dtp

By taking the real and imaginary parts of (2.12) it is seen that 0+ and (p+ are

the intrinsic coordinates of the free surface. Equation (2.13) is an equation for the

wall shape which involves the unknowns d+ , d_ .

Taking the Fourier transform of (2.11) and using some standard results

F[L]F[k_] = F[d+]F[k+]. (2.14)

The Fourier transforms of k± are calculated by contour integration as

—2k'2 ie~k
F[k_] = -k, F[k \ = i

1 - e 2k

1 + e~
(2.15)

Equation (2.14) can be rewritten as

F[0+] = F[0_]sechfc. (2.16)

Using the result that
r x/2 i

= sech k,
l+e"x

the solution to Eq. (2.16) can be written, using the convolution theorem for Fourier

transforms as
roc ^

#+(<»+) = 5 / 6_(s) sech \-~{<P+ -5)1 ds. (2.17)
J s=—oo 1 ** J

Equation (2.17) gives the relation between free surface and wall shape in an explicit

form. However a Cartesian equation for the wall shape does not specify 6_ =d_(tp_)

but specifies 6_ = 6_(x). To complete the specification of this problem we require

a relationship giving x = x(tp_).

Substituting (2.17) into (2.13) and interchanging the order of the resulting double

integral gives

dz [ f°° e^'^'V^e^ds

{£
exP f  + (2.18)

dv. oo -i
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Division of the imaginary and real parts of (2.18) gives

d_ = tan"'{/(•*)} (2-19)

where y = f(x) is the equation of the wall. Integration of the real part of (2.18)

and application of the condition that x ~ cp_ as <p_ -+ -oo gives

x{tp_) = <p_ + f cos0_(?) - lj dt, (2.20)
J t=-oo ^ '

where
roo e(n/2)(s-t)fi

= f e*is-t) • (2-21)j S——OC e — i

Equations (2.18), (2.19), (2.20) can be combined to give

{$-) — tan-1 |Z' i^P_ + {eP^ cos0_(t) - 1} dt^j |. (2.22)

Equation (2.22) is a nonlinear integral equation for 6_ over the range -oo < (p_ <

oo. In principle if the equation is solved for 6_ then 6+ can be found from (2.17)

and then x(tp+) and y{(p+) from (2.12). In practice it is not possible to find analytic

solutions to (2.22) for a curved wall and linearized and numerical nonlinear solutions

are considered in the next sections of this paper.

For the case of polygonal wall geometry (2.22) becomes an identity and the solution

is written in the form
n

<?_(?>_) = JZai{H(<P- -ai)~H{(p_ - ai+l)}, (2.23)
i=i

where a( is the angle by the i th segment of the polygonal wall with the x-axis and

a., al+x are the velocity potential at the beginning and end of the segment. The

length of the i th segment is given by

ra n , (n/2)a:., nt/2\, _(n/2)a, , _nl/2\ aJn

'<=I n
J t=a i■ i= 1

(e(*/2H+i _ent/2)(e(nl2)a, +en'l2}
dt. (2.24)

(e(t/2K+, + eKt/2^e(nl2)a, _ e*'l^

Equations (2.17) and (2.12) can be used in conjunction with (2.23) to give the free

surface as the solution of

dz = TT / (^/2)a' + +^+)'/212"'771 2S1

dV+ fi I (ein/2)a<♦' + ien^l2)(ena- + env^'2 }

It is clear from the above that free streamline flows over polygonal wall shapes

are a special case of the more general problem addressed by this paper and that the

solution of such problems is reduced to a question of integration. This matter is not

pursued further since classical hodograph techniques can be used in this special case.

3. Linearized theory. A linear theory for Eq. (2.22) can be constructed by assuming

a wall shape of the form y = e /(x), e -C 1 and f(x) = 0( 1). If a solution of the

form

d_(<pJ = eeW((p_) + 0(E2) (3.1)
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~ p
is assumed the standard expansions for cos 6 and e are used, then at leading order

it is found that

0(%_) = /(?>_)• (3.2)

Equation (2.17) then gives an expression for 0+(cp+) as

#+(?>+) = J ^ /(s)sech(|(p+ -5)) ds + 0(e2). (3.3)

Using the fact that 6+{<p+) = 0(e) Eq. (2.12) can be expanded for small e and

integrated to give

X(<P+) = <P+ + 0{£2)

(3.4(a), (b))
p (D /* OO

y(<P+) = !+/ ^ I /(s)sech (|(/- <>)) dsdt + 0(e2).
J t= — oo ^ J s=—OO ^

An interchange of the order of integration in (3.4(b)) and elimination of the param-

eter cp+ using (3.4(a)) gives the equation of the free surfaces as

y(x) = l + —[°0 f(s)tan~l{e(n/2){x~s)}ds + 0(e2). (3.5)
ft Js=-oo

A more convenient form of this is obtained by integration by parts, using /(-oo) = 0 ,

/OO

f(s) sech {^(x - s)) ds + 0(s2). (3.6)

As an example of the application of this linear theory consider a wall shape of

the form y = -|sech7rx. The integral appearing in (3.6) is evaluated by contour

integration and the free surface takes the form

, , , 3e"x/2(l+enx -2l/2enx/2)
y(x) = 1   = 3.7
■K ' 2( 1 + e ) V ^

A comparison of this result with the nonlinear numerically calculated free surface is

shown in Fig. 2.5.

4. Numerical method. To obtain numerical solutions to the nonlinear problem it is

necessary to work with a form of Eq. (2.22) which does not involve an infinite range

of integration. This is achieved by the integration of the real part of (2.18) between

the limits of [<p*_ , <p_] instead of [-oo, q>_] where q>*_ is some arbitrary point far

upstream of any disturbance to the wall shape. Application of the asymptotic result

that x(<p*_) = (p*_ gives

^_(?'_) = tan 1 If eP{'] cos9_(t) dt j 1. (4.1)

A mesh of discrete <p_ values and corresponding 9_ values is defined by

(p'_ — ih, d'_ = d_(ip'_), -N<i<M.



288 A. C. KING and M. I. G. BLOOR

The integral in (4.1) is discretized by the trapezoidal rule, with error 0(h2), and tp*_

is chosen to be tp~N~x

6'_ = tan 1 { f ( tpj" 1 + ^ y ] wJ exp{P(?J)} cos 6J | }• , -N < i < M,

(4-2)
where w1 are the weights appropriate to a trapezoidal rule and the tJ — tp'_ are a set

of integration points. The discretization of the singular integral P(tJ) is complicated

by the singularity at s = tJ and the infinite range of integration in the integral. The

range of integration is truncated to [tpZ2N , <P\U'], the integrand being exponentially

small outside this range. This truncated range is subdivided into three subranges

[ip~_}N, , [^i_1, ^i+'] and [^i+1, tp2*'] • In the first and third of these sub-

ranges the integrand is regular and is dealt with by a trapezoidal rule; the error is

again 0(h ). In the second subrange the integrand is singular and the integral is

evaluated in the sense of a Cauchy principal value by using the Taylor expansion of

the integrand about the point 5 = t'; terms of 0(h}) and above are neglected to be

consistent with the 0(h ) error arising from the trapezoidal rule. The result after a

i 2M k (n/2)(sk —I1) nk „ ,
h ^ w e ' d_ 2 h ~/

little algebra is

pin y ^ + (4.3)

2 khN *
kftj

where d'_ is the first derivative of d_ . This derivative can be replaced by a central

difference approximation which is accurate to 0(h2) to give P(t^) as a weighted

linear combination of dJ_ , -2N < j < 2M. The values of 6J_ outside the range

-N < i < M are taken to be the linear values given in (3.2). Provided the mesh

is large enough and that f(<p_) tends to zero rapidly as \cp_ \ —► oo this does not

introduce any significant error into the discretization of Eq. (4.1). Equations (4.2)

and (4.3) constitute a set of N + M + \ equations of nonlinear algebraic form in

N + M + I unknowns d'_ , —N < i < M.

Once the values of 6'_ are found the values of 6+ on the free surface can be

found using a trapezoidally discretized version of (2.17). Using the notations ip'+ =

ih, d'+ — 6,{(p') and truncating the infinite range of integration to [cp~2N, <p\M]

gives

h 2M
d'+ = — ̂ 2 wJQ]_ sech (J^(i - j)h^j , -N < i < N. (4.4)

j=—2N

The equation of the free surface (2.12) can be written in integrated form as

x' = a-~a + I cos 6 dtp , y' - y " + / sin 6 dtpr+ a , -n r+
/ cos dMdtp^, y =y + I sir

J<p;N
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Discretization of these and application of x~N = -Nh , y~N = 1 gives

I h / ~i i . h
x = -Nh + wJ cos 9J+, y = 1 + -r ^ wJ sin 6J+. (4.5)

j=-N j=—N

N,M
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1 00057
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-0 4-

-0 6
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Fig. 2.2. f(x) = — | sech n.x . Inset is convergence of numerical

solution with mesh.

The solution of the nonlinear algebraic equations (4.2) and (4.3) was carried out by

a hybrid Powell's method. Briefly this is an iterative scheme which solves a system of

n equations in n unknowns by correcting the / th iterate by a convex combination of

the Newtonian correction and the conjugate gradient correction; a further description

of the algorithm can be found in Rabinowitz [17], This method is available in the

N.A.G. library as a FORTRAN 77 subroutine and a program was developed on a

DEC VAX 1 1/785 computer which firstly solved the nonlinear equations and then
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calculated 6' , x', y' from (4.4) and (4.5). The linear solution (3.2) was used as a

first approximation to the solution and typically three iterative cycles of the Powell's

method were required to produce a converged nonlinear solution. The residual errors

in the nonlinear solution were found by substituting the nonlinear solution back into

Eq. (4.2) and (4.3) and were less than 10~7 in norm for all results presented here.

Various numerical experiments on mesh extent, mesh fineness and choice of (p*_

were performed to determine when the solution became mesh independent. It was

found that N = M = 100, h = 0.06 and <p*_ = <pZN~l gave good results for all

wall shapes considered. The only direct check on the numerical results is the value

of yN , the far downstream free surface elevation. A table of the value of yN for a

fixed mesh extent but increasing fineness is inset into Fig. 2.2 and shows satisfactory

convergence, in view of the 0(h ) discretization error, to the exact value of 1.

18-,

\
xy/Shallow water

\

Fig. 2.3. Flow over fix) = \/2e '^2* showing a comparison

of the exact theory with shallow water theory.

5. Computed examples and comparison with other work. As there do not seem to

be any known analytic or numerical solutions to this problem, three specific examples

have been chosen. The change to the program from example to example is straight-

forward; the use of the mesh parameters above is fixed for simplicity. The number

of points could be varied to cater for an unusual example or to give more accuracy
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1 50"

1 25"

1 00

075-

0 50-

025-

-0 25-

Fig. 2.4. f(x) = \e~x,lxl - ±e~xl2(x~x)1 .

if required. The three examples chosen are

3
4(i) /(x) = -|sech7rx, shown in Fig. 2.2;

(ii) /(x) = (1^2)x , shown in Fig. 2.3;
2 nUv .,2

-2e-yi1^2

(iii) f(x) = \e~(X,T)x - ; shown in Fig. 2.4.

Examples (i) and (ii) are symmetric about x = 0. The free surface also shows a

symmetric fall or rise around x = 0 as would be expected. The two-dimensional

displaced nature of the fluid velocity can be inferred by noting that the elevation of

the free surface at x = 0 is different from the elevation of the wall at this point. A

comparison between the linear solution and nonlinear solution, shown in Fig. 2.5,

for /(x) as in example (i) shows the inadequacy of a linear theory for Eq. (2.22),

although it is seen that the linear result does give a qualitative indication of the

true shape of the free surface. Example (iii) is not symmetric about x = 0 and is

included to emphasize that the above analysis and methodology is valid for arbitrary

wall shapes.

Finally it is worthwhile comparing the results of this exact theory with a shallow

water approximation. Dressler's [ 16] equations for shallow water flow over a curved

topography in the presence of a gravitational body force are

dC dE

dt +g dS 8 f'

dN 1 dQ
dt (1 -kN)B ds
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1 6-1

14-

12-

 Linear

  Nonlinear

 1 1 1 1 i 

-U -2 0 2 U

x

Fig. 2.5. Comparison of linear and nonlinear solutions for

f(x) = — \ sech nx .

where

r- r at ~ P(N) C2E = C + N cos 0 H—-—-  ,
PS 2g( 1 - kN)

Q = loge(l - kN).

The symbols £,B,E,C,N,Q,Sf, and k in these equations represent bed

elevation, bed width, energy, speed, free surface elevation, flux, bottom friction, and

curvature in a coordinate system based on arclength (5) and normal (n).

For steady flows in which there is no bottom friction, gravitational body force, or

atmospheric pressure (p(N)) these equations can be reduced to a single equation of

the form
/. AT\ hx
1 - kN) +     — = 0

loge(1 - kN)

where the conditions C(-oo) = U, N(-oo) = h, and k(-oo) = 0 have been

applied upon integration of the Dressier equations. This algebraic equation relates

bed curvature to free surface elevation in a direction normal to the bed and can be

solved by a simple Newton-Raphson method. A comparison of the Dressier theory

with exact numerical solutions is shown in Fig. 2.3 for a bed topography of the form

f(x) = 3 exp(-^x2) and indicates that the shallow water theory is accurate only in
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regions of low bed curvature which correspond to regions where the elevation of the

bed is small.

6. Conclusion. A generalization of the Schwarz-Christoffel transformation has

been used to formulate the problem of free streamline jet flow over curved wall

as a pair of coupled integral equations for the tangential angles onto the free surface

and the wall shape. The linear integral equation that arises on the free surface is

solved explicitly by the use of Fourier integral transforms and this solution is used to

derive a nonlinear integral equation for the angle made by the wall to the undisturbed

jet. Linearized and exact nonlinear numerical solutions to this equation are consid-

ered and presented for three different wall shapes. The accuracy of the numerical

solutions is investigated and is found to be consistent with a known special value

of the solution. The inadequacy of the linearized solutions is clearly shown when

contrasted with a numerical solution in one of the examples.
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