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Introduction. In this paper the simpler problem in the optimal design of tension

structures is considered. Let a square inextensible network undergo given transverse

loads and be prestressed in its plane by means of tractions applied along the boundary.

We want to study the optimal distribution of tractions in order to minimize the

compliance of the net when the total pretraction load and two positive lower and

upper bounds to the pretractions are given. Attention is addressed to general issues;

we discuss existence and uniqueness and provide a description of certain qualitative

properties of the solution.

The compliance of the net is defined as the work done by the loads evaluated in

the equilibrium configuration. It is then a functional of the pretractions and these, in

their turn, are the coefficients of an equilibrium operator. Thus, the problem reduces

to studying the minimization of a cost functional defined over a certain class of op-

erators, as is customary in many other optimization problems [1-12]. The theory

of (/-convergence (see, e.g., [13, 14]) proves to be the natural setting to discuss the

existence of solutions for these problems. At this point, however, because of the con-

stancy of the pretractions along the fibers (cf. [15]) G-convergence is in the peculiar

circumstance of being equivalent to weak convergence, and the topological properties

that are required for a solution to exist can be assessed in a more familiar context.

The situation is close to that encountered in dealing with the one-dimensional prob-

lems where G-convergence is equivalent to weak convergence of the inverses of the

operator coefficients, [16, 17], so that one could in fact obtain existence results with-

out mentioning G-convergence. Velte and Villaggio [18], for instance, follow this

approach in a paper which raised our interest in the present problem. This distin-

guished feature of G-convergence in one dimension, however, does not carry over to

a higher dimension. So, the fact that a property of this sort holds in the present case

gives the problem a special location in structural optimization.

After proving the existence of optimal pretractions, we study other features of the

solutions. In particular, by making use of Kuhn-Tucker conditions, it is possible to

show that all solutions correspond to the same configuration of the net and that the
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pretractions must reach the minimum value near the edge of the net. Next, conditions

sufficient for uniqueness are outlined and cases where nonunique optimal pretractions

occur are described. Although these results are not exhaustive, they provide insight

into the problem of uniqueness.

1. Setting of the problem and existence of solutions. We consider a network occupy-

ing the unit square Q = (0, 1) x (0, 1) and made of fibers uniformly distributed and

oriented along directions parallel to the sides of the square. Since extensibility of the

fibers plays no role in the linearized problem that is considered in the sequel, one can

assume that they are inextensible, for definiteness. The fibers are prestressed through

the application of forces per unit length ox = o2(x2) and a2 = a2(x\) al°ng the

boundary, so that the network is capable of withstanding a given transverse loading

<7 •

Let a denote the pair (al, a,), and consider the linearized equilibrium problem

for a net supported along the edges

a^w , n+a7w , 22=-q , in £2,

w = 0, on DO.. (1.1)

2
where w is the transverse displacement and the load q is taken in L (Q), with

||<?|| / 0. Here, it is of interest to find the optimal pairs in a certain admissible set

so as to minimize the compliance of the network.

As a measure of the compliance we assume the work done by the load

F{a) = [ qwadx (1.2)
Jq

which turns out to be a functional of a, if wa is denoted as the solution of (1.1)

for the pretraction state a . It is also assumed that, for practical reasons, we are

interested in minimizing the compliance for a given total pretraction force S applied

all around the boundary, and for fiber tractions bounded away from zero and not

exceeding the strength A of the fibers. Thus, if J/* denotes the set of functions

<j(x) = {<7{(x2), o2{x{)) such that

A<al(x1), a2(x[)<A, (1.3)

for given positive real numbers A < A, and

(cr,(jc2) + o2(xl))dxl dx2 = S, (1.4)h
let us consider the following optimization problem:

F(o) = min F. (1.5)

To give problem (1.5) a proper mathematical setting, in what follows we regard

y as a subset of L°°(ft)2 and its elements as generalized functions. Accordingly,

and without further mention, inequalities (1.3) and all other relations involving the

a's in the following are required to hold almost everywhere (a.e.) in Q. It is also

assumed that 5? ^ 0, that is, that 2X < S < 2A by (1.3) and (1.4).
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In this section we deal with the existence of solutions to problem (1.5) by applying

the standard argument of the Calculus of Variations.

Observe that F is bounded from below since

/ qwadx= / aiwtJ,)dx> 0, (1.6)
Jsi Jsi

where the summation convention is assumed. Then, there are minimizing sequences

and their weak*-L°°(Q) limits trivially exist and satisfy conditions (1.3) and (1.4).

On the other hand, F is continuous with respect to L (Q)-convergence when it is

regarded as a functional of wa . By recalling that G-convergence of a sequence {ok}

to some a implies that the corresponding sequence of solutions w k of problem

(1.1) converges to wa in L (Q) (see for instance [16, 17]) it follows that F is

also (/-continuous. Therefore, solutions of (1.5) exist provided that we can prove

that G-convergence is equivalent to weak*-L°°(Q) convergence on the set S". The

following theorem shows that this is true on the whole set X c L°°(Q)2 of all pairs

of functions a of the form a(x) - (a^(x2), a2(xJ) satisfying (1.3).

Theorem 1.1. In X (/-convergence topology is equivalent to weak*-L°°(Q) topol-

ogy.
r k k

Proof. Let a , a G X be such that a G-converges to a. Then, denoting by

H[g(Q!) = {u e h\Q') I u - g g //p(Q')} with Q' c n and g G H\Q'), one

obtains from [16, 17]

min / okw,]dx^ min / a;w ,, dx, (1.7)
H't[a')Ja' n'

for every Q' c Q and g G Hl(Q'). Now, observe that eveiy a of the form

(cr,(x2), (T2(Xj)) satisfies the condition

/ aju,i£idx = 0, Vu G Hq(Q'),
Jq'

(1.8)

for all e R2 and Q'cfi. This means that the linear function l^{x) = £ ■ x is the

stationary point, and then the minimizer of the energy functional

2I,OjW , ■
n'

dx

(1.9)

on h!(Q') = {u G h\d!) | u - U G Hq(Q.')} , for every given ^gR2.

Tal;ing account of this in (1.7) then yields

^ a-I;] dx - atf dx, VO'cH, V(gR2,

that is ok — a weakly* in L°°(Q)2 .

Conversely, let {ak} be a sequence in X which converges weakly* in Z.°°(Q)2 to

some a G X, so that (1.9) holds. Since (1.8) holds for ak , it follows that

[ ak^~dx- min [ okw,]dx (1-10)
J a' Hi (Q1) J si'
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and (1.9) reads

min [ akw dx [ at] dx, (1.11)
(Si') J a ' ./a'

for all £ € R2 and O'cH. But the convergence of the minima over Hi (Q') of

the functionals on the left-hand side of (1.11) implies, by Theorem 3.3 of [17], the

(/-convergence of ak to some o00 . Therefore,

min [ o^w ,2- dx min [ o°°w,2.dx, (1-12)
h^q')Jq' //{'(nVQ'

for all S, G R2 and fl'cO. By comparing (1.11) and (1.12) one obtains

min [ o°cw,]dx= f at] dx. (1-13)
Hl(a')J n' J a'

Thus, the minimum over H.(Q') of the functional corresponding to a°° is de-

termined by the weak* limit a of {ok} . Then, one can apply Lemma 3.2 of [17],

which states that a quadratic form with coefficients in L°°(Q) and eigenvalues be-

tween I and A, is determined by the minima which the associated functional takes

on H((Q') for every Q'cO and all the linear data l( on dQ! . In the present case

that theorem yields

OK;! = lim jjLj Ja og dy, a.e. in £2. (1.14)

for every ^ e R" and for any family {^}p>0 of open subsets of £2 that shrink at x

nicely in the sense of Rudin (cf. [22, Ch. 8], when p —* 0 . A well-known property of

the averages of Lebesgue functions (cf. [22, Ch. 8]), implies then that the right-hand

side of (1.14) is equal to ct,(x2)^2 + a2(x{)^ a.e. in Q. So a°° = a in L°°(Q)"

and o is also the (/-limit of {ok} . □

Remark. It is worthwhile to notice that, by the same argument, the equiva-

lence between (/-convergence and L°°(Q)-weak* convergence maintains for the wider

class of second-order elliptic operators with coefficients a = [cr/; (x)] symmetric and

divergence-free in the weak sense. In fact, the energy functional is in that case

LGjjW , jW , j dx

and (1.8) becomes

' a u,i£jdx = 0LIn'

which is again satisfied for every u e //(J (Q') and for all i^eR". So, optimization

problems analogous to the present one can be treated in the same way. To stay with

an example pertinent to tension-structures, one might consider the optimization, in

the sense of the present problem, of the prestress field in a membrane transversally

loaded, where the prestresses atj are symmetric and divergence-free by the in-plane

equilibrium of the membrane.
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2, Characterization of the solutions and uniqueness of the optimal displacement.

This and the next sections are devoted to the analysis of some general properties of

problem (1.5). Let us use Lagrange multipliers and write Kuhn-Tucker conditions

for an extremum, [2, 3, 23]. Introduce slack variables /;(z) and L^z), i — 1,2,

with lt, L( £ L°°(0, 1), to take the constraints (1.3) into account:

/2 = cr — A > 0,

2 ' ~ (2-1)
L. = A - a. > 0,

and the multipliers <p(x) in (f2) , al., /?(., i — 1, 2, in l'(0, 1) and // e R,

respectively associated to (1.1), (2.1) j , (2.1) 2, and (1.4). The minima of F under

the constraints of the problem are then stationary points of the Lagrangian J? :

Jzf = / qwdx+ / , ji+q)dx + /u(S - / (o{+o-,)dx)
Jn J a Ja

+ [ K-(^)(/,2(^) - 0,-(z) + A) + j8f(z)(L*(z) + <j(z) - A)]rfz
Jo

and this requires that the following conditions are satisfied

ct,(x2)^, ,, +cr2(x,)^,22= -4, inQ,

cp — 0, on <9Q,

and
l

<pwa, ii </x, -/u-a1(x2) + ^,(x2) = 0,L
L
i

<pwa , 22 dx2 - n - a2{xx) + p2{x{) = 0.

(2.2)

(2.3)

(2.4)

Moreover, the slack multipliers have to satisfy the complementarity conditions

a (cr - A) = 0,' ' (2.5)

^(A-Ci) = 0,

and, for a minimum of F , the inequalities

aj(z) > 0 and j?f(z) > 0. (2.6)

From (2.3),

<P = wa- (2J)

Then, when (2.7) is taken into account and (2.4) is integrated by parts, one gets

w] ,, dxx + n = -a, (x2) + /?, (x2),L
L

, (2.8)
UV'2 dx2+ii = -a2(x1) + y?2(x1).

We now adapt an elegant argument of Prager and Taylor [7] (see also [4, 24]) to show

that the previous conditions are sufficient for a minimum of F.

* Here, <p is chosen in the dual of the space H~ (SI) where the equilibrium equation is naturally
2

formulated. Having chosen q in L'(Sl) is in fact unessential till Lemma 3.1.
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Theorem 2.1. If a* and wa. satisfy conditions (2.5)-(2.8) for some fi*, a*, and

P* , then

F{o*)<F(o) Vffgy. (2.9)

Proof. Let a*, wg* meet Kuhn-Tucker conditions and let a, wa be any other

solution of (1.1), with a 6 5? . Then, the following inequality holds

f {a -o*)w\ dx < °. (2.10)
J n

In fact, let us consider the integral

[ (o-j - o*)w2. ,, dx (2.11)
Jq

first, and let l\ , /' , IlA be a partition of (0,1) such that

a* = k, for x2 G l\ ,

k < a* < A, forx2e/', (2.12)

a,* = A, for x2 e /|.

It follows from the complementarity conditions and from (2.6) that

a* > 0 and fi* = 0, in l\ ,

a\ = P\=Q, in/1, (2.13)

a* = 0 and /?*>0, in /|.

By using the Fubini-Tonelli theorem in (2.11), it follows from (2.13) and (2.8) that

J (a, wl*> i dx^jdx2 = -n* j {ax -o*)dx2

+ [ (o-j - <7*)( [ w].,xdx\dx2. (2.14)
i/ju/; Wo /

But, from (2.8) , and (2.13)i

/'

2 * * I
u; • ,, dx, < — n and (er, — cr, ) > 0 in L , (2.15)!

and
r 1 2 j

/ w.,.dx.>~n* and (cr, - cr*) < 0 in /A. (2.15)2
io

If (2.15) is taken into account in (2.14), we have that

/ (ff, " >1 ^ /
/n Jo

i
(ffj - a*)dx2. (2.16)

Analogously,

[ (a, - o*)w\ ,2 dx < -ii [ (a, - cr*)dxr (2.17)
JS.1 " ./o

Then, inequality (2.10) follows by summing (2.16) and (2.17) if one recalls (1.4).
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Let us write (2.10) in the equivalent form

/ <7lwl">,dx-2 qwa.dx> / <Jjw\ , . dx - 2 / qwa. dx (2.18)
in in J n in

and notice that

/ ojw\,jdx-2 / qwa.dx> / oiwa,jdx-2 / qa>adx, (2.19)
in in in in

because wa is the solution of (1.1) for the pair of coefficients a = (cr,, cr2). Thus,

/ a^wl'' / ^x - 2 / qwa- dx > / cru^,. dx - 2 / dx, (2.20)
in in in in

where, by (1.6), , the left-hand side and the right-hand side of (2.20) are equal to

- fn qwa. dx and - fn qwa dx, respectively. So, one finds

[ qw . dx < [ qw dx, (2.21)
in in

which is (2.9). □

From the theorem all the stationary points of F are absolute minima, so they

give F the same value. An important consequence of this is stated in the following

theorem.

Theorem 2.2. If a and a* are two minimizers of F, then

wa = wa.. (2.22)

Proof. From the chain of inequalities (2.18) and (2.19), and from the equality of

the first and the last term in (2.18) and (2.19), respectively, it follows that

/ aiwo' >, dx ~ 2 / qu>a. dx — / , ( dx - 2 / qwn dx. (2.23)
in in in in

Then, if it is observed that the total energy functional Ea: (Q) —> R defined by

E(w) = I a u>2 dx -2 [ qw dx (2.24)

attains an absolute minimum at wa , (2.23) implies that wa. is also a minimizer of

Ea . Hence, wa. coincides with wa since the minimizer of Ea is unique. □

3. Qualitative properties and uniqueness of the solution. The uniqueness of the

optimal displacement wa does not imply that the corresponding coefficients in the

differential problem (1.1) are also uniquely determined. In this section we analyze

some qualitative properties of problem (1.5) which are partly devoted to the discus-

sion of uniqueness of the optimal pretractions.

Let it be assumed that the sets

/; = {ze(0, 1)| <7,(z) = A}, /=1,2, (3.1)

be intervals, for simplicity. The case where l'A are simply measurable sets requires

slight changes in the conclusions, but the argument is the same and the situation is

sufficiently clear from the case treated explicitly here.
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Theorem 3.1. If a is a solution to problem (1.5) and n is the corresponding value

of the multiplier in (2.8), then // > 0 implies

q = 0 in Q - /^ x /|. (3.2)

Moreover, q is required to satisfy the conditions

[ qdx=[ qx(dx = 0, if/^x/}cQ, (3.3),
Jllxll Jilxli

or

f, qx2 dx = 0, (3.3)2

2 1
if IA x IA intersects <9Q only along the edge x2 = 0. A straightforward adjustment

of this condition is required if IA x IA intersects 3Q along any other edge. No
2 1

additional condition on q is needed if IA x IA touches the boundary of CI on more

than one edge.

Proof. Let us consider (2.8), , first. From (2.13) we have

f0' wI ,xdxx<-n, for x2 e l{ ,

f0' w],, dx{ = -n, for x2 e /', (3.4)

f0' w],, dx, > -n, for x2 e l[.

If n ^ 0, then from (3.4) j ,2 it follows that

wa ,, = 0, a.e. in (0, 1) x l\ U/'. (3.5)

It is concluded, by integration and taking the boundary conditions into account, that

wa = 0 in (0, 1) x l\ U/'. (3.6)

Likewise,

wa = 0 in 7a2U/2 x (0, 1). (3.7)

So,

wa = 0 and q = 0 in Q - IA x IA , (3.8)

by the equilibrium equation.

Now, considering that wa is the solution of (1.1), wa has to minimize the total

energy E (see (2.24)) in h}.(Q) , and this requires

(3.9)/ ^ iw a > jv ■> i dx — / qv dx = 0, Vt>e//0'( Q).
J n J a

When recalling (3.6) and (3.7), (3.9) is written

f own,iv,dx- [ qvdx = 0, Vv e hI(CI). (3.10)
J 'I

2 1
Then, if IA x IA is internal to Q, one can choose v to be any infinitesimal rigid

displacement on IA x IA and obtain (3.3), . Analogously, one can choose v so that

it corresponds to a rigid rotation of IA x /! around the edge x2 = 0 and obtain
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(3.3)2, if this circumstance applies. No condition on q is required in addition to

(3.2) if neither case above applies. □
2 1

Theorem 3.1 implies that n has to be negative if IA x IA = 0, since by assumption

q cannot vanish in Q. Also, //<0if<?>0in£2 because (3.2) and (3.3) j cannot

be satisfied unless q = 0. More generally, the next theorem shows that [i cannot be

positive when

2X < S < 2A. (3.11)

Notice that S? contains just one element when S = 2/1 or S = 2A. So, uniqueness

is trivial in these cases.

Theorem 3.2. Let a be optimal and let (3.11) apply. Then, n <0.

Proof. Observe that (1.4) and (3.11) imply that meas(/{ U/') > 0 for at least one

value of i. Let

meas(/! U /') > 0,

so that at least one out of l\ and /' is nonempty. Then, the statement follows from

(3.4), or (3.4)2 . □

The situation in Theorem 3.1 suggests cases where there is nonuniqueness.

Theorem 3.3 (Nonuniqueness). Let a be optimal with n - 0 and let (3.11) apply.

Then, there are pretractions a* ^ a which are still optimal.

Proof. Condition (3.2) in Theorem 3.1 and the assumption ||^|| ^ 0 imply that

I2Axl[^0. Moreover, meas(fi-/Ax/A) > 0 because S < 2A. Then, it is obviously

possible to modify cr so that the new pretraction state a* is different from a on a

subset of positive measure in Q - IA x IA and satisfies the conditions

* * aa, = a2 = A, in /A x /A,

X < a*. , al < A in Q — 77 x /! ,

L(er* + a*)dx = S.
a

So, a* g 5?. Moreover, wa is also the solution of problem (1.1) under the pre-

tractions a*, since the displacement wa vanishes in Q - IA x IlA , where a may be

different from a*, whereas it is different from 0 only where a = o* . Thus, a* also

is a minimizer of F under the same data q and 5?. □

It is not difficult to see that, for given values of A and A, one can construct

problems (1.5) with nonunique solution by suitably adjusting q and 5". In fact, let

us fix a rectangle R - (a, b) x (c, d) CC Q and choose wA e H2(Q) such that

wA = 0 in Q - R . Then let q be defined by

-qA = A(wA,u+wA,22)

in Q. It follows that wA is the deflection of the net under the load qA for pretrac-

tions aA arbitrarily chosen in Q - R, and such that

aA\ =C7A2 = A in R-
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In particular, since wA vanishes in ft - R , the energy equality is written as

/ Qawa dx = / aIV^a|2 dx.
J n in

Now, if a is any other distribution of pretractions equipollent to aA with 5. < A

in ft, and if is the corresponding deflection of the net under the load qA , one

obtains

/ w~dx = [ ojW2d ,. dx,
Jq Jn

and also

/ A|Vu;a|2 dx < / a.wl'dx,
Jn Jn

from the monotonicity of the stored energy with respect to a (see, e.g., [14]). It

follows that

/ lKWKdx ^ / ^AU'adx>
J a J n

which shows that crA is in fact optimal for the given load qA. But cta can be

arbitrarily chosen in Q - R , if 5 > [(b - a) + (d - c)] + A[2 - (b - a) - {d - c)]; so

one has a problem for which the optimal pretractions are not unique.

We remark that the lack of uniqueness shows that F(a) is not strictly convex in

general.

Let us discuss now the case ju < 0 in Theorem 3.2. Our aim is to describe features

of the optimal pretraction fields in this instance. The following lemma is needed:

Lemma 3.1. For every w e H2(Q.) C\ Hq{Q.) ,

/ w2l(x], z)dx{ = 2 / ( / w,xw,v dx
Jo Jo V Jo

2 I dxX

■-Lw, {w, ] 2 dx2 I dxv
o

(3.12)

Proof. Equalities (3.12) trivially hold for a function w e C2(Q) that vanishes

on dQ. Let Q. = (0, 1) x {z} for z e (0, 1). Then, by the Sobolev imbedding

theorem,

H2(Q)->Hl'p(Q2), 2 < p < oo,

and the imbedding is continuous. It follows that the first term in (3.12) is continuous

in the topology of H2(Q.); on the other hand, the remaining terms in (3.12) are also
2 1

continuous in the same topology. Therefore, the equality maintains in //"(Q)n//0 (ft)

by density. □

The coefficients er and the domain ft satisfy the conditions of Theorem 17.6 of

Ladyzhenskaya and Ural'tseva [25], In addition, the uniqueness theorem holds in

//q (ft). It follows that w e //2(ft) n//q (ft) for every q e L2(ft). Thus, (3.12)

applies to w and the integrals on the right-hand side are continuous in z since

wa , {wa , v & Lx (Q.). It follows that

L«V ,(X|, Z) dx,
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also belongs to C°(0, 1) when it is regarded as a function of z . Furthermore, from

(3.12)

Urn ^ Wa , J (xl, z) dxx = 0. (3.13)

z—> 1 ®

The same argument applies to f0' w2a 2(z, x2)dx1. We are thus in a position to

prove

Theorem 3.4. Let a be optimal, with /u < 0. Then the sets 11, i — 1,2 have

positive measure.

Proof. Let us prove that meas/] > 0. Observe that by (2.8)t , (2.5), and (2.6)

•' 2

wa j(jfj, z)dxx + n < 0 <-► a,(z) > 0. (3.14)
/Jo

Since from the complementarity conditions ax(z) = A when Qj(z) > 0, it follows

that i

Ax = {ze(0, 1)| f w] xdxx+n<Q} cl\. (3.15)
Jo

But Ax is nonempty by (3.13) and by the assumption that n < 0; moreover Ax is

open because the function f0' w2a ,, dxx is continuous. Therefore, l\ has a positive

measure. □

Notice that from the same argument Ax contains left and right neighborhoods of

the endpoints of the interval (0,1). So, one also obtains

Theorem 3.5. Under the hypothesis of Theorem 3.4, there is a S > 0 such that

(7,(z) = <r2(z) = A for z G (0, S) U (1 - S, 1). (3.16)

Thus, the optimal pretractions are to be as small as possible in a strip of positive

width all around the boundary of Q. Since at the boundary the deformability is

limited because of the nearness of the support, the result fits with physical intuition,

although the fact that the strip has a positive width does not seem obvious to us. It has

not been checked whether this feature of the optimal pretraction state is familiar to

people working in structure theory. It would be interesting to estimate the extension

of that zone in terms of the other data q, S, and A.

Apart from practical implications, the property established in (3.16) c an be useful

to treat uniqueness when /u < 0, or to characterize cases where uniqueness holds.

As a contribution to the understanding of this point, one should conclude with a few

remarks that illustrate how (3.16) can be used in dealing with it.

It can be shown that n and hence a( and /?; are unique when n < 0. Let then

a and a* be minimizers of F corresponding to a negative multiplier ju. Since

the optimal displacement in both cases is the same, call it w, we have from the

equilibrium equation

crlw ,u +a2w ,22 = <7*w , n +er2u;,22. (3.17)

If one concentrates, for instance, on the strip (0, 1) x (1 - 5, 1) where er, = a* = A

by Theorem 3.5, it follows that

a*{xx)w ,22{xl, z) = a2{xx)w,22 (x,, z), for z € (1 - d, 1). (3.18)
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Then, a2 / a2 implies w , 22 = 0. So, nonunique tractions may occur only in fibers

that remain straight in a strip of width S all around dQ. A fact that looks rather

exceptional and suggests that uniqueness is likely to hold when pi < 0. Conditions

on q which are sufficient for uniqueness can be easily worked out and seem to cover

fairly general situations, but we are unable to put them on a systematic basis. The

following example points out the sort of difficulties that may arise if one allows for

nonuniqueness when p < 0. Let a and a* be two distinct solutions, for q = const,

and let the set {x, e (0, 1) | er*(x,) ^ a2(xl)} contain an interval V. Then,

w , 22 — 0 in V x (0, (5) U (1 - S , 1). So, the integration with respect to x, of the

equation

oi{x2)w,n{xl,x2) = -q (3.19)

in V x (1 - d , 1), yields

w = -qx\/2ax (x2) + {x2)xl + f2{x2), (3.20)

where /, and f2 are arbitrary functions of x2 ■ It follows that w may not vanish

identically for x2 —> 1 , as required by the boundary conditions.

Acknowledgment. This work has been partially supported by a grant of the Ital-

ian Ministry of Education to the University of Udine. The authors would like to

thank also the Italian Foreign Ministry for funding the participation of C.-Q. Ru in

a doctoral program organized at the International Centre for Mechanical Sciences

(C.I.S.M.) during the academic year 1986/87.

References

[1] R. Kohn and G. Strang, Optimal design and relaxation of variational problems. Comm. Pure Appl.

Math. 34, Part I 113-137, Part II 139-182, Part III 353-377 (1986)
[2] N. V. Banichuk, Problems and Methods of Optimal Structural Design, Plenum Press, New York,

1983
[3] N. Olhoff and J. E. Taylor, On structural optimization, Trans. ASME Ser. E. J. Appl. Mech. 50,

1139-1151 (1983)
[4] N. C. Huang, Optimal design of elastic structures for maximum stiffness, Internat. J. Solids and

Structures 17, 305-311 (1981)
[5] K. T. Cheng and N. Olhoff, An investigation concerning optimal design of solid elastic plates,

Internat. J. Solids and Structures 17, 305-323 (1981)

[6] N. C. Huang, Optimal design of elastic beams for minimum-maximum deflection, J. Appl. Mech.

38, 1078-1081 (1971)
[7] W. Prager and J. E. Taylor, Problems of optima! structural design, J. Appl. Mech. 35, 102-106

(1968)
[8] R. Reiss, Optimal compliance criterion for axisymmetric solid plates, Internat. J. Solids and Struc-

tures 12, 319-329 (1976)
[9] K. A. Lurie and A. V. Cherkaev, G-closure of some particular sets of admissible material char-

acteristics for the problem of bending of thin elastic plates, J. Optim. Theory Appl. 42, 305-316

(1984)
[10] K. A. Lurie, A. V. Cherkaev, and A. V. Fedorov, Regularization of optimal design problems for

bars and plates, J. Optim. Theory Appl. 37, Part 1 499-522, Part 2 523-543 (1982)
[11] K. A. Lurie, A. V. Cherkaev, and A. V. Fedorov, On the existence of solutions to some problems

of optimal design for bars and plates, J. Optim. Theory Appl. 42, 247-282 (1984)

[12] K. A. Lurie and A. V. Cherkaev, Optimal structural design and relaxed controls. Optimal Control

Appl. Methods 4, 387-392 (1983)



OPTIMAL DESIGN OF NETWORKS 263

[13] F. Murat and L. Tartar, Calcul des variations et homogeneization, Cours de l'Ecole d'Ete d'Analyse

Numerique CEA-EDF-INRIA sur l'homogeneisation, Breau sans Nappe, Juillet 1983, Eyrolles,

Paris, 1984
[14] E. Cabib and G. Dal Maso, On a class of optimum problems in structural design, J. Optimization

Theory Appl. 56, 39-65 (1988)
[15] R. S. Rivlin, Plane strain of a net formed by inextensible cords, J. Rational Mech. Anal. 4, 951-974

(1955)
[16] S. Spagnolo, Convergence in energy for elliptic operators, Proc. 3rd Symp. Numer. Solut. Partial

Diff. Equat., College Park, Md., 1975, ed. by B. Hubbard, Academic Press, New York, 1976, pp.
469-498

[17] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici

del secondo ordine, Boll. U.M.I. (4) 8, 391-411 (1973)
[18] W. Velte and P. Villaggio, Are the optimum problems in structural design well posed!, Arch. Ra-

tional Mech. Anal. 78, 199-211 (1982)
[19] F. Murat, Un contre-exemple pour le probleme du contrdle dans les coefficients, C. R. Acad. Sci.

Paris, Ser. A 273, 708-711 (1971)
[20] F. Murat, Contre-exemples pour divers problemes oU le contrdle intervient dans les coefficients, Ann.

Mat. Pura Appl. (4) 112, 49-68 (1977)
[21] I. N. Rozvany, N. Olhoff, K. T. Cheng, and J. E. Taylor, On the solid plate paradox in structural

optimization, J. Struct. Mech. 10, 1-32 (1982)

[22] W. Rudin, Real and complex analysis, McGraw Hill, New York, 1966

[23] H. W. Kuhn and A. W. Tucker, Nonlinear programming , Proc. of the 2nd Berkeley Symp. on

Math. Statistic and Probability, J. Wiley, Berkeley, Univ. of California, 1951
[24] J. E. Taylor, Maximum strength elastic structural design. Journal of the Engineering Mechanics

Division, ASCE, 95, No. EM3, 653-663 (1969)

[25] O. A. Ladizheskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic

Press, New York, 1968


