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Abstract. When a crack of finite size is wholly surrounded by a thin inhomogeneity,

the behavior of the solution near a crack tip is the same as that of a semi-infinite

crack surrounded by a semi-infinite inhomogeneity. The analytical structure of the

solution for the latter problem is established via the consideration of the title problem.

It is shown that the standard Fast Fourier Transform Algorithm may be applied for

the determination of the coefficients involved in the analytically structured series

solution. An approximate but explicit solution is also derived for the title problem.

1. Introduction. When a crack is wholly embedded in an inhomogeneity or when

the crack tips are separately lodged in disjointed inhomogeneities, differences between

the moduli of the inhomogeneity and the matrix material can cause the SIF to be

greater or less than that prevailing in a homogeneous body. With the problem of

crack-damage interaction in mind, the inhomogeneities are taken to be vanishingly

small and softer than the matrix. This is the range in which we place our emphasis.

For a finite crack with tips lodged in vanishingly small tip inhomogeneities, the

asymptotic limit is the solution for a semi-infinite crack lodged in an inhomogeneity

of finite size. The case of a semi-infinite crack penetrating a circular inhomogeneity

was studied by Steif [5]. A method for solving noncircular cases was considered by

Hutchinson [4], Using Eshelby tensor (Eshelby, [3]) to estimate the Eshelby-tensor

force along the interface, an approximate but explicit formula was obtained by Wu

[7], If the crack is of linear dimension unity and the size of the inhomogeneity is

characterized by £ (e —► 0), asymptotic solutions accurate to the order of e may

be constructed for arbitrary crack-specimen configuration and inhomogeneity shape.

This result, together with the associated Eshelby-tensor force, is being completed by

us.

For the cases where the crack is wholly embedded in an inhomogeneity the needed

asymptotic analysis is completely different, as the matrix contains no portion of the

traction-free boundary. This last condition dictates the holomorphicity of the solu-

tion for the matrix for the class of problems described in the foregoing paragraph.

Without the direct availability of such information, the properties of the solution for
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the matrix can only be established from matching. The situation parallels to that

associated with the thin airfoil problem (Van Dyke [6]) except that the "airfoil" now

is also governed by a field. In fact the field is singular due to the presence of a crack

inside the "airfoil." Moreover, both the "airfoil" and the outside field are each gov-

erned by two complex functions. The complexity of the problem makes it clear that

the desired asymptotic limit can only be obtained by numerical means. The actual

computation, however, must be preceded by an asymptotic analysis to get rid of the

thinness parameter e . This is necessary because no numerical scheme can possibly

handle the conflicting limits required by e —► 0 (vanishingly thin inhomogeneity)

and r~1/2 —► oc (crack tip inside the inhomogeneity).

Our eventual goal is to improvise an asymptotic analysis, together with a com-

putational scheme, that is applicable to arbitrary crack-specimen configuration and

inhomogeneity shape. A number of underlying difficulties inherent to the goal are ei-

ther resolved or made apparent by the explicit analysis completed for the benchmark

problem presented in this paper.

The title problem is a benchmark problem for a number of reasons. The confocal

geometry enables us to represent the full solution for arbitrary inhomogeneity size

in series form in a transformed plane so that the numerically exact result may be

considered as a checkpoint. This was completed by Wu and Chen [8], and the de-

sired asymptotic limit was numerically extrapolated. The series solution, however,

does not reveal any of the analytic characters of the solution around the crack-tip

region that is immediately outside the inhomogeneity. It merely indicates that the

convergence of the series becomes extremely slow when the size of the inhomogeneity

becomes vanishingly small. This missing information is completely recovered in the

asymptotic analysis. In particular, the solution for the matrix in the neighborhood

immediately next to the crack tip must involve powers of r~l,~ where r = 0 is the

crack tip. This is in contrast to the crack-tip inhomogeneity solution where the series

is of the form of r~{n+^~].

Section 2 summarizes the formulation in terms of a complex variable. It is shown

that the solution depends explicitly on two composite parameters y and y*, which

may be expressed in terms of Dundurs' [1] a and /? parameter. While the admis-

sible elasticity ranges can be most easily determined in the a/?-plane, the explicit

dependence of the solution on y and y* suggests that solutions for similar inhomo-

geneity problems should be presented in terms of y and y* rather than other equally

valid parameters.

Outer expansions are presented in Sec. 3. The procedure follows straightforwardly

from the well-known thin airfoil expansion (Van Dyke [6]). The needed asymptotic

sequence is a part of the unknown in a typical asymptotic analysis. For example,

if the inhomogeneity is a thin strip of thickness 2e with round noses of radius e

the asymptotic sequence must include elne . Thus, the form of an outer expansion

depends explicitly on the shape of the inhomogeneity.

Inner expansion is presented in Sec. 4, and the parabolic nose is studied in de-

tail. Forms of the appropriate series representations are obtained. It is shown that

the standard Fast Fourier Transform Algorithm may be applied to the system. For
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the parabolic nose, a two-term approximate but explicit solution is also presented.

Pertinent results are presented in Sec. 5. The author is indebted to Mr. C. H. Chen

for many helpful discussions and several lengthy computations without which the

concise graphic presentation summarized in Sec. 5 would have been impossible.

2. Complex variable formulation. Let (z{, z2) be rectangular Cartesian coordi-

nates, and z = Zj + iz2 the associated complex variable in the z-plane. For plane

problems, the displacements ua(zl, z2), stresses rap{zx, z-,) and resultant force

over an arc R — Rl + iR2 may be expressed in terms of two complex functions

W(z) and w(z), viz.,

2/4+ iu2) = kW{z) - zW'(z) - w(z), (2.1)

/R = W(z) + zW\z) + w(z), (2.2)
where

f 3 - 4v plane stress,
k — \ (2.3)

{{?> — v)/{\+v) plane strain,

and n and v are, respectively, shear modulus and Poisson's ratio.

For regions containing a portion of the real axis along which displacement and

traction are continuous, the function w(z) may be expressed in terms of W(z) and

a new function f(z) as follows (England [2]):

w(z) =W(Tj - zW'(z) -7(J). (2.4)

Using the above, we obtain from (2.1) and (2.2)

iR = W(z) + W(z) + (z - z)W'(z) -f(z), (2.5)

2n{ux + iu2) = {k+ 1 )W(z) - W(z) + W(z) + (z- z)W\z) - f{z). (2.6)

A traction-free crack of length 2 is located on the real axis with jz,| < 1 . The

crack is wholly embedded in an inhomogeneity, denoted by D, , which in turn is

embedded in an infinite medium denoted by D1, Fig. la. An additional subscript a

will be placed on a parameter or variable to indicate its region of definition. Thus,

a , v , k , W , and f are defined for region D .
~ a ' a 7 a ' a 7 J (\ ° a

The crack is located in Di and the associated traction-free condition may be

integrated once to become (c.f. (2.5))

nf(x) + wf (X) - J?(x) = 0 (\x\ < 1) (2.7)

where the notation F (x) = F(x ± i0) has been used.

The infinite medium is loaded at infinity by xty^ = an/i so that

W2 = Wz, f2 = fz as - - oc (2.8)

where

W = 4 (°"i 1 +cr22>' /= 2(crn " ct22) + /(J12 » (2-9)

and
a = 2 W - f = o22 - io{2 (2.10)

is another parameter to be used in the sequel.
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(a) (b)

Fio. 1. A crack in a vanishingly thin elliptic inhomogeneity. (a)

configuration in the physical r-plane, b/a —♦ 0 . (b) Parabolic nose

in the boundary layer £-plane.

The interface between D{ and D1 is denoted by C and is defined by

C:z = zc. (2.11)

It is assumed that C is perfectly bonded so that traction and displacement are con-

tinuous along C. In particular, the traction continuity condition may be integrated

once to become a continuity condition in R (c.f. (2.5)). The two conditions are

n\(zc) + W, (Zc) + (zc - zc) W[{ZC) - /, (Zc)

= W2{zc) + W2(zc) + (ze - zc)W^zc) - f2(zc), (2.12)

H\(zc) - yW2(z2) + y*[W2(zc) + W2(zc) + {zc - zc)f^(zc) - fc(zc)], (2.13)

where the ^-continuity, (2.12), has been used in simplifying the displacement con-

tinuity conditions, (2.13), and

(1 +k2)ju1 *_ 1 / Ml
(2'14)

are two composite parameters. A discussion of composite parameters may be found

in (Dundurs [1]). Equations (2.7), (2.8), (2.12), and (2.13) constitute the governing

conditions for the solution of the desired problem. Attention is now turned to the

specific situation where the interface C is a thin ellipse.

We begin by specifying the following parameters (Fig. la):

Pc= 1+e, a = \{pc + J^)> a -b1 = 1, (2.15)



A CRACK IN A VANISHINGLY THIN ELLIPTIC INHOMOGENE1TY 237

where a and b are the major and minor axes of an ellipse with focal points located

at ±1 . The ellipse is thin if 1 . We have

a = 1 + ^(e2 - e3 + • • •), b = e - ^(e2 - e3 h ), (2.16)

<5(e) = b/a ~ (9(e) (2.17)

where S is another convenient parameter. Moreover, the radius of curvature of the

ellipse at z = ±a is
,2

Pa = -~S2 + 0(e4). (2.18)
a

The ellipse is assumed to be the interface boundary, viz.,

„ , .b 2 2*1/2 , 2 2, 1fl,
C: z = zc = x ± i-(a —x) , (x < a ). (2.19)

Thus, as e —> 0 , zc has the expansion

zc~x±iS{ 1 -x2)1/2 + /»"3i(l - x2yl/'2 + ■■■ (2.20)

which is valid for x2 < 1 . It follows that the expansion cannot be used to satisfy the

continuity near z — ±a . The associated expansion is termed the outer expansion

which will be presented in Sec. 3. The terminology has its origin in thin airfoil theory

which is well known [6].

To remedy the shortcoming of the outer expansion, inner expansions will be con-

structed in Sec. 4. In view of the symmetry, we shall concentrate on the region near

z = a . The scaling factor for the needed boundary-layer complex variable is dictated

by (2.16). This complex variable is defined by (Fig. lb)

C = (z-1)/^2. (2.21)

The appropriate portion of C is now given by the expansion:

l/l

C:t~L~Z±i2l S2
(l-0-T (1-0 + (2.22)

where < 1 and the leading term is just the parabola:

Cc ~ Co = (1 - n) + i2ri (-00 < >1 < +00), (2.23)

= ^cos^ ^ {-n<(j)<n). (2.24)

3. Outer expansion. The representation (2.20) will be used to satisfy (2.12) and

(2.13). In view of (2.17) and (2.20), we choose S" as the asymptotic sequence and

seek the solution of a generic unknown function F(z) in the form

OO

F(z)~F(z,S)~'£SnFll(z) (3.1)

n=0
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where F stands for any of the four unknown functions W and f . The value of
J a J a

the function F(z ) may be computed from the scheme:

F(zc)~ Y.6nFH{zc)

~ J2^n^^±i3^-x2^l2K±M + ---] (3'2)

where (2.20) has been used for zc.

The system of governing conditions (2.7), (2.12), (2.13), and (2.8) are now ex-

panded in accordance with (3.1) and (3.2). The <5°-terms are:

<(*) + <W-/,oW = 0> (3-3)

w£(x) + W^(x) - fl{x) = W^(x) + W*{x) - f*{x), (3.4)

Ko(x) = yW^{x) + y'[W*(x) + W*(x) - J*(x)], (3.5)

w20(z) = 1Vz, f20(z) = fz as z —» oo, (3.6)

where the first three conditions apply to the interval |x| < 1 . It follows from (3.3)

that the left-hand side of (3.4) vanishes as well. It merely implies that when an

interface is asymptotically near a traction-free boundary it is itself asymptotically

traction-free. This is essentially the nature of the iteration associated with the outer

expansion. At the same time, it is clear that the iterative mechanism cannot be valid

near z - ±a where the interface traction is asymptotically large in (z - 1)-1/" as

z = a —► 1 . In any case the solution to the above equations is

/,0(z) = ?f20{z) = yfz, (3.7)

2Ww(z) - fw(z) = y[2W20(z) - f20(z)\ = yaX(z), (3.8)

where
X(z) = (z2- 1)1/2. (3.9)

The <5-terms of the system of equations are then derived. They may be further

simplified by the use of (3.7) and (3.8). The results are

W.t(*) + = Q (3.10)

W±(x)+W*(x)-f*(x) = (y-l)[(o-o)x±(f + f)i(l -xY2], (3.11)

W±(x) = yW2±l(x) + yy*[(a-a)x±(f + f)i(\ - x2)1'2], (3.12)

W2X(z) and /21(z)—> 0 as z —<• oo. (3.13)

Combining the ± forms of (3.11), we obtain

f+(x)-f~(x) = i2(y- i)(/ + 7)(l-x2)1/2, (3.14)

[2W+(x) - f2l(x)] + [2W~(x) - f~(x)] = 2(a-a)(y - l)x, (3.15)

which, together with (3.13), may be solved for f2x and W2X in terms of a Cauchy

and a Hilbert problem. The solutions are:

/21(z) = (y- l)(/ + /P(z)-z], (3.16)

2W2x{z) - f2x(z) = -(7 - 1 ){o-a)[X{z) - z], (3.17)
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where z is a homogeneous solution of (3.14) and X(z) a homogeneous solution of

(3.15). They are included to meet the conditions at infinity. Substituting the above

into (3.12) and (3.10), we get

/n(z) = y[{y- 1+2 y*)(a-a)-(y- 1 )(f+ f)]z, (3.18)

2Wu(z)-fu(z) = y[(y - 1 + 2y*)(f + f) - (y - l)(a - a)]X(z). (3.19)

The <5"-terms of the system of governing conditions are obtained in a similar

manner. They are further simplified by the explicit lower order solutions and the

results are:

W±{x) + W*{x)-f*(x) = 0, (3.20)

W2±2(x) + W?2(x)-f?2(x) = (y-m2y-l)f-(2y + 3)f]x

T (7 - l)[(2y - l)f+(2y - 3)f]i(\-x2)1'2

(y- l)° (3.21)

±/(l-x2)'/2'

W*{x) = yW22(x) - yy*[{f + J)x ±{o -o)i{\ -x2)1/2]

2(7- 1)(/ + ~f)x T 2(7 — \){f + J)i{\ -x2)1/2+ 77
(3.22)

±/( \-x2f'\

W22(z) and f22(z) -+0 as z —> oo. (3.23)

Combining the ± forms of (3.21) again leads to a Cauchy and a Hilbert problem,

and the solutions are

f22(z) = - (7 - 1)[(27 - 1)/+ (27 - yjf\[X(z) - z]

-(7- l)aX \z),

2W22(z) - f22(z) = (7 - 1)[(27 + 3)/- (27 - 1 )f][X(z) - z]

+ C(7- l)aX \z)

(3.24)

(3.25)

where the last term of (3.25) is a homogeneous solution and C an arbitrary constant.

The other two functions may again be determined from (3.22) and (3.20). They are

/12(z) = 2{-7(7- 1 )[3j — (27 — 1)/] — 77*(/ + 7)+ 277*(7 - \){f-J)}z, (3.26)

2Wl2(z)-fl2(z) = [(C- 1)(7— l)-2y*]yaX~\z)

+ 2{y(y-l)[3f-(2y-l)f-yy*((j-o)]

— 2yy*(y — 1)(/ + f)}X(z). (3.27)

The procedure could be continued to include as many terms as we wish but the

explicit 3-term expansion is sufficient to reveal the most important characters of the

desired solution. To unveil these properties and also to facilitate matching, we need
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the inner expansion of the outer expansion. This is accomplished by expressing z

in terms of £ via (2.21) and then expanding. The results are

/,-yf + Ay[{\-y){f + l)-{\-y-2i){a-a)] + Y.[-^\ + 0{S2),
I «=i ; J (3.28)

2Wl - /, ~ S j yoC2 + ya[(y ~ 1)C - (y - 1 + 2/)]-^ + £1/2 f] 1 + 0(<H,
I £ n=2 ̂  J (3.29)

/2~/ + ̂ {(i-7)(/ + 7) + (i -^7^72 + E7^1+ °(^)' (3-3°)
I £ n=2 £ J

2W2 - /2 ~ | aC1/2 + (y -l)(a-a) + (y - UCct-1^ + J ^ 1 + 0(S2),1 C7 ^C'-J (3.31)

where the generic symbol ( ) denotes an expression depending on the explicit forms

of the outer expansion, (3.1). Some of them may involve arbitrary constants such as

C given in (3.25). These constants can only be determined from matching.

The above expressions represent the properties of inner expansions, which will be

derived in the following section, for £ —> oo. It follows from (3.28) and (3.29) that

f = Holomorphic function of £
,,, as £ —» oo, (3.32)

2W{ - /, = £ "[Holomorphic function of £]

a property that can be directly deduced from the traction-free condition. On the

other hand, (3.30) and (3.31) indicate that both f2 and W2 involve powers of £_l/"

as £ —> oo . This property cannot be directly conceived from any of the governing

conditions and will be needed in the series representation to be constructed in the

sequel.

4. Inner expansion. The independent variable is the boundary layer variable £

defined by (2.21). Guided by (3.28)—(3.31), we shall seek the expansion of a generic

unknown function F(z) in the form (c.f. (3.1))
OO

F(z)^F*(C,S)^^2d"F*(Q (4.1)
n=0

where F stands for any one of the four unknowns W( and fn . Using F*(Q to de-

note /r*(£, S) for simplicity, we obtain from (2.7), (2.12), and (2.13) the governing

system:

<*(£) + <*(£) - /,**(£) = 0 (£ < 0) (4- 2)

<(£,) + w; (£c) + (£c - £,)»;*/(£c.) - f2 (£c.)

= w^e) + W',*(£f) + (C, - £,)W'7'(£,) - /*(£,.) (4J)

w2 (Cf) = yw\ (Cc) - y[" iX) + (C,) + (C, " W'(£f) - /. (fc)]. (4-4)
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where £ is defined by (2.22). As f —» oo , the functions must be matched with the

inner expansions of the outer expansions (3.28)—(3.31).

The J"-order conditions may be derived by using the following substitution:

F'(ce)~Et"K(Cc)
E„n  * ... . 1 ... 1/? */ ... . (4*5)

<Ko)T<i24(i-o3'2f;'(c0) +

where £0 is defined by (2.23). For the c5°-terms, the choice

K(o = o = f/;0( o = \f (4-6)

satisfies all the conditions and yields no useful information. The J-order system

governs the desired asymptotic limit (5 —► 0) and the subsequent discussions will be

concentrated on the solution of the system.

We begin by writing

/,*(£) = ?[(1 -y)(f + /)-(! -y-2y*){o -a)] + yohl(Q, (4.7)

2<1(0-/u(0 = 7aC1/2[l + //,(0], (4.8)

./;*,(0 = (l-7)(/ + 7) + ^2(C), (4.9)

w/2i(0 = 5(1 -7)[(/ + 7)-(fT-^)] + fc'/2 + a//2(C). (4.10)

Comparing the above with (3.28)—(3.31), we conclude that the explicitly listed terms

are matched and

hn( 0, Hn( 0 = 0 asC-oo. (4.11)

Since the geometry is symmetric and the loading symmetry is maintained by the

factor a defined by (2.10), we conclude from the above that the functions hn and

H , signified by a generic symbol F , must satisfy the condition

F(0 = F(C) for hn and Htt. (4.12)

Finally, (4.2) is identically satisfied if /?, and //, are holomorphic in D{ in the

C-plane. We must now determine h and H to meet the two remaining conditions

(4.3) and (4.4).

Before proceeding, we establish a few identities associated with the function C0

given by (2.23). Since

Ci/2=1 + /*, (4.13)

y'/2 ■ . c r 1/2 •we may express c,0 in terms ot £0 • i-e.,

ci/2 = ¥(C0) = 2 - ci/2 (4.14)

where 'F(C) is holomorphic in the £ (= £, + /£-,) -plane with a cut along the
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axis, the crack boundary. We have

¥(T2(0) = C'/2, (4.15)

WO = -^4 as^4' (4-16)

1 C0 - C0 _ l
4 jl/2 ¥(C0

-1. (4.17)

Substituting (4.7), (4.8), and (4.10) into (4.4) and using (4.12), (4.14), and (4.17),

we find that the condition is satisfied if

h2(q = h;■{//,, a,}

1 rrl/2" 2

hu ,r\ u ,xu2,r\\ ,
2

rirv/.O + MC)]

7* <i ̂,(0- A,cr(o) + c7 //,(o + ̂ (0^(^(0)]

+^(C,/2-i)
2

+ 24/(C)//1'(4/2(0) + 2h\ (*V2(C))
a* 1

+ T(0J

where (4.18)

, a f +1 if a = cr„
a =-= i ,22 (4.19)

o 1—1 it a = iox2

Substituting the above into (4.3) and using (4.14) and (4.15), we find that the condi-

tion is satisfied if

h2{Q = h*2{H{,hx}

— H2{C) - 4ct*(C'/2 — \)H2{Q

2(7* . „„„„ />T,2/_ . , /1T,2

c
1,,

+ jO -y-y) ^+ 4'(C)//,(4'-(C)) + M^(C))

(y + y*)U[C1/2//,(C) -MO]
(4.20)

+ tf*(i-C1/2)

f
YjY + 2£ //,'(£) + 2/?; (C)

The above two expressions H2{H{, /z,} and h*{Hl, /?,} may be taken as two

calculating machines which convert the input hx and Hx into the products h2 and

H2 in such a way that the continuity conditions are identically satisfied. For a pair of

chosen //, and /?, satisfying (4.11), H2 and h2 calculated from (4.19) and (4.20)

also satisfy (4.11). The only condition that is left to be enforced is that ha and Ha

must be holomorphic in D in the £-plane (c.f. Fig. lb).



' °> = " ,v/ - WD + 7W7T7W (4-22)

//;{0,0} = jp;o(0 = 1^r (C —4) (4.23)

h;{0,0} = p;o(C) = ^I + 7P-I (C -* 4). (4.24)
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Let us begin by setting Hl = hl = 0. Then,

* *

0.0} = -^y (4.21)

(1 -y- y*)o* _ y*a* 2y*(C'/2 - 1)

c!/2 »F(C) C1/2(2-C

which have poles at £ = 4, i.e.,

4y*a

7^4
4y*a* 16y

T14"+(C-4)

Thus, //j = h{ =0 cannot be the correct choice. To obtain the complete solution,

we write
//,(£) = *10(C)

^i(C) = r,°(C)

H2(0 = H*{0, 0} + [R20(O - ^2o(0]
h2(0 = h*2{0, 0} + [r2Q(C) -P20(O]

where and ra0 are holomorphic in Da . The following series are assumed:

oo (j 00 7

rio(0 = (£ _"4)« ' *,0 = 77174)" '

oo A oo B (4.26)

r20^) = 7«72 ' R20 = Tn/2 '
«=1

t-n/i ' ' i»«
<= «=1 ■=

which conform with the requirement at £ = oo characterized by (3.28)—(3.31). The

constants an, bn, An, and Bn must be chosen in such a way that the substitutions

(c.f. (4.7)-(4.10))

fi- yarl0(0

2 w;-X:roC"2Rw(()

f*2 : ^[^(C) -P2*o(0]

: o[Rw(Q - p;o(0]

satisfy the two continuity conditions (4.3) and (4.4). Since all terms are bounded,

the standard Fast Fourier Transform Algorithm may be applied. This provides a

numerical scheme for the direct computation of the needed asymptotic solution as

opposed to the numerical extrapolation procedure reported by Wu and Chen [8], The

method may be applied to arbitrary inhomogeneity configurations and the results will

be reported in a different paper.

Let Kj and Ku be the SIF's. They may be normalized by the factors a^yfn and

^12' i.e.?

K\=KI/o22Vn, K2 = Kn/ai2y/n (4.28)
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where K{ and K2 depend on the small parameter S . As <5^0, they tend to finite

limits which may be obtained from (4.8). The results are

A', =y[l +//,(0)] (<7* = £ = +l), (4.29)

tf2 = y[l+//,((»] (** = £ = -1),

where
OO i

tf|(0) = filo(0) = £-i,. (4.30)
n= 1

The rest of the section will be devoted to the determination of an approximate but

explicit solution.

Another way of removing the poles defined by (4.23) and (4.24) is to define H{

and h{ as follows:

«,(o = r;,(o = = ̂  + ("o

ft, (C)=i>nK)=P, (0=5^4 + ^^1 (4.32)

where Pu , Pn, pxl, and pn are constants and both expressions are holomorphic

in Z), in the C-plane.

Substituting the above into (4.18) and (4.20) and requiring that the calculated H2

and h2 are free of poles at C = 4 , we obtain

r> t r\ i . 8/V[l+//>(0)] 1 n

2^,(0+P,(0 + l-y*  C^4 ' ( ^

(2 - <rV,(0 -P,(f) - 4t2jPi'(0 +P\W = °' (4"34)

and hence

pA 0= r

l
+

4-a

,-4 ' (C-4)2

a* - 2 8

C-4 (C - 4)2

(4.35)

(4.36)

where

T= ^[l+//,(0)]. (4.37)
8yV
l-y*

The newly generated H1 and are now free of poles at ( = 4, but new poles are

PPQ11CP f-7^ ^

1 2

2
generated at £ = 16 . This is so because //,(VF (0) now include powers of

4^(0-4 C - 16

Removing the poles at £ = 16 will lead to new poles at £ = 36.

as £ —> 16. (4.38)
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The process may be continued for a chosen number of times so that

N

= (4.39)

n= 1

K = P**(0 = X>„(0. (4.40)
n=1

where

2 n r>

p'{0-^IT^r- (4'42)

which may be expressed in terms of Pn_l(C) and Pn_l(C) via recurrence formulas.

The derivation is straightforward but lengthy and is not included in this paper.

The functions generated by substituting (4.39) and (4.40) into (14.18) and (4.20)

have poles at £ = [2(N + l)]2, i.e.,

2^1 Jv(£) ' ^1^(0} — ̂ 2iv(^)

where P2N and p2N have forms similar to those given by (4.39) and (4.40). Thus,

(4.39) and (4.40), together with the generated H2 and h2, cannot be the correct

solution. The complete solution must be of the form

//, (£) = />,*„(£)+ *,„(£),

A,(C) =^(0 + ̂ (0,

h2{Q = H*{P*N,p*N} + [R2N(0 - /^(C)],

h2(C) = h*2{P;N, P*XN} + [r2N(0 -P*2N(C)\,

where RaN and raN play the roles of Ra0 and ra0 in (4.25) and must be determined

in a similar manner. In fact, the series (4.26) may be taken as the sol tion for the

new unknowns. The input to this problem is provided by P2N and p*N which have

poles of order 2N at £ = [2(./V + 1)] . Noting that the nearest interface point is

at C = 1 5 we conclude that the contributions of RaN and raN are perhaps small

for large TV. This, however, is not proven in this paperf. Taking the statement for

granted, we have

hx(Qkp*xn(Q, vcw^(0,

H2(Q « H'2{P;n , P*N} - P*2N( £), (4.45)

h2(o*h;{p;N,p;N}-P;N(o.

t The recurrence formulas associated with (4.41) and (4.42), together with the explicit forms of (4.43),

are needed for such a proof.
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For a two-term approximation, Px and pl are given by (4.35) and (4.36). A

lengthy computation yields the following expressions for and p2:

1

(4 — <t*)(16 — 3 a*

+

2(1 -7-7)0 , 4(2 + q )/

7 + 7* 1-7*

64(1 -7-7*) , 48/(2 + 3a*)
* ~l" , *

7+7 i-y

384/(3 + 1 Ict*) 1

(C- 16)

(C- 16)2

1-7 (£-16) 3

(3 ■ 16)3y*
1-7 (£ - 16)

(4.46)

PliO = - ^rp2(0

+

4

r
2(4 - a*)

2(1 - 7-7*)o* + 4(2 + a*)7*

+

7+7 1-7

64(1 —7 — 7*) 48 7* a*

1

(C- 16)

7 + 7 1 - 7

384/(1 lg* - 3) 1

!-/ (C - 16)

(C- 16)2

3

(3-16)3/ 1
(4.47)1 — 7* (C-16)4]

where T is defined by (4.37). It follows from the approximation

77,(0) «/>(0) + />2(0) (4.48)

that

tf,(0) . ya (A 1

1 +HA0) (1 — 7*)(4 — a*) [ 16 - 3cr

2(2 + cr*)(1 — 7 — 7*)

7 + 7*

(91 + 59er*)/
+ (4'49)

The approximate expressions for the asymptotic values of Kl and K2, (4.29), are

(4.50)*1-

K, ~

3-7 7* + ft

57(1 -/)

6(1-?-/) , 75 y'
r+v* +

2 < * 7-
5-7 - U 2(i-r-y ) , 167*

7+y1

(4.51:

5. Results and discussion. We shall restrict our attention to the range 0 < fixl n2 <

1 to reflect our interest in the physical situation of crack damage interaction. The

confocal nature of the title problem allows a series solution in a transformed plane.

Such a series solution was obtained by Wu and Chen [8]. The convergence of the

needed matrix inversion becomes extremely slow for e < 0.05. Nevertheless, the
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M-i / M-;

Fig. 2. as a function of nx/n2 f°r b/a 0 and j/, = v2 = 0.2
(plane strain). The dashed line is the numerical result of [8] and the

solid line is the two-term approximate formula (4.50).

e —► 0 limit was accurately extrapolated from the extensive numerical results. This

limit is reproduced for Kx for the case = v2 — 0-2 in Fig. 2. The accuracy of our

two-term approximate solution, (4.50) and (4.51), is also demonstrated in Fig. 2.

To substantiate our claim that the same result may be directly computed from the

series solution (4.25)-(4.27), a readily available Fast Fourier Transform routine was

applied to the system with the series truncated at n = 10, and the directly computed

Kx is almost indistinguishable from the extrapolated result for the case given in Fig.

2. It should be emphasized that the series solution not only gives the numerically

exact SIF's but is actually the numerically exact field solution which may be used to

compute the Eshelby force along the interface. In particular, the energy release rate

associated with an inhomogeneity-front propagation may be computed. This is the

real usefulness of the desired series solution. Our analysis has established the fact

that the correct series representation for the matrix in the neighborhood of a crack

tip must have the properties of r1Q and R2Q given by (4.26). The adaptation of

the series representation to a general inhomogeneity configuration, together with the

aforementioned front-propagation calculation, is the main objective of our intention.

Our formulation indicates that the solution to the title problem depends explicitly

on the two composite parameters y and y* defined by (2.14). It is therefore desirable

to present the SIF's in terms of them. The choice of the two composite parameters

in a typical two-phase problem is not unique (Dundurs [1]). The parameters y and

7* appear naturally in our problem. Moreover, exact solution may be obtained for
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Fig. 3. Admissible region in terms of composite elastic constants

(a, P) and (y, y*) . The shaded region is for nxln2 < 1 •

the case y* = 0 (Wu and Chen [8]). Still, the range of the two parameters may be

easily determined from Dundurs' discussion. In terms of y and y* , Dundurs' a

and P parameters are

1 -y 1 - y 2y*
a=~, ft = 7 --T2— , (5.1)

1 + y 1 + y 1 + y

which may be inverted to yield

1—a * a — B
v = t—> y =j—- 5-2

1 + a 1 + a

Dundurs' a^-plane, together with the admissible ranges of a and /?, are reproduced

in Fig. 3. Also plotted in the figure are the constant y and y* lines. Thus, the ranges

of y and y* may be straightforwardly calculated, i.e.,

i(l - 4y*) < y < 2(1 - 2y*) for 0 < / < j

.1.1 (5"3)
0 < y < 2( 1 - 2y ) for - < y < -

which covers the range of interest set by 0 < nx/n2 ^ 1 ■ Results pertaining to (4.50)

and (4.51) are plotted in Fig. 4 as functions of y with y* as a parameter. It is felt
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1.5 -

0.5 -

Fig. 4. Kx and K2 for all admissible combinations of y and y* .

that results for all inhomogeneity problems should be presented in terms of y and

y* in the fashion characterized by Fig. 4.
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