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0. Introduction. In [9], MacCamy and Suri study approximation methods for an

interface problem in which Laplace's equation in one domain in IT is coupled with

the heat equation in another domain. This problem describes time-dependent eddy

currents in two-dimensional electrodynamics. MacCamy and Suri use a finite ele-

ment discretization for the spatial part of the heat equation and a boundary element

method for the Laplace equation. They apply the standard coupling method for fi-

nite elements and boundary elements as analyzed by Johnson and Nedelec [7], For

smooth boundaries, they prove convergence of their semidiscretized Galerkin scheme

which leads to a system of ordinary differential equations in time. An analysis of a

fully discretized version of their coupling scheme is not available and will be difficult,

because the stiffness matrix in this coupling method is neither symmetric nor positive

definite.

In [2, 3, 4, 5, 6] a symmetric method for the coupling of finite element and bound-

ary element methods was developed and applied to various interface problems. In

this paper, we show that this coupling method can be successfully applied also to the

parabolic-elliptic interface problem studied by MacCamy and Suri. We follow Mac-

Camy and Suri in our convergence proof for the semidiscrete Galerkin scheme. After

discretization in space, we obtain an initial value problem for a system of ordinary

differential equations whose stiffness matrix is positive definite. This allows us to

apply a Crank-Nicolson method for its solution. We prove convergence for this fully

discretized Galerkin scheme. Several numerical examples confirm the feasibility of

our method and the theoretical convergence rates.

1. The coupling procedure and semidiscrete Galerkin scheme. Let Q, be a bounded,

simply connected domain in R with Lipschitz boundary T and complement =

R2\Q. We require without loss of generality for the analytic capacity cap(T) < 1
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which can always be obtained by scaling. We consider the following parabolic-elliptic

interface problem: For T > 0 and given functions <7 in Q, , / in Q, x (0, T) and

v0, ij/0 on T x (0, T) find v] , v2, A such that

dv
—jI- = Af, + / in Q, x (0, T), Av2 = 0 infi7x(0,r) (1.1)

V\-v2 = vQ, §7-^ = ^0 on r x (0, T) (1.2)

«,|,=0 = Q in ri,, v2 = A{t)\o%\x\ + O as \x\ — 00. (1.3)

In (1.2) dv/dn means the derivative of v with respect to the normal on T pointing

from Q, into Q-,.

Now, we choose a constant A > 0 and introduce

M

Then with

u.: — e l'v. in Q. x (0, T), u2: = e X'v2 in x (0, T).

r —At r —At — —At — , At a
f: =e f, v0: =e vQ, V0: =e ^0' A: =e A

we obtain the interface problem

— A u{—kux+f inQ(x(0,r), Am, — 0 in Q-, x (0, T) (1.1)'
du{

dt
0u| du2 _ . -1

",-"2 = V on r x (0, T) (1.2)
dn dn

u 11;=0 — Q in^,, u2 = A{t) log\x\ + O (|x| — 00). (1.3)'

First we give a variational formulation for the "interior" problem in Q, . Appli-

cation of Green's first formula to (1.1)' yields for all u , w e C°°([0, T]; (T00(^!))

with u: —du/dt

[ wiidx + [ Vw-Vudx + k f uwdx - [ w^-ds = f wfdx. (1.4)
in, in, in, J r dn Jo ''I

Next we take the second Green's formula in Q,

J (wAu-uAw)dx — J ^u^^-w^^jds. (1.5)

Insertion of the fundamental solution G{x, y) = -^ln(x — y) of -Aw = 0 gives

the representation formula for x g Q,

"2(•*) = Jr y">v(y) ~ G(x, y)(j){y)^ dsy (1.6)

where
1 j 0u2

v = 2 lr >
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Taking Cauchy data in (1.6) one finds the relations on T

where the Calderon projector

2 + A —V
-D i - A'

(1.7)

(1.8)

is defined via the boundary integral operators:

Vv{x) = J^G(x,y)v{y)dsy , Av(x) = J^-G{x, y)v(y)dsy

DV^ = ~JrT jrJn~GI'X' y)v{y">dsy' AV*) = J J^~G(X > y)v(y)dsy.

(1.9)
Following Costabel [2] one obtains a symmetric coupling method if one adds to (1.4)

the weak form of the system (1.7) on the boundary V. Thus we define the bilinear

form

a(u, <f>\ w , y/) — / (Vw • Vto + huw)dx
Jq,

+ J |ujZ)z< - w ^ - A') (f> — y/u + y/ u — y/V&^j ds

(1.10)

for u, w € i"(0, T; //'(Q,); <j>, y/ e L2( 0, T; H~^2(V)). For the definition

of the Sobolev spaces L2{0, T; h\CI{)), L2{0, T; //~1/2(r)) etc., (see [8]). With

the given data v0 6 L2(0, T\H]/2(Y)), ysQ e L2(0, T; H~l,2(Y)), f e

L2(0, T; H\Q,)') we have the linear form

/(w , y/) = J ju^0 + wDv0 - y/vQ + y/ ̂  + A^ i>0j ds + j wf dx. (1.11)

We consider the variational problem: Given / e L2(0, T\ //1 (^j)'), vQ e

L2(0, T; H1/2(T)), y/0 6 L2(0, T; /T1/2(r)) find J* G Qr and (f> £ BT: =

L2(0, T; //_l/2(r)) satisfying

Lwudx + a{u, w , y/) =/(w , y/) (1-12)

for all u; e L2(0, T; //'(Q,)), y/ e L2(0, T \ H~l/2(Y)) where

= {u e L2(0, T; //'(Q,)): it € L2(0, 7*; (//'(fi,))'), M|/=0 = <?}• (1.13)

Note that w e //r: = L2(0, T; //'(Q,)) and it e //^: = L2(0, T; (//'(Q,))')

implies u € C([0, T]; L2(Q,)) so that «|(=0 = q is well-defined.

Let {///)} and {Hh ^2} be families of finite dimensional subspaces of //'(Q,)

and H 1/2(T), respectively, and let {HhT} and {BhT} be subspaces of L2(0, T\Hxh)

and L"(0, T; Hh^2), respectively.
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h h
The corresponding Galerkin scheme is: Find (uh , <f>h) € HT x Br such that for all

(Wh, Vh) € H\ X H~ul

Ja Whln +a(uh' wh> Vh) =/(wh> Vh) for / > 0 (1.14a)

and

uh\t=() = Phq, i.e., / uh(0, x)wh{x)dx = q{x)wh(x)dx. (1.14b)
Jnt

We follow closely the presentation in [9] and use the convergence proof of the semi-

discrete Galerkin scheme (1.14) to obtain an existence proof for the continuous prob-

lem (1.12). Thus we need two assumptions concerning the spaces Hxh , //^"1/2, Hhr ,

and Bj:

(A.l) Define the //-projection Ph: //'(Q,) —* Hlh by

/ (Phv)w. dx = vw. dx for all w. e h) .
Jn, J a,

Then there is a constant y > 0, independent of h , such that

Sup Idf1 - ?
«€//'(«,) II II1

where ||-||, denotes the norm of //'(fi,).

(A.2) Approximation property in Qr x BT : For any £ > 0 there is an h£ such

that for any h<h£ and (u, 4>) € Qt x Bt there is a {uh, </>h) e Hhr x Bhr such that

II" - UhWnT + II" - Uh\\H'r + 110 - ^ £

where

llU'll//7.: = llU'llz.2(0,r;//l(ni)) ' IMI//|: = llU'llz.2(0,r;(//l(£2|))')

and

IMI*r: = II'U'IIl2{0, 7": //^1/2<r))-

Theorem 1. Suppose (A. 1), (A.2) hold. Then there exists a unique solution (u, <f>) G

Qt x Bt of (1.12) and it defines a solution of (1.1)'-(1.3)' where u{ = u and u2

is given by the representation formula (1.6) with v = u\r - v0 . Moreover there is a

constant C , independent of T, such that

IMI^ + ll^llflj. - + II^oIUj. + II^IIL2(ii,)+11/11//f) (i.i5)

where

llMll@r- — \\u\\ht + \\^\\h't > ll?;olU^- = Hwollz,2(0,T\//l/2(r»-

Proof. The proof is given in several steps: First we observe that the bilinear form

a(-, •) in (1.10) satisfies the Babuska-Brezzi condition on //'(fi,) x //"' "(T) for
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fixed t € (0, T). Namely if we take w = u and y/ = -</> in (1.10), we obtain with

a uniform constant y (compare [5])

a(u, (p, u, —<fi) > + II0II//-i/2(d)■ (1-16)

Next, to obtain estimates on (u, 0) for variable time t we need the following two

lemmas. So we interrupt the proof of Theorem 1.

Lemma 1. The Galerkin equations (1.14) have unique solutions for each h.

Proof. If we choose bases for Hhr and BhT then (1.14) will be equivalent to

.*tih + [3T + k£) Uh+3tUh+&Q>h = F\ Uh{ 0) = 0 (1.17)

s<t>h-&TUh = G. (1.18)

Here Uh and F have values in MA/ and <I)/; and G have values in MA for some

M and N. Jf, 3?, and 2 are M x M matrices, is an M x N matrix, and

S is an N x N matrix. The mass matrix is positive definite. Furthermore, 3?

and 2 are positive semidefinite and S is positive definite, since

/ Vu -Vudx> 0, / (Vu-Vu + Auu)dx > A.\\u\\2Ht(n > for all u e Hl (Q,)
Jat J a, ' (U9)

uDuds > 0 for all u 6 Hi/2{T) (1.20)I
and there exists a constant X-, > 0 such that

L(j)Vcj)ds>X2 ||0||^.-i/2(r) for all </> e H 1/2 (T). (1.21)

(Note for (1.21) to hold we need the condition cap(T) < 1 .) Therefore, one can

solve (1.18) for <J>/; in terms of Uh and substitute into (1.17) to obtain a differential

equation for Uh . Since J? is nonsingular, this equation has a unique solution. □

Next we show the solutions of the Galerkin scheme (1.14) are stable (with respect

to the data).

Lemma 2. There exists a constant C > 0, independent of h , such that the solution

of (1.14) satisfies

Wuh\\Qr + - C(IKIU;. + + II^IIz,2(0,) + 11/11;,;) (1-22)

and

IIw/7IIz.°°fo.T:L2ici.n - II?'oIIb; + UohT + l^ll^ti, > + WfWn',. • (1-23)

Proof. We consider the Galerkin equations (1.14) for fixed t and insert wh

Vh = -<t>h obtaining

^Klll2^,) + «("/,' *h\ uh ' = ~4>h).
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Therefore the coerciveness inequality (1.16) and the continuity of a{-, ■) give with

constants C, £ > 0

~Jj\\Mh\\L2(cii) + IKIIz/Vq,) + H//~,/2(r)

II Uh II//1 (£2,) + ll^/|ll//"l/2(r) (II ̂0II //1/2(D + II ̂0II //" l/2( n + 11-^11//'(«,)')

< C |£(llw/,ll//|(n|) + IIII//~i/2(d) + J(lluoll//l/J(r) + ll^oll//"l/:(r) + H-^H//1 (£},)')

(1.24)

Hence for fixed t we have

^IIw/iII//(n,) - ^(llvoll//1/2(r) + ll^oll//"l/2(r) + H/ll/z'ta,)')-

Therefore integration with respect to t from 0 to t yields

II II z.2(f2,) — C(\\v0\\K + ll^ollfl,. + H^H//f) +

Hence

IIW/7IIZ.°°(0, T\L2(£2,)) — Qllfoll^ + ll^ollfij. II^II/,2(t2,) + ll/ll//f]-

On the other hand if we integrate in (1.24) over t from 0 to T we obtain

Klltf, + ll<M«r < C(IKII^ + HoW2bt + Mhn,) + ll-^llw-;-)- d-25)

Now, let Ph be the L2 projection of (A. 1). We have

/ uhvdx f iihPhvdx

hW(//'(£!,))' - Sl|P \\v\\ ~ S"P \\vl\
ve h'(Q,) H Hi t)€//'(n,) 11 Ni

Now we use (1.14) with u>h = Phv and y/h = 0 to estimate the right hand side of

this equality.

I "a II (//' (fi,))' - Sljp iu;|i
we//1 (fi,) Hv Hi

1
= sup iy—-

tie//1 (£2,) II II i

|^(Dw0+ y/Q)Phv ds +J^ fPhv dx - a(uh, <ph; Phv , 0)

ijr(Dvo+ Vo>Phv ds {-Vuh ■ V(Phv) + Xuhphv">dx

+ L fPhVdX+ Jj>PhV)((j-A')h~Duh)dsJ

— C ■] llwoll//l/2(n II^oll//~l/2(n

i ll^ll.
i>(a,)' + IIII//1 (f2,) + ll^/ill//-|/2(D j SUP ||1;|| •+ lu II//1

(1.26)
Here we have used that by the trace lemma

IK^w)lrll//l/2(D - ^H^/i^ll/z'tn.)-
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Now, taking squares on both sides of (1.26) and integrating over t from 0 to T

using (A. 1) and (1.25) yields the estimate

II"/|IIl2(0, 7"; (//' (£2,))') — + + (1-27)

Hence combining (1.25) and (1.27) we obtain (1.22). □

Now we are in the position to complete the proof of Theorem 1: We conclude

from the estimate (1.22) of Lemma 2 that there exists a subsequence of the sequence

{(uh, (f>h)} of Galerkin solutions which converges weakly to (u, 4>) with {uh} con-

verging weakly to ut. The existence of the Galerkin solutions is guaranteed by

Lemma 1. Then one shows from (A.2) that ut is the generalized derivative of u

and that (u, 0) satisfies (1.12), i.e., (u, 4>) is a variational solution of our coupling

problem. The estimate (1.15) follows from (1.22) and lower semi-continuity. □

The next theorem gives the convergence and quasioptimality of the Galerkin so-

lution.

Theorem 2. Suppose (A. 1), (A.2) hold. Then there exists a C > 0 such that

(i) the Galerkin scheme (1.14) has a unique solution (uh, <j>h) G Hj x Bhr;

(ii)

II" -"Jer + W-hhr
h h (1-28)

< Cinf{||w -wh\\QT + \\<f>- Vh\\Br :wheHT,i//h€ Br}

where C is independent of u, 4>, h and T.

The proof of Theorem 2 is standard and we only outline the main steps. First let

us introduce the following definition.

Definition 1. The Galerkin operator Gh for (1.14) is the projection from QTxBT

into Hj x BhT defined by Gh(u, <t>) = (it, 4>) where u(x, 0) interpolates q and for

any (wh, yh) e h\ x H~1'2

/ whudx + a(u, 4>; wh, y/h) = whudx + a(u, <t>\w., y/h). (1.29)
Ja, Ja,

Proof of Theorem 2. First we observe that as a consequence of the estimate

(1.22) the Galerkin operator Gh is bounded in the operator norm independent

of h . Furthermore, from Lemma 1 it follows that Gh is well defined. From

the stability estimate (1.22) one obtains the convergence of Gh(u,(f)) to {u, <j>)

in a standard way: Let (zh, %h) be an arbitrary element of Hhr x BhT and set

{el, <?2): = Gh(u, 4>) - (zh , xh), (e, ,e2): = (u, <f>) - (zh , xh) ■ Then (1.29) yields

/ whel dx + a(el, e^\ wh, y/h) = / whel dx + a(el, e2; w. , y/.). (1.30)
J a, Jn,

The right hand side of (1.30) can be written in the same form as that in (1.14).

Therefore the estimate (1.22) can be applied and we obtain

IMer + ll^llflj- — C(PillGr + lle2 llfij.)*
Hence

||Gh(u, <t>)-(u, (1>)\\QtXBt < Cinf{||(M, <f>) - (zh , Xh)\\QrXBT- zh € ht> %h e bt)

which is the desired estimate (1.28). □
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Following [9] we discuss approximate subspaces for which assumptions (A.l),

(A.2) are satisfied and show that quasioptimal convergence is obtained for such

spaces.

In the following we assume Q, is polygonal and its boundary T consists of straight

line segments. We introduce regular grids An and Ar on and T respectively

with generic mesh spacings and hr .

Let H[ C H (Q,) be a space of piecewise polynomials of degree < k - 1 on An

and H~h -1/2c H 1/2(T) be a space of piecewise polynomials of degree < / — 1 on

Ar . We take h = max{/?a, hr}.

The trial functions uh e Hhr, 4>h e Bhr in the Galerkin scheme (1.14) are time-
j  | j2

dependent whereas the test functions wh e Hh , yjh e Hh do not depend on time.

Therefore we set with Hxh and as defined above

HhT: = {vh e C'([0, T] \ Hlh), vh = 0at t = 0}

BhT: =C°([0, T]-h;{'2).

Now, with the above choices, the spaces HT x BhT approximate the space Qr x BT

in the sense of assumption (A.2).

For simplicity we consider only the case k = 2 and / = 1 , i.e., piecewise linear,

continuous finite elements in Qj and piecewise constant boundary elements on Y.

Let

Z = {(v,y/), v € L2(0, T; //2(Q,)), v e L'(0, T; 771 (Q,)),

u|,=0 = 0, veZ/(0, T; //1/2(F))}.

It is well known (see [1]) that for (?;, if/) e Z

inf \\v-wh\\H + inf \\y/ — Xh||s < Ch (1.33)
w„eHhr T Xh€Bhr 1

where C depends on (v, y/) but not on h . Moreover v € L~( 0, T \ H\Q,)),

v € L2(0, T; //'(Qj)) can be approximated simultaneously by a function wh e Hr

and its derivative such that for almost all t there holds

inf, (n,) ^
wheHh

together with

11^(0 -n(0ll^(£i,) < CA||u(0ll//',ni)- I1-34)

Integrating (1.34) in time and combining it with (1.33) we obtain for any (v , (c)eZ

inf {||w-wA||„ +\\i>-wh\\H'}+ inf \\v - X,,\\B Ch- (L35'
«-Ae //* ' x„eBhr '

Hence, since Z is a dense subspace of Q, x Br we observe that for all (v, y/) e

Qr x BT

inf ||(u , y/) - (wh , Xh)\\QrXBr ^0 as h 0

1.32)
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where the infinum is taken over all iwh > Xh) S Ht x BhT. Therefore (A.2) holds for

(1.31).
Furthermore (A.l) holds for Hhr in (1.31) if Hhr has an inverse property, i.e., there

exists 0 < C < oo such that for all vh e HT and a.e. t € (0, T)

IKII/z'to,) - 11^/7IIz.2(a,)- (1.36)

Finally, by combining (1.35) and (1.28) we obtain as a consequence of Theorem

2 the following convergence result. (Here, let H,J consist of continuous piecewise

linear finite elements and H^l/2 of piecewise constant boundary elements.)

Corollary 1. Suppose the solution (u, 4>) of (1.12) belongs to the space Z in

(1.32) and suppose HhT, Bhr are given by (1.31) and the grid AQ is regular. Then

there holds for the solution (uh , (j>h) e HhT x BhT of the semidiscrete Galerkin scheme

(1.14)

K-"lltf7. + ll;uh~u\\H'T + ll^-^IUr ^ cih> (L3?)

|| uh - w||i~{0i7-;i2(£ii)) < C2h, (1-38)

llw/i ~~ WIIl2(0, 7";/.2(Q|)) — ̂ 3^ ' (1-39)

where the constants C,, C2, C3 depend on (u, <f>) but do not depend on h .

Proof. For a regular grid AQ the space Hhr as defined in (1.31) satisfies (1.36)

where is the space of continuous, piecewise linear polynomials on AQ . Hence

(A.l), (A.2) hold and therefore (1.37) is a direct consequence of (1.35) and (1.28).

The estimate (1.38) follows by interpolation from (1.37). □

2. A fully discrete coupling method. The semi-discretization reduces approximating

the parabolic-elliptic interface problem (1.1)'- (1.3)' to solving a (stiff) system of

ordinary differential equations.

In general this cannot be done. Therefore, we must discretize the time variable

to approximate the solution of the system of O.D.E.'s. One such method is the

Crank-Nicolson method.

We seek to calculate sequences { } c ll\ , {<i>"h } c , n = 0, ... , J where

Jk = T and ss u(nk), <p"h sa 4>(nk) and Unh , (p"h satisfy for all wh e Hlh ,

n e V/2

L
r rW+ 1 T ( T 7^+1 i r r" i

u, -u, . I Uh + Uh (t>h + <j>h
a wh  " ax + a I ~ ' 2 ' U'h ' ¥h——t — dx + a

-Vhds + Jf
gn+i + g" J [ f+' + /" (2.i:

: ^—-— ds,2 r'< T L >> 2
'r - Jr

0 < n < J - 1 with = Pq

where g"(x): = (Bv0 - v0){x, nk), /"(.v): = (i//0 + Dv0)(x, nk) and P is the L2

projection.
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We note that to implement (4.2) we let U^+l = J2'r-\ c"+1t'((x) and set w = vi

in (4.1), correspondingly we take </^+l = J2,=\ Xi(x) an<3 set y/ = xt with basis
j  j i2

functions vj,xi of Hh and Hh '"respectively. Thus at each time step we must

solve
// ^+1 , k r . n+\ r> ■ " + ' i i ft , -> i

Jlc +-[Ac + BA ] = b , (2.2)

with A = 3? + /L# + 2> - 33T and B = 38 + S (compare (1.17), (1.18)) where

(b"), = ^[(g"+[ + g" , Xi)+(f"+l +f" , vi^+fn viUh dx~^a(Uh > ̂ h'vi*Xi) (2-3)

and {g, x)' — Jrgxds. For the fully discretized scheme we have the following

convergence result.

Theorem 3. (i) Let vQ e L2(0, T; Hl,2(T)), y/Q e L2(0, T\H~l/1{T)), f e

L2(0, T; //'(Qj)') be given. Then there exists for any h > 0, k > 0 a unique

solution {Unh} c H\ , {<t>nh} c //~1/2, n = 0, ... , J = T/k of (2.1).

(ii) Let (u,(j>) solve (1.12) with u E C1 ([0, T]; Hr(Ql)) n C3([0, T]; L2(Q,)),

4> £ C°([0, T]; //f_3/2(T))l < r < d + 1 , and u{0, x) = g(x). Let Hxh consist of

continuous, piecewise polynomials of degree d on a regular partition of and

let Hh 1 consist of piecewise polynomials of degree d - 1 on the corresponding

partition of T. Then there holds with u"(x): = u(nk , x)

max \\U',' - u"\\,2lo . - 0(hr + k'). (2.4)
0<n<J " L *"!'

Furthermore, let un+l/2(x): — u((n + \)k, x), </>"+1/2(x): =<£((« + ±)k, x) and

,,/! +1/2. l/r,« , rr"+l\ J."+1/2. ^ /J." , ^'!+1\
uh -=2{h h h *h -=2^h+^h )

then we have

and

j

J>|| ur"2=0<h'-'+k2) (2.5)
. n=0

J 1/2

£^r"2-/+"2|l«-«,r,} =0(/r'+i'J). (2.6)
,n=0

Proof. The system (2.2) is uniquely solvable since .£ + |(A + B) is a positive

definite matrix. This yields assertion (i). For n = 0, 1, ... , J define w, e Hj,

oj2 e Bhr by the elliptic projection

a(co{(t), co2(t);w, i//) = a(u{t), <p{t); wh, y/h) for all wheHxh, VheH~1'2

(2.7)
and set

co"(x): =ajl(x,nk), co"(x): = co2(x,nk).
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Define C: = - to", tj": = a>" - u" then

e": =Unh-u" = C" + r,n and \\r,n\\L2(S1]) = 0(hr).

Consider the equation £" satisfies where wh e Hlh , y/h e 1/2:

/ >-n+l >-n \ /r«+' , yn j"+ 1 , "+1 . jn , n \

'C/r* ~U? \ , (U"+] + U" cj)"+l +6n. \
k >W» +fl P~2 ' 2 '""N (2"8)

' rt+1 rt \ / rt+l , A? /?+ 1 , « >

 ~ w ) _a (^1 + °h + 0J2 . w w, , wh w - , - , wh, y/h

We remark for wh e H] , y/h e Hth

fco^+col fe>2 + l + (Oj \ f Un+l + U <t>n+l+ct>n
a  1 ' ' 'Wh'Vh\=a\  9  '  5  ; Wh ' Vh

But, for wh e , i//h e Hh , from (1.12) we obtain

(ur-u; \ (t/;+1 + unh C' + tl
T  ' wh + a\ -jL—~>   ' —- > wh ' n

(2.9)

frg"+l,2Vhds +
n+1/2 ,

wh as

i r fdu" eu"+'\ . /»"' + «" o"" + «'/'= 2 iQ| + -ST"J ^ + " ^—2—' —2—:

Thus from (2.8), (2.9) we have

(C+l-C \ , (C+l+C C'+^-K+1+^) ^
 r . ^ + a [ x , -* ^ ^ > ¥h I

n+l n \ / n+l , n ^

^,Wh) + h^,Wi

' n+l n \ / n+l n
u - u \ u - u

(2.10)

+ [ k ' I ~ I fr >u'»

/n+l n \

where r": = 5(w"+1 + u") - j:(un+l - un>
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Next, in (2.10) we set u>h = £"+1 + C and yh = w"+1 + to" - (<^/,'+l + <Pl) yielding

1 , rn+1 r" c'l+l , 1 / yfl+1 , fi ,n+l , ,n , 'i+l , rn+l , r/i .
^(C -C,C +C)+2«(C +C,^ +^-(w2 +W2);C + C,wh)

(A? «+ 1 \

5-^—+ r",C"+l+C"J. (2.11)

First we will drop the term a(-, •) which is > 0 by coercivity. But now

(r,-c",r.+c") = iir,t(0|)-lic"lii2(0|).

Also, we use Cauchy-Schwarz inequality and triangle inequality on the right hand

side of (2.11) to obtain:

if{iic"+'iii-(0li-iic"ii^Q||}<

n+1 n
'1 -1

k

x (||C"+1 ||z.2(n , + IK"IIl2(o ,)•

Hence

IK"+1IIl'(0|, - IK"llt',0|, * II' - ''"lUv + k\\r"\\L^

Summing this inequality from zero to J gives

j-i j-l
k0ii ii n+\ n |

K"llrts!|) S liril^o,, + £ 111" - i'II^o,, + k £ l|r"||i!(0|). (2.12)

Now

'i'
tf=0 /7 = 0

Also we note that
r(»+0* dtJ

K0\Un) = O{hr). (2.13)

„+, „ r ' d'l" -L T,dL

Hence
dt]n+\ n

/ ->/IUo.,< L
(n+\)k

nk dt
dt

l-{ a i

yielding

y-i

„=o -/o at L'l.a,) Jo

Here we have used that t] = oj{ - it satisfies

du

du

dt
dt.

T-(OJ, -u) < h
LhCl.) dt //'in,

Hence

'I >

n=0

du

dt
= O(h'). (2.14)

/.'(O. / ://' Si. ;
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Also by Taylor's series we have

2 1 dt dt

From (2.15) we obtain

t / n " Q "+1 \ "+1 «1 du au \ u — u
+ < Ck2 max (2.15)

mk<t<(n+\)k

II^ Ck2 max \uttt\

or
j-\

k II-r"Hz.2(n,) - C{T)k2max\utll\. (2.16)
n=0

Combining (2.14) and (2.16) and (2.13) gives with (2.12) the desired result

IK" II L\^) = 0{k2 + hr).

Hence

K -«" yiQi) < iic"iil1(Qi) + ik'ii^o.) = 0(k2 + hr)

yielding (2.4).

In order to derive the estimates (2.5), (2.6) we proceed as follows. If we introduce
n >,n TTn n n ,n n n n n n n ,n

• = C — h ^1 ' ^2 ' — ^2 ' ^1 * — ̂ 1 U , ' — ̂ 2 ^

and make use of the coerciveness of a(-, •) in (2.11) by taking

„n+1 yn n n+1 n+1 n , ±n+l n n+1
Wh = c + C = e, + e, , vh = 0>2 +C02 -^h + = _e2 _ e2

we obtain

n , n+1

(llei 11Z.2 (S2,) Hei Hl2(£2,)) + ^

n , n+1
«?, + <?,

2

+
e2 + 6"2

< c
n+1 n

£1 ~£1

+ llr IIl2(£J.) I (llei llL2(a.) + llei llz.2(£2.))-

(2.17)
Now we drop the term in the first bracket on the left hand side of (2.17), then multiply

by k and sum over « from 0 to J - 1 . We obtain using the above arguments

gi +gi
' j-1

Ek
n=0

With the notation

1/2 'J- 1

+ EA'
H'( a.) J \n=0

n+1 , n
e2 + e2

1/2

< C{k2 + hr ').

h~,/2( n,

„n+l/2 _ + <?, TTn+1/2 ,,n+l/2
e-, . - ^ - uh w\

and

n+l/2. g2 2 jlI+1/2 ,.,n+l/2

: - " f ' ~ Qh W2

this leads with

Mr.n+l/2 n+1/2. ,, n+l/2,, ,, n+l/2,,

II h ~U H //' (£2,) - We\ H/z'tn,) + Hei H//'(n,)

to the estimate (2.5). The estimate (2.6) follows similarly. □
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Below we present experimental convergence rates for the solution of the discrete

system (2.1) using continuous piecewise linear finite element approximations Ufor

in O, and piecewise constant boundary element approximations (f>"h for dujdn

on T. We consider the square £2, = {(Xj, x2) e R": |x;| < \ , i = 1,2} and take

the time interval t e [0, 12]. The Crank-Nicolson solutions (Uj't , <j>nh) are computed

at each time step A: on a fixed criss-cross grid on Q, and on the induced boundary

element mesh on T, respectively.

Example 1. (See Table 1.) w, = e~'/w(2t + x2 + x2) in x [0. 12], w2 =

e"'/10^ln(xf + x22) in (R2\Q,) x [0, 12]. Here we take k = 2h, T = 12 and J = f
and define (compare (2.4)-(2.6))

er =Q™ ||^-«"||LJ(0|), (2.18)

. <2-19)V
. n=0

( J \ 1/2
,n+1/2 ,n+l/2,,2

. n=0

<3= = |£*n*r". (2.20)

Example 2. (See Table 2.)

-r/io 1
= e - exp

(x, - 1 )2 + (x2 - 1 )2

4t
in Q. x [0, 12]

u2 — e ,/wL ln(x~ + x2) in (R^fi^ x [0, 12].

Here we take k = \h , T = 12 and J = and define et , e2, e3 as in (2.18)—(2.20).

Table 1. Experimental convergence rates «| . <>2, '>3 for et , e2, e3 .

h

1/6

1/10

1/12

1/14

1/16

.052231

.028816

.018478

.012835

.009432

.007223

-2.07

1.99

2.00

2.00

2.00

.148888

.082168

.052689

.036599

.026896

.020599

2.07

1.99

2.00

2.00

2.00

1.70288

.522742

.357865

.223067

.154757

. I 16083

4.1 1

1.70

2.59

2.37

2.15
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Table 2. Experimental convergence rates , a2, <13 for et , e2 , e} .

h e, a. e-, oti e-.

1/6

1/8

1/10

1/12

1/14

1/16

.052803

.029135

.018682

.012976

.009536

.007303

2.07

1.99

2.00

2.00

2.00

.149917

.082959

.053153

.036893

.027114

.020782

The above computations were performed on

2.06

2.00

2.00

2.00

1.99

1.711005

.543592

.376088

.237968

.165767

.124730

3.99

1.65

2.51

2.35

2.15
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