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Abstract. The Sivashinsky equation is an asymptotically derived model equation

for evolution of the solid-liquid interface which occurs during directional solidifica-

tion of dilute binary alloys. During the solidification process interfaces are known

experimentally to yield planar, cellular, cusped, or dendritic structures. Cellular struc-

tures, interpreted here as periodic one dimensional nontrivial steady states, are shown

in this paper to be unstable, if they exist, within the context of the Sivashinsky equa-

tion. Symmetric nontrivial steady states are likewise shown to be unstable.

1. Introduction. In this paper we discuss stability of periodic steady states for the

one dimensional Sivashinsky equation

ut = (-m + {u - Kuxx)xx ~ au

wx(°) = uxxx(°) = 0 d-D

Ux(L) = »,,x(L) = 0

where K and a are positive constants. Here u(x, t) denotes the location of the

solid-liquid interface relative to a planar interface which is moving at an externally

imposed velocity V which is the speed at which the sample is transported through

a freezing temperature profile. Equation (1.1) was derived by looking at long wave-

length instabilities in the limit in which the segregation coefficient is small [1]. (By

examining alternative limits, it is possible to derive other equations, [9].)

For the purpose of applications it is important to be able to control the struc-

ture of the interface, since the shape of interface during freezing determines the

microstructure of the resultant material. Experimentally one sees planar interfaces,

cellular interfaces, cusped interfaces, cusped interfaces with droplet formation at the

bottoms of the cusps, and dendritic interfaces. Since Eq. (1.1) gives the location of

a single valued interface, droplet formation cannot be described within the context

of this equation. Some results are known which are relevant to planar interfaces

and cusped interfaces. In particular in [3] it was shown there that if the initial data

is sufficiently small and if a is sufficiently large, or if L is sufficiently small then

solutions to (1.1) exist globally and decay exponentially toward the planar state. In
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[2], it was shown that, for sufficiently large initial data, solutions grow unboundedly

in L2. For a different set of boundary data, the L^ norm was seen to blow up in

finite time for certain parameter values and sufficiently large initial data [2]. These

two results appear to be related to the development of cusped interfaces of finite or

infinite depth.

The question now remains as to whether there is any possibility of cellular in-

terfaces within the framework of Eq. (1.1). We interpret cellular interfaces here as

stable periodic steady states. The possibility of the existence of stable periodic struc-

tures is suggested by experiment and was thought to be indicated by the numerical

calculations [4, 8], The following perturbation calculation also suggests that stable

periodic nontrivial steady states might have been expected.

Consider a perturbation expansion in the neighborhood of a = \K~[ . Set a =

\K~X - e and u = Su°{x) + 8 u{x) + ■■■ where S = x/jij. Substituting these

assumptions into (1.1), setting r = \e\t and expanding eliminating resonant terms

yields u = SAcos(x/V2K) - ^S2A2 cos(xV2/K) where A( r) satisfies

Thus we might expect subcritical instabilities to stabilize into roll solutions if the

subcritical branch bends back and stabilizes [8].

In the present paper we assume periodic nontrivial steady states to exist and prove

that they are not stable. More precisely, we look at the associated eigenvalue problem

and demonstrate the existence of an eigenfunction with positive (growing) eigenvalue.

It is still possible that there are "long-lived" periodic transient states or nontrivial

stable states which are not periodic. We do however demonstrate that there is no

possibility of symmetric nontrivial stable steady states. The methods used here are

taken from the calculus of variations and are reminiscent of those used by Chafee

[5],

2. The eigenvalue problem. In [2] existence and uniqueness were discussed for

solutions u{x , /) € C([0, T], H2£) n C((0, T), //£) of the equations

— KM 1 — rvll

(2. i:
"v(0) = »,„(0) = 0, ux(L) = uxxx(L) = 0

(-u + \u - Kuxx)xx - au,

where

and where

h\. = {«(*, /) G H-1 ux(0) = ux(L) = 0}

H4e = {u(x, t) e H2\ uxx(x, t) e H2e}.

Suppose that u0{x) is some smooth (H*) periodic steady state of (1.1). Then it

must satisfy

-Un + 2W0 Kuxx)xx au0 ~ 0,*0 1 2"0 "-"xx'xx ""'0 (2.2)

= U0xxx(L) ~ = 0-
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Note further that upon integrating (2.2) over [0, L]

uo = J 1
J o

uJx)dx = 0. (2.3)

Let us linearize about this steady state solution, u = z + uQ . Then

zl = ((-l + u0)z-KzxX)xx-az,

2*(°) = Z«*(°) = °» Zr(L) = ZXXX(L) = °-

In this paper we prove that uJx) is unstable in the following sense

(2.4)

Theorem 2.1. If u0(x) is a smooth periodic nontrivial steady state solution then

the associated eigenvalue problem

Az = ((-l+u0)z-KzxX)xx-az,

M°) = ^c(°) = 0, zx{L) = zxxx{L) = 0

has at least one eigenfunction with a positive eigenvalue.

Our approach will be as follows. First, we consider a functional which serves

as a Liapunov functional over a restricted class of initial data. Then, we note that

all steady state solutions are critical points of this functional, i.e., the first variation

vanishes. Next, we examine the second variation functional and isolate a perturbation

t]0 in //' for which the second variation is negative at these periodic solutions.

Afterwards, we return to consider the second variation functional and minimize over

all possible perturbations subject to a restriction related to our isolated perturbation

t]Q . We then show that the minimizer to this second minimization problem turns out

to be an eigenfunction of (2.5) which possesses a positive (growing) eigenvalue.

The proof of Theorem 2.1 is given in a series of lemmas. No explicit use will

be made later of Lemma 2.2 which is included to motivate the importance of the

functional F(t).

Lemma 2.2. If u(0) = (1 /L) /0L u(x, 0)dx > 0, then Eq. (1.1) possesses an associ-

ated Liapunov functional, F(t).

Proof. Defining w — u - u where u(t) — (1 /L) fQL u(x, t)dx Eq. (1.1) may be

written as

Wt = (-w + \w2 + wu - Kwxx)xt - aw ,

wx(0) = wx(L) = 0, (2.6)

w (0) = w (L) = 0.XXX \ ' XXXv '

Define v(x, t) to be the solution to vxx = w , wv(0) =vx(L) = 0, and f0L v(x) dx =

0. Then multiplying both sides of (2.6) by {—w + + wu - wxx - av) and

integrating by parts yields

Til {J2w2 + I1"'+'lKw<+ lav*} dx + I
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Note from Eq. (2.1) that u(t) = u{0)e " . Thus integrating over [0, T] and inte-

grating by parts

T iL 1 2

I H1"2 + lw'+ \Kwl-+ rv<}d\+uI

< — [ [ ^w2udx dt.
Jo Jo 2

-w dx

(2.7)

From (2.7) it follows that if w(0) > 0 then

fL j 1 2 1 3 1 „ 2 1 2 1_ i\ .J [2W + 6W + j x 2av* 2UW J

acts as a Liapunov functional for Eq. (2.1). □

Of particular interest is the case w(0) = 0 which defines a positively invariant

subspace u(t) = 0. All steady states belong to this subspace by virtue of (2.3) and

our destabilizing perturbations will also belong to this same space. In short, it will

be sufficient for instability to restrict ourselves to this subspace on which there is a

Liapunov functional.

Lemma 2.3. The first variation (the Frechet derivative) of F(t) vanishes when eval-

uated at steady states over perturbation in //' with zero mean.

Proof. If t] e UQ , where U0 = {rj e //' | /0L t](x) dx = 0} then

{F{u0 + St]) - F(m0)) = &j + \ulrl + KuOxrlx + avOxfix J dx + t^2)'

where rj is the solution to fjxx = tj, fjx(0) = fjx{L) = 0, and f^fjdx = 0. Thus

integrating by parts

F'(u0)t] = J |-u0-^u20-Ku0xx-av0^t]dx, (2.8)

where vQ is the solution to v0xx = u0 , w0v(0) = v0x{L) = 0, and /0L w0(x) dx — 0.

On the other hand, integrating (2.2) and using the boundary conditions and (2.3)

yields

"0 2^0 ^^Oxx aV0 ^ (jL"^)

where k is a constant. Thus F'(u0)tj = k fQL tjdx = 0 since t] has zero mean. □

Since the first variation vanishes, the next natural question is to ascertain the

behavior of the second variation.

Lemma 2.4. Suppose that u0(x) is a nontrivial steady state with period L/N, N>

1 , then there exists a perturbation t]0 e U0 such that the second variation functional

S2F(uq , rjQ) = A0 for some A0 < 0 .

Remark. It follows that while periodic steady states are critical points of F , they

are not even weak local minimizers. The proof of this lemma is similar to that of

Theorem 8.2 in Carr, Gurtin, and Slemrod [6],
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Proof. It is easy to calculate the second variation functional V{u0, tj)

V(u0, >/) = j ^{(-1 + u0)rj2 + Kt]2x + afj2x} dx

where fj satisfies fjxx = tj, fjx(0) = fjx(L) = 0, fftjdx = 0. Since u0(x) is

periodic with period L/N, N > 1 , it must repeat itself. Thus there exists an l!

such that

u(L') = u(0), u0xx(L') = u0xx(0), u0x(L') = u0xxx(L') = 0

and

Define

V0x (l!) = [ u0{x) dx = 0.
Jo

_ f uox(x) ' 0<X <L'

~ { 0, L'<x<L

and define tj2 to be any function in UQ such that t]2(0) = 1 and = 0 for

L' < x < L. Now let ?/ = ?/,+ xij where ^ is a constant to be fixed. Noting that

r] e U0 , we substitute and calculate

1 2 2 2
FK »tf) = / + "oKx + a:"o™ + Q!WoWx

, (2.10)

+ X {("I +"oKv^ + ^"ovv'/2v+aM->Y}^X + °(*2)-
Jo

where ij2 satisfies r)2xx = ?/2, fj2x{0) = ^x^) = an<^ fo th(x)dx = 0. Since w0

is a steady state, (2.9) holds. Differentiating (2.9) once,

(-"o + 5"o-^wo.vx-qi;o)x = ° (2-11)

multiplying by uQx and integrating by parts yields that the first integral contribution

must vanish. Integrating the remaining integral in (2.10) by parts and using (2.11)

yields

V(U0,rj) = X [ {(-1 + u0)ii0x - Ku0xxx - avQx}r]2dx
Jo

+ X[Ku0xxr]2 + av0xtj2X = *[-*"0^(0)].

Suppoe that w0vv(0) ̂  0, then we may pick / = x0 so that if t]0 = t]t + x0fl2 > t^ien

V(u0, %) = A0 < 0.

If u0xx(0) = 0 then we must proceed to construct a new destabilizing perturbation

as follows. Define

fi
W0.v.v(X)' 0 < X < L'

0, L' < x < L
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and define rj2 to be any function in UQ such that fQl Ugxt]2dx / 0 and such that

t]2 — 0 for x e [L', L\. Again we set t]0 = 1, + Xfh > we note that t]0 e U0 and we

evaluate
n L J

F(W°' n) = i0 2{("1 + + Ku2°xxx + aulx)dx

rL'

+ x \ {(" 1 + "oK.v*^ + Ku0xxx^x + aW0.Av} dx + °(X2)
JO

This time we multiply (2.2) by uQxx and integrate by parts to find that the first

integral vanishes. Integrating the second integral by parts,

V(u0, t]) = x f {(~^+u0)u0xx-Ku0xxxx-au0}t]2dx + O{x2)
Jo

= -X [ V.2
Jo

dx + 0(x2).

I' 2
Since by assumption f0 u0xr]1dx ^0, X = Xq can be chosen so that if >/0 =

>h +^0^2' then K("o' %) = Ao < °- D
Remark. Note that if we work on the interval [—L, L] then solutions which start

symmetric must stay symmetric, i.e., u(—x, 0) = u(x, 0) => u(—x, t) = u{x, t) for

t > 0 . In particular, if a steady state is approached as t —> oo , then u0(-L) — u0(L),

u0x(-L) = u0x(L) = 0 and v0x(L) = f0Lu0(x)dx = 0. Reviewing the necessary

steps in the previous lemma, this together with Lemmas 2.6 and 2.7 which follow,

yield

Lemma 2.5. If the initial data is symmetric then there are no nontrivial stable steady

states.

Remark. Note that rj0 cannot be expected to satisfy the boundary conditions

of (2.2). In order to find the appropriate eigenfunction we resort to variational

techniques. We define problem P(«0, rj0).

P(m0, r]Q): Minimize the functional

A(rj) = 2V(u0, >j) = / {(-1 +uQ)r]2+ Krj2x + afil}dx
Jo

over the class t] e UQ, subject to the constraint B(t]) = f0 fjx dx = f0 rj~x dx .

Lemma 2.6. Problem P(«0, r]Q) has a solution and the solution satisfies a twice in-

tegrated version of the associated eigenvalue problem (2.5) in a weak sense. Lemma

2.6 is proved below for the sake of completeness.

Proof. The proof of Lemma 2.5 consists in demonstrating that the conditions of

Theorem 6.3.2 (Berger [7]) hold. For convenience, we quote Theorem 6.3.2:

Theorem. Let A and B be C1 functionals on X where X is a reflexive Banach

space and suppose

(i) A is w.l.s.c. and coercive on Xn{B(t])< constant}

(ii) B is weakly continuous

(iii) 5(0) = 0, B'(t]) = 0 only at 7/= 0 .
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Then the equation A'(tj) - XB'(r]) has a one parameter family of nontrivial solutions

(r]R, hR) for all R ± 0 in the range of B(rj) and B(rj) = R. Moreover tjR can be

characterized as the function which minimizes A(tj) over the set B(rj) = R .

We take as our space X the space U0 . Since U0 is a closed subset of H[ which

is itself a reflexive Banach space, it follows that U0 is reflexive. The norm on U0

will be again the Hl norm. Furthermore, it is easy to check that A and B are C1

functionals. In particular

\A\rf) = (-1 + u0)tj - t]xx - at]2 (2.12)

-B\rj) = tj.2

To check that A is w.l.s.c. we write A = A{ + A2 with

rL rL

A^tl) = / {(-1 + u0)>] + afjx} dx and A2{rj) = / Kr] dx.
Jo ' Jo

Suppose t]i — tj in //1 , then since L1 is compactly imbedded in //1 , t]j -+ tj in

L2. Using Poincare's inequality for functions with zero mean we see that A^rj) is

continuous in L, hence w.l.s.c. Again using Poincare's inequality for functions with

zero mean we have that A2(t]) is equivalent to the Hl norm. Since the //' norm

is w.l.s.c. it follows that A1 is also.

To check the coercivity of A(tj) we see by Lion's Lemma [7] that

f -(1 - u^r)" dx < sup | - 1 + u0\ [ ti^dx<lrK[ t]2xdx + C{K)[
Jo Jo ^ Jo Jo

hence
- rL ,

dx.

rjl dx

A(ri)>±Kjo r,x dx + (a — C(K)) J f,l

Since ij2xdx remains bounded if B(r/) < constant, clearly A(rj) —> oo as H^H^i —>■

oo so A(tj) is indeed coercive.

To check that B(rj) is weakly continuous we again use the argument that if — tj0

in H then from the compact imbedding of //' in L2 it follows that t]i —► rj(j in

L2. Moreover using Poincare's inequality it is easy to check that B{r\) is continuous

in L2 and weak continuity is obtained.

Lastly, clearly if r) = 0 then fjx — 0 hence B(0) = 0. And if B'(rj) = fj = 0, then

from the definition ijxx — rj it follows that rj = 0. Thus conditions of the theorem

are satisfied and we obtain that for any R = B(rj)

(-1 + u0)r]R - Kt]Rxx - af]R = A.RijR

j   2
where t] e H .In particular there is such a solution with R = f0 fj0x dx .

(-l+"o )l-Krixx-afj = Mj. (2.13)

Lemma 2.7. The solution from the previous lemma is actually a classical solution

of (2.13) and solves the associated eigenvalue problem (2.5). Its eigenvalue is positive.

Proof. The regularity of t] follows from the regularity of u0(x) together with

classical bootstrapping arguments. Thus it is possible to differentiate (2.13) twice
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and it is seen to be a solution of the associated eigenvalue problem (2.5) if we can

show that the boundary conditions are satisfied. It suffices to prove that >/v(0) =

rjx{L) — 0, since by differentiating (2.10) once the boundary conditions at j/vvv(0)

and rixxx(L) can then be seen to be automatically satisfied. In order to prove that

the boundary conditions are satisfied we choose a function rj e UQ , such that R =

B(rj) = fQL rj20x dx, which vanishes at x = L but not at x = 0. Then since rj

minimizes A(rf) over the set B{rj) = R , it must also minimize J (rj) = A(rj) + /.B(t])

over the set B{tj) = R , hence

J (rj + Stj) - J (rj) = 26 j {(-1 + u0)r]JJ + Kt]xrjx + afjxJjx + kt}Ji} dx + 0{82) > 0.
J o

Integrating by parts and using (2.13) it follows that

J(t] + Stj) - J{ri) = 25t]x(0)rj(0) + 0(S2) > 0. (2.14)

Since (2.14) must hold for both 3 positive and S negative, it follows that t]x(0) = 0 .

A parallel argument gives that rjx(L) = 0 . □

Lastly, to complete the proof of Theorem 2.1, multiply (2.13) by t/ and integrate

by parts,

J {(-1 + u0)t]2 + Kr]2x + afj2x}dx = -k J ij2x dx -kR2.

Since q minimizes A(tj) relative to B{rj) = R, it follows that A(t]) < A(r]0) or

equivalently that -kR < A0 < 0. Therefore X must be positive.

Conclusion. The possibility of stable periodic steady states for the Sivashinsky

equation is examined. It is demonstrated that if nontrivial periodic steady states do

exist then they are not stable. It is also shown that nontrivial symmetric steady states

are not stable.
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