AN INVERSE PROBLEM FOR A GENERAL CONVEX DOMAIN WITH IMPEDANCE BOUNDARY CONDITIONS

Вy

E. M. E. ZAYED¹ AND A. I. YOUNIS²

Zagazig University, Zagazig, Egypt

Abstract. The spectral function $\theta(t) = \sum_{n=1}^{\infty} \exp(-t\lambda_n)$, where $\{\lambda_n\}_{n=1}^{\infty}$ are the eigenvalues of the Laplace operator $\Delta = \sum_{i=1}^{2} (\partial/\partial x^i)^2$ in the x^1x^2 -plane, is studied for a general convex domain $\Omega \subseteq R^2$ with a smooth boundary $\partial\Omega$ together with a finite number of piecewise smooth impedance boundary conditions on the parts $\Gamma_1, \ldots, \Gamma_m$ of $\partial\Omega$ such that $\partial\Omega = \bigcup_{i=1}^m \Gamma_i$.

1. Introduction. Let $\Omega \subseteq R^2$ be a simply connected bounded domain with a smooth boundary $\partial \Omega$. Consider the impedance problem

$$-\Delta u = \lambda u \quad \text{in } \Omega. \tag{1.1}$$

$$\left(\frac{\partial}{\partial n} + \gamma\right) u = 0 \quad \text{on } \partial\Omega, \tag{1.2}$$

where $\partial/\partial n$ denotes differentiation along the inward pointing normal to $\partial\Omega$, γ is a positive constant, and $u \in C^2(\Omega) \cap C(\overline{\Omega})$.

Denote the eigenvalues of problem (1.1), (1.2) counted according to multiplicity by an increasing sequence

$$0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_n \le \dots \to \infty$$
 as $n \to \infty$. (1.3)

Sleeman and Zayed [4] have recently discussed the problem of determining the geometry of Ω as well as the impedance γ from the asymptotic expansion of the trace function

$$\theta(t) = \text{tr}[\exp(-t\Delta)] = \sum_{n=1}^{\infty} \exp(-t\lambda_n) \quad \text{as } t \to 0.$$
 (1.4)

Problem (1.1), (1.2) has been investigated by many authors (see, for example [1-3, 5, 6]) in the following special cases.

Case 1.1. $\gamma = 0$ (Neumann problem).

$$\theta(t) = \frac{|\Omega|}{4\pi t} + \frac{|\partial \Omega|}{8(\pi t)^{1/2}} + a_0 + \frac{7}{256} (t/\pi)^{1/2} \int_{\partial \Omega} k^2(\sigma) \, d\sigma + O(t) \quad \text{as } t \to 0.$$
 (1.5)

Received February 15, 1989.

¹Present Address: Mathematics Department, University of Emirates, Faculty of Science, P.O. Box 15551, Al-Ain, U.A.E.

²Directorate of Military Education, P.O. Box 6688, Abu Dhabi, U.A.E.

Case 1.2. $\gamma \to \infty$ (Dirichlet problem).

$$\theta(t) = \frac{|\Omega|}{4\pi t} - \frac{|\partial \Omega|}{8(\pi t)^{1/2}} + a_0 + \frac{1}{256} (t/\pi)^{1/2} \int_{\partial \Omega} k^2(\sigma) \, d\sigma + O(t) \quad \text{as } t \to 0.$$
 (1.6)

In these formulae, $|\Omega|$ is the area of Ω , $|\partial\Omega|$ is the total length of $\partial\Omega$ and $k(\sigma)$ is the curvature of $\partial\Omega$. The constant term a_0 has geometric significance, e.g., if Ω is smooth and convex then $a_0 = \frac{1}{6}$ and if Ω is permitted to have a finite number H of smooth convex holes, then $a_0 = (1 - H)\frac{1}{6}$.

The object of this paper is to discuss the following problem:

Suppose that the eigenvalues (1.3) are known exactly for Eq. (1.1) together with the impedance boundary conditions

$$\left(\frac{\partial}{\partial n_i} + \gamma_j\right) u = 0 \quad \text{on } \Gamma_j, \ j = 1, \dots, m,$$
 (1.7)

where the boundary $\partial \Omega$ of the domain Ω consists of a finite number of parts $\Gamma_1, \ldots, \Gamma_m$ such that $\partial \Omega = \bigcup_{j=1}^m \Gamma_j$, while $\partial/\partial n_j$ denote differentiations along the inward pointing normals to Γ_i , and γ_i are positive constants.

The basic problem is that of determining the geometry of Ω as well as the impedances $\gamma_1, \ldots, \gamma_m$ from the asymptotic form of the spectral function $\theta(t)$ for small positive t.

2. Statement of results. Suppose that the parts $\Gamma_1, \ldots, \Gamma_m$ of the boundary $\partial \Omega$ are given locally by the equations $x^n = y^n(\sigma_j)$, $n = 1, 2, j = 1, \ldots, m$ in which σ_j are the arc lengths of the counterclockwise oriented boundary and $y^n(\sigma_j) \in C^{\infty}(\Gamma_j)$. Let L_1, \ldots, L_m be the lengths of the parts $\Gamma_1, \ldots, \Gamma_m$, respectively, and let $k_1(\sigma_1), \ldots, k_m(\sigma_m)$ be the curvatures of $\Gamma_1, \ldots, \Gamma_m$, respectively. Then, the results of our problem (1.1), (1.7) can be summarized in the following cases.

Case 2.1. $(0 < \gamma_i \ll 1, j = 1,...,k \text{ and } \gamma_i \gg 1, j = k+1,...,m)$.

$$\theta(t) = \frac{|\Omega|}{4\pi t} + \frac{1}{8(\pi t)^{1/2}} \left\{ \sum_{j=1}^{k} L_j - \sum_{j=k+1}^{m} \left[L_j + \gamma_j^{-1} \int_{\Gamma_j} k_j(\sigma_j) d\sigma_j \right] \right\} + \left(1 - \frac{3}{\pi} \sum_{j=1}^{k} \gamma_j L_j \right) \frac{1}{6} + O(t^{1/2}) \quad \text{as } t \to 0.$$
 (2.1)

Case 2.2. $(\gamma_i \gg 1, j = 1, ..., k \text{ and } 0 < \gamma_i \ll 1, j = k + 1, ..., m)$.

In this case the asymptotic expansion of $\theta(t)$ as $t \to 0$ follows from (2.1) with the interchanges Γ_j , $j = 1, ..., k \leftrightarrow \Gamma_j$, j = k + 1, ..., m, L_j , $j = 1, ..., k \leftrightarrow L_j$, j = k + 1, ..., m and γ_j , $j = 1, ..., k \leftrightarrow \gamma_j$, j = k + 1, ..., m.

Case 2.3. $(\gamma_j \gg 1, j = 1, ..., m)$.

$$\theta(t) = \frac{|\Omega|}{4\pi t} - \frac{1}{8(\pi t)^{1/2}} \sum_{j=1}^{m} \left\{ L_j + \gamma_j^{-1} \int_{\Gamma_j} k_j(\sigma_j) d\sigma_j \right\} + \frac{1}{6} + O(t^{1/2}) \quad \text{as } t \to 0.$$
 (2.2)

Case 2.4. $(0 < \gamma_j \ll 1, j = 1, ..., m)$.

$$\theta(t) = \frac{|\Omega|}{4\pi t} + \left(\sum_{j=1}^{m} L_j\right) / 8(\pi t)^{1/2} + \left(1 - \frac{3}{\pi} \sum_{j=1}^{m} \gamma_j L_j\right) \frac{1}{6} + O(t^{1/2}) \quad \text{as } t \to 0. \quad (2.3)$$

With reference to formulae (1.5), (1.6) the asymptotic expansions (2.1)–(2.3) may be interpreted as follows:

- (i) Ω is a convex domain and we have the impedance boundary conditions (1.7) with small/large impedances $\gamma_1, \ldots, \gamma_m$ as indicated in the specifications of the four respective cases.
 - (ii) For the first three terms, Ω is a convex domain of area $|\Omega|$.

In Case 2.1, it has $H = 3/\pi \sum_{j=1}^{k} \gamma_j L_j$ holes, the parts Γ_j , j = 1, ..., k of lengths $\sum_{j=1}^{k} L_j$ with Neumann boundary conditions and the other parts Γ_j , j = k+1, ..., m of lengths

$$\sum_{j=k+1}^{m} \left[L_j + \gamma_j^{-1} \int_{\Gamma_j} k_j(\sigma_j) \, d\sigma_j \right]$$

with Dirichlet boundary conditions, provided H is an integer.

In Case 2.3, it has no holes (i.e., H = 0), the parts Γ_i , j = 1, ..., m of lengths

$$\sum_{j=1}^{m} \left\{ L_j + \gamma_j^{-1} \int_{\Gamma_j} k_j(\sigma_j) \, d\sigma_j \right\}$$

together with Dirichlet boundary conditions.

In Case 2.4, it has $H = 3/\pi \sum_{j=1}^{m} \gamma_j L_j$ holes, the parts Γ_j , j = 1, ..., m of lengths $\sum_{j=1}^{m} L_j$ with Neumann boundary conditions, provided H is an integer.

We close this section with the remark that, the author [7] has recently discussed problem (1.1), (1.7) in its special case when m=2 and has obtained results which are in agreement with the above results (2.1)-(2.3).

3. Formulation of the mathematical problem. Following the method of Kac [1] and following closely the procedure of Sec. 3 in Zayed [7], it is easy to show that $\theta(t)$ is given by

$$\theta(t) = \iint_{\Omega} G(\mathbf{x}, \mathbf{x}; t) d\mathbf{x}$$
 (3.1)

where $G(\mathbf{x}_1, \mathbf{x}_2; t)$ is Green's function for the heat equation

$$\left(\Delta - \frac{\partial}{\partial t}\right)u = 0\tag{3.2}$$

subject to the impedance boundary conditions (1.7) and the initial condition

$$\lim_{t \to 0} G(\mathbf{x}_1, \mathbf{x}_2; t) = \delta(\mathbf{x}_1 - \mathbf{x}_2), \tag{3.3}$$

where $\delta(\mathbf{x}_1 - \mathbf{x}_2)$ is the Dirac delta function located as the source point \mathbf{x}_2 . Let us write

$$G(\mathbf{x}_1, \mathbf{x}_2; t) = G_0(\mathbf{x}_1, \mathbf{x}_2; t) + \chi(\mathbf{x}_1, \mathbf{x}_2; t), \tag{3.4}$$

where

$$G_0(\mathbf{x}_1, \mathbf{x}_2; t) = (4\pi t)^{-1} \exp\left\{-\frac{|\mathbf{x}_1 - \mathbf{x}_2|^2}{4t}\right\},$$
 (3.5)

is the "fundamental solution" of the heat equation (3.2) while $\chi(\mathbf{x}_1, \mathbf{x}_2; t)$ is the "regular solution" chosen so that $G(\mathbf{x}_1, \mathbf{x}_2; t)$ satisfies the impedance boundary conditions (1.7).

On setting $x_1 = x_2 = x$ we find that

$$\theta(t) = \frac{|\Omega|}{4\pi t} + K(t), \tag{3.6}$$

where

$$K(t) = \iint_{\Omega} \chi(\mathbf{x}, \mathbf{x}; t) d\mathbf{x}.$$
 (3.7)

In what follows we shall use Laplace transform with respect to t and use s^2 as the Laplace transform parameter; thus we define

$$\overline{G}(\mathbf{x}_1, \mathbf{x}_2; s^2) = \int_0^\infty e^{-s^2 t} G(\mathbf{x}_1, \mathbf{x}_2; t) dt.$$
 (3.8)

An application of the Laplace transform to the heat equation (3.2) shows that $\overline{G}(\mathbf{x}_1, \mathbf{x}_2; s^2)$ satisfies the membrane equation

$$(\Delta - s^2)\overline{G}(\mathbf{x}_1, \mathbf{x}_2; s^2) = -\delta(\mathbf{x}_1 - \mathbf{x}_2) \quad \text{in } \Omega, \tag{3.9}$$

together with the impedance boundary conditions (1.7).

The asymptotic expansion of K(t) as $t \to 0$ may then be deduced directly from the asymptotic expansion of $\overline{K}(s^2)$ as $s \to \infty$, where

$$\overline{K}(s^2) = \iint_{\Omega} \overline{\chi}(\mathbf{x}, \mathbf{x}; s^2) \, d\mathbf{x}. \tag{3.10}$$

4. Construction of Green's function. It is well known [6] that Eq. (3.9) has the fundamental solution

$$\overline{G}_0(\mathbf{x}_1,\mathbf{x}_2;s^2)=\frac{1}{2\pi}K_0(sr_{\mathbf{x}_1\mathbf{x}_2}),$$

where

$$r_{\mathbf{x}_1\mathbf{x}_2} = |\mathbf{x}_1 - \mathbf{x}_2|$$

is the distance between the points $\mathbf{x}_1 = (x_1^1, x_1^2)$, $\mathbf{x}_2 = (x_2^1, x_2^2)$ of the domain Ω and K_0 is the modified Bessel function of the second kind and of zero order. The existence of this solution enables us to construct integral equations for $\overline{G}(\mathbf{x}_1, \mathbf{x}_2; s^2)$ satisfying the impedance boundary conditions (1.7) for small/large impedances $\gamma_1, \ldots, \gamma_m$. Therefore, Green's theorem gives

Case 4.1.
$$(0 < \gamma_j \ll 1, j = 1,...,k \text{ and } \gamma_j \gg 1, j = k + 1,...,m)$$
.

$$\overline{G}(\mathbf{x}_{1}, \mathbf{x}_{2}; s^{2}) = \frac{1}{2\pi} K_{0}(sr_{\mathbf{x}_{1}\mathbf{x}_{2}}) - \frac{1}{\pi} \sum_{j=1}^{k} \int_{\Gamma_{j}} \overline{G}(\mathbf{x}_{1}, \mathbf{y}; s^{2}) \left\{ \frac{\partial}{\partial n_{j\mathbf{y}}} K_{0}(sr_{\mathbf{y}\mathbf{x}_{2}}) + \gamma_{j} K_{0}(sr_{\mathbf{y}\mathbf{x}_{2}}) \right\} d\mathbf{y}
+ \frac{1}{\pi} \sum_{j=k+1}^{m} \int_{\Gamma_{j}} \frac{\partial}{\partial n_{j\mathbf{y}}} \overline{G}(\mathbf{x}_{1}, \mathbf{y}; s^{2}) \left\{ K_{0}(sr_{\mathbf{y}\mathbf{x}_{2}}) + \gamma_{j}^{-1} \frac{\partial}{\partial n_{j\mathbf{y}}} K_{0}(sr_{\mathbf{y}\mathbf{x}_{2}}) \right\} d\mathbf{y}.$$
(4.1)

Case 4.2. $(\gamma_j \gg 1, j = 1, ..., k \text{ and } 0 < \gamma_j \ll 1, j = k + 1, ..., m)$. In this case $\overline{G}(\mathbf{x}_1, \mathbf{x}_2; s^2)$ has the same form (4.1) with the interchanges Γ_j , $j = 1, ..., k \leftrightarrow \Gamma_j$, j = k + 1, ..., m. Case 4.3. $(\gamma_i \gg 1, j = 1, ..., m)$.

$$\overline{G}(\mathbf{x}_{1}, \mathbf{x}_{2}; s^{2}) = \frac{1}{2\pi} K_{0}(sr_{\mathbf{x}_{1}\mathbf{x}_{2}}) + \frac{1}{\pi} \sum_{j=1}^{m} \int_{\Gamma_{j}} \frac{\partial}{\partial n_{j\mathbf{y}}} \overline{G}(\mathbf{x}_{1}, \mathbf{y}; s^{2}) \left\{ K_{0}(sr_{\mathbf{y}\mathbf{x}_{2}}) + \gamma_{j}^{-1} \frac{\partial}{\partial n_{j\mathbf{y}}} K_{0}(sr_{\mathbf{y}\mathbf{x}_{2}}) \right\} d\mathbf{y}.$$

$$+ \gamma_{j}^{-1} \frac{\partial}{\partial n_{j\mathbf{y}}} K_{0}(sr_{\mathbf{y}\mathbf{x}_{2}}) \right\} d\mathbf{y}.$$
(4.2)

Case 4.4. $(0 < \gamma_i \ll 1, j = 1, ..., m)$.

$$\overline{G}(\mathbf{x}_{1}, \mathbf{x}_{2}; s^{2}) = \frac{1}{2\pi} K_{0}(sr_{\mathbf{x}_{1}\mathbf{x}_{2}}) - \frac{1}{\pi} \sum_{j=1}^{m} \int_{\Gamma_{j}} \overline{G}(\mathbf{x}_{1}, \mathbf{y}; s^{2}) \left\{ \frac{\partial}{\partial n_{j\mathbf{y}}} K_{0}(sr_{\mathbf{y}\mathbf{x}_{2}}) + \gamma_{j} K_{0}(sr_{\mathbf{y}\mathbf{x}_{2}}) \right\} d\mathbf{y}. \quad (4.3)$$

On applying the iteration method (see [4, 7]) to the integral equation (4.1), we obtain the Green's function $\overline{G}(\mathbf{x}_1, \mathbf{x}_2; s^2)$ which has the regular part

$$\overline{\chi}(\mathbf{x}_{1}, \mathbf{x}_{2}; s^{2}) = -\frac{1}{2\pi^{2}} \sum_{j=1}^{k} \int_{\Gamma_{j}} K_{0}(sr_{\mathbf{x}_{1}\mathbf{y}}) \left\{ \frac{\partial}{\partial n_{j\mathbf{y}}} K_{0}(sr_{\mathbf{y}\mathbf{x}_{2}}) + \gamma_{j} K_{0}(sr_{\mathbf{y}\mathbf{x}_{2}}) \right\} d\mathbf{y}
+ \frac{1}{2\pi^{2}} \sum_{j=k+1}^{m} \int_{\Gamma_{j}} \frac{\partial}{\partial n_{j\mathbf{y}}} K_{0}(sr_{\mathbf{x}_{1}\mathbf{y}}) \left\{ K_{0}(sr_{\mathbf{y}\mathbf{x}_{2}}) + \gamma_{j}^{-1} \frac{\partial}{\partial n_{j\mathbf{y}}} K_{0}(sr_{\mathbf{y}\mathbf{x}_{2}}) \right\} d\mathbf{y}
+ \frac{1}{2\pi^{2}} \sum_{j=1}^{k} \int_{\Gamma_{j}} \int_{\Gamma_{j}} K_{0}(sr_{\mathbf{x}_{1}\mathbf{y}}) M_{\gamma_{j}}(\mathbf{y}, \mathbf{y}') \left\{ \frac{\partial}{\partial n_{j\mathbf{y}'}} K_{0}(sr_{\mathbf{y}'\mathbf{x}_{2}}) + \gamma_{j} K_{0}(sr_{\mathbf{y}'\mathbf{x}_{2}}) \right\} d\mathbf{y} d\mathbf{y}'
+ \frac{1}{2\pi^{2}} \sum_{j=k+1}^{m} \int_{\Gamma_{j}} \int_{\Gamma_{j}} \frac{\partial}{\partial n_{j\mathbf{y}}} K_{0}(sr_{\mathbf{x}_{1}\mathbf{y}}) M_{\gamma_{j}^{-1}}(\mathbf{y}, \mathbf{y}') \right.
\times \left\{ K_{0}(sr_{\mathbf{y}'\mathbf{x}_{2}}) + \gamma_{j}^{-1} \frac{\partial}{\partial n_{j\mathbf{y}'}} K_{0}(sr_{\mathbf{y}'\mathbf{x}_{2}}) \right\} d\mathbf{y} d\mathbf{y}'
- \frac{1}{2\pi^{2}} \sum_{j=k+1}^{k} \int_{\Gamma_{j}} \left\{ \sum_{j=k+1}^{m} \int_{\Gamma_{j}} \frac{\partial}{\partial n_{j\mathbf{y}}} K_{0}(sr_{\mathbf{x}_{1}\mathbf{y}}) M_{\gamma_{j}^{-1}}^{*}(\mathbf{y}, \mathbf{y}') d\mathbf{y} \right\}
\times \left\{ K_{0}(sr_{\mathbf{y}'\mathbf{x}_{2}}) + \gamma_{j}^{-1} \frac{\partial}{\partial n_{j\mathbf{y}'}} K_{0}(sr_{\mathbf{y}'\mathbf{x}_{2}}) \right\} d\mathbf{y}'
- \frac{1}{2\pi^{2}} \sum_{j=1}^{k} \int_{\Gamma_{j}} \left\{ \sum_{j=k+1}^{m} \int_{\Gamma_{j}} \frac{\partial}{\partial n_{j\mathbf{y}}} K_{0}(sr_{\mathbf{x}_{1}\mathbf{y}}) M_{\gamma_{j}^{-1}}^{*}(\mathbf{y}, \mathbf{y}') d\mathbf{y} \right\}
\times \left\{ \frac{\partial}{\partial n_{j\mathbf{y}'}} K_{0}(sr_{\mathbf{y}'\mathbf{x}_{2}}) + \gamma_{j} K_{0}(sr_{\mathbf{y}'\mathbf{x}_{2}}) \right\} d\mathbf{y}'$$
(4.4)

where

$$M_{\gamma_j}(\mathbf{y}, \mathbf{y}') = \sum_{\nu=0}^{\infty} (-1)^{\nu} K_{\gamma_j}^{(\nu)}(\mathbf{y}', \mathbf{y}), \tag{4.5}$$

$$M_{\gamma_j^{-1}}(\mathbf{y}, \mathbf{y}') = \sum_{\nu=0}^{\infty} K_{\gamma_j^{-1}}^{(\nu)}(\mathbf{y}', \mathbf{y}), \tag{4.6}$$

$$M_{\gamma_j}^*(\mathbf{y}, \mathbf{y}') = \sum_{\nu=0}^{\infty} (-1)^{\nu *} K_{\gamma_j}^{(\nu)}(\mathbf{y}', \mathbf{y}), \tag{4.7}$$

$$M_{\gamma_j^{-1}}^*(\mathbf{y}, \mathbf{y}') = \sum_{\nu=0}^{\infty} {}^*K_{\gamma_j^{-1}}^{(\nu)}(\mathbf{y}', \mathbf{y}), \tag{4.8}$$

$$K_{\gamma_j}(\mathbf{y}', \mathbf{y}) = \frac{1}{\pi} \left\{ \frac{\partial}{\partial n_{j\mathbf{y}}} K_0(sr_{\mathbf{y}\mathbf{y}'}) + \gamma_j K_0(sr_{\mathbf{y}\mathbf{y}'}) \right\},\tag{4.9}$$

$$K_{\gamma_j^{-1}}(\mathbf{y}',\mathbf{y}) = \frac{1}{\pi} \left\{ \frac{\partial}{\partial n_{j\mathbf{y}}} K_0(sr_{\mathbf{y}\mathbf{y}'}) + \gamma_j^{-1} \frac{\partial^2}{\partial n_{j\mathbf{y}} \partial n_{j\mathbf{y}'}} K_0(sr_{\mathbf{y}\mathbf{y}'}) \right\},\tag{4.10}$$

$${}^*K_{\gamma_j}(\mathbf{y}',\mathbf{y}) = \frac{1}{\pi} \left\{ \frac{\partial^2}{\partial n_{j\mathbf{y}} \partial n_{j\mathbf{y}'}} K_0(sr_{\mathbf{y}\mathbf{y}'}) + \gamma_j \frac{\partial}{\partial n_{j\mathbf{y}}} K_0(sr_{\mathbf{y}\mathbf{y}'}) \right\},\tag{4.11}$$

and

$${}^{*}K_{\gamma_{j}^{-1}}(\mathbf{y}, \mathbf{y}') = \frac{1}{\pi} \left\{ K_{0}(sr_{\mathbf{y}\mathbf{y}'}) + \gamma_{j}^{-1} \frac{\partial}{\partial n_{j\mathbf{y}}} K_{0}(sr_{\mathbf{y}\mathbf{y}'}) \right\}. \tag{4.12}$$

Similarly, we can find $\overline{\chi}(\mathbf{x}_1, \mathbf{x}_2; s^2)$ for the other three cases.

On the basis of (4.4) the function $\overline{\chi}(\mathbf{x}_1, \mathbf{x}_2; s^2)$ will be estimated for large values of s together with small/large impedances $\gamma_1, \ldots, \gamma_m$. The case when \mathbf{x}_1 and \mathbf{x}_2 lie in the neighbourhood of the parts $\Gamma_1, \ldots, \Gamma_m$ of $\partial \Omega$ is particularly interesting. To this end we shall use coordinates similar to those obtained in [4, 7] as follows:

- 5. Differential geometry of the boundary. Let n_j , $j=1,\ldots,m$ be the minimum distances from a point $\mathbf{x}=(x^1,x^2)$ of the domain Ω to the parts Γ_j , $j=1,\ldots,m$ of $\partial\Omega$, respectively. Letters $\mathbf{n}_j(\sigma_j)$, $j=1,\ldots,m$ denote the inward drawn unit normals to Γ_j , $j=1,\ldots,m$, respectively. We note that the coordinates in the neighbourhood of Γ_j and its diagrams are in the same form as in Sec. 3 of [4] with the interchanges $\sigma \leftrightarrow \sigma_j$, $n \leftrightarrow n_j$, $h \leftrightarrow h_j$, $I \leftrightarrow I_j$, $C(I) \leftrightarrow C(I_j)$ and $\delta \leftrightarrow \delta_j$. Thus, we have the same formulae (3.1)-(3.4) of Sec. 3 of [4] with the interchanges $c(\sigma) \leftrightarrow k_j(\sigma_j)$, $n \leftrightarrow n_j$, and $\mathbf{n}(\sigma) \leftrightarrow \mathbf{n}_j(\sigma_j)$.
 - 6. Some local expansions. It now follows that the local expansions of the functions

$$K_0(sr_{xy}), \qquad \frac{\partial}{\partial n_{iy}} K_0(sr_{xy}), \qquad j = 1, \dots, m,$$
 (6.1)

when the distance between x and y is small, are very similar to those obtained in Secs. 4, 5 of [4]. Consequently, for small/large impedances $\gamma_1, \ldots, \gamma_m$ the local behaviour of the kernels

$$K_{\gamma_{\iota}}(\mathbf{y}',\mathbf{y}), \qquad {}^{*}K_{\gamma_{\iota}}(\mathbf{y}',\mathbf{y}), \tag{6.2}$$

$$K_{\gamma_j^{-1}}(\mathbf{y}',\mathbf{y}), \qquad {}^*K_{\gamma_j^{-1}}(\mathbf{y}',\mathbf{y}),$$

$$\tag{6.3}$$

when the distance between y and y' is small, follows directly from the knowledge of the local expansions of the functions (6.1). This follows from the definition of e^{λ} -functions (see [4, 7]) in small domains $C(I_j)$, $j=1,\ldots,m$. Thus, using methods similar to those obtained in Secs. 6-10 of [4], we can show that the functions (6.1) are e^{λ} -functions with degrees $\lambda=0,-1$, respectively. Consequently, for small impedances γ_j the functions (6.2) are e^{λ} -functions with degrees $\lambda=0,-1$ while for large impedances γ_j the functions (6.3) are e^{λ} -functions with degrees $\lambda=0,1$, respectively.

DEFINITION. If x_1, x_2 are points in large domains $\Omega + \Gamma_j$, j = 1, ..., m, then we define

$$\hat{r}_{12} = \min_{\mathbf{y}} (r_{\mathbf{x}_1 \mathbf{y}} + r_{\mathbf{x}_2 \mathbf{y}})$$
 if $\mathbf{y} \in \Gamma_j$, $j = 1, ..., k$

and

$$\widehat{R}_{12} = \min_{\mathbf{v}} (r_{\mathbf{x}_1 \mathbf{y}} + r_{\mathbf{x}_2 \mathbf{y}}) \quad \text{if } \mathbf{y} \in \Gamma_j, \ j = k+1, \ldots, m.$$

An $E^{\lambda}(\mathbf{x}_1, \mathbf{x}_2; s)$ -function is defined and infinitely differentiable with respect to \mathbf{x}_1 and \mathbf{x}_2 when these points belong to large domains $\Omega + \Gamma_j$ except when $\mathbf{x}_1 = \mathbf{x}_2 \in \Gamma_j$, $j = 1, \ldots, m$. Thus the E^{λ} -function has a similar local expansion of the e^{λ} -function (see [3, 4]).

By the help of Secs. 8, 9 in [4] it is easily seen that formula (4.4) is an $E^0(\mathbf{x}_1, \mathbf{x}_2; s)$ -function and consequently

$$\overline{G}(\mathbf{x}_1, \mathbf{x}_2; s^2) = \sum_{j=1}^k O\{[1 + |\log s \hat{r}_{12}|] e^{-A_j s \hat{r}_{12}}\} + \sum_{j=k+1}^m O\{[1 + |\log s \hat{R}_{12}|] e^{-A_j s \hat{R}_{12}}\}$$
(6.4)

which is valid for $s \to \infty$ and for small/large impendances $\gamma_1, \ldots, \gamma_m$ where A_1, \ldots, A_m are positive constants. Formula (6.4) shows that $\overline{G}(\mathbf{x}_1, \mathbf{x}_2; s^2)$ is exponentially small for $s \to \infty$. Similar statements are true in the other three cases.

With reference to Sec. 10 in [4], if the e^{λ} -expansions of the functions (6.1)-(6.3) are introduced into (4.4) and if we use formulae similar to (6.4), (6.9) of Sec. 6 in [4], we obtain the following local behaviour of $\overline{\chi}(\mathbf{x}_1, \mathbf{x}_2; s^2)$ when \hat{r}_{12} or \widehat{R}_{12} is small which is valid for $s \to \infty$ and for small/large impedances $\gamma_1, \ldots, \gamma_m$:

$$\overline{\chi}(\mathbf{x}_1, \mathbf{x}_2; s^2) = \sum_{j=1}^m \overline{\chi}_j(\mathbf{x}_1, \mathbf{x}_2; s^2), \tag{6.5}$$

where if x_1, x_2 belong to sufficiently small domains $C(I_j)$, j = 1, ..., k, then

$$\overline{\chi}_{j}(\mathbf{x}_{1}, \mathbf{x}_{2}; s^{2}) = \frac{1}{2\pi} \left\{ 1 - \gamma_{j} \left(\frac{\partial}{\partial \xi_{1}^{2}} \right)^{-1} \right\} K_{0}(s\hat{\rho}_{12}) + O(s^{-1}e^{-A_{j}s\hat{\rho}_{12}}), \tag{6.6}$$

while, if x_1, x_2 belong to sufficiently small domain $C(I_j)$, j = k + 1, ..., m, then

$$\overline{\chi}_{j}(\mathbf{x}_{1}, \mathbf{x}_{2}; s^{2}) = -\frac{1}{2\pi} \left\{ 1 - \gamma_{j}^{-1} \left(\frac{\partial}{\partial \xi_{1}^{2}} \right) \right\} K_{0}(s \hat{\rho}_{12}) + O(s^{-1} e^{-A_{j} s \hat{\rho}_{12}}). \tag{6.7}$$

When $\hat{r}_{12} \ge \delta_j$, j = 1, ..., k or $\hat{R}_{12} \ge \delta_j$, j = k+1, ..., m the function $\overline{\chi}(\mathbf{x}_1, \mathbf{x}_2; s^2)$ is of order $O(e^{-Ns})$ as $s \to \infty$, N > 0. Thus, since $\lim(\hat{r}_{12}/\hat{\rho}_{12}) = 1$ or $\lim(\hat{R}_{12}/\hat{\rho}_{12}) = 1$

(see [4]) when \hat{r}_{12} or \hat{R}_{12} tends to zero, then we have the asymptotic formulae (6.6) and (6.7) with $\hat{\rho}_{12}$ in the small domains cases being replaced by \hat{r}_{12} or \hat{R}_{12} in the large domains $\Omega + \Gamma_j$, j = 1, ..., m. Similar formulae for the other three cases can be found.

7. Construction of our results. Since for $\xi^2 \ge h_j > 0$, j = 1, ..., m the functions $\overline{\chi}_j(\mathbf{x}, \mathbf{x}; s^2)$ are of order $O(e^{-2sA_jh_j})$, the integral of the function $\overline{\chi}(\mathbf{x}, \mathbf{x}; s^2)$ over the domain Ω can be approximated in the following way (see (3.10)):

$$\overline{K}(s^2) = \sum_{j=1}^m \int_{\xi^2=0}^{h_j} \int_{\xi^1=0}^{L_j} \overline{\chi}_j(\mathbf{x}, \mathbf{x}; s^2) \{1 - k_j(\xi^1)\xi^2\} d\xi^1 d\xi^2 + \sum_{j=1}^m O(e^{-2sA_jh_j})$$
as $s \to \infty$. (7.1)

If the e^{λ} -expansions of $\overline{\chi}_j(\mathbf{x}, \mathbf{x}; s^2)$, j = 1, ..., m are introduced into (7.1), one obtains an asymptotic series of the form

$$\overline{K}(s^2) = \sum_{n=1}^{P} a_n s^{-n} + O(s^{-P-1}) \text{ as } s \to \infty,$$
 (7.2)

where the coefficients a_n for all four cases are calculated from the e^{λ} -expansions by the help of formula (11.3) of Sec. 11 in [4].

Finally, on inverting Laplace transforms and using (3.6) we arrive at our results (2.1)–(2.3).

Acknowledgment. The authors would like to express their sincere thanks to the referee for his suggestions and comments.

REFERENCES

- [1] M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73, No. 4, part II, 1-23 (1966)
- [2] H. P. McKean, Jr., and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geom. 1, 43-69 (1967)
- [3] A. Pleijel, A study of certain Green's functions with applications in the theory of vibrating membranes, Ark. Mat. 2, 553-569 (1954)
- [4] B. D. Sleeman and E. M. E. Zayed, An inverse eigenvalue problem for a general convex domain, J. Math. Anal. Appl. 94 (1), 78-95 (1983)
- [5] L. Smith, The asymptotics of the heat equation for a boundary value problem, Invent. Math. 63, 467-493 (1981)
- [6] K. Stewartson and R. T. Waechter, On hearing the shape of a drum: further results, Proc. Camb. Phil. Soc. 69, 353-363 (1971)
- [7] E. M. E. Zayed, Hearing the shape of a general convex domain, J. Math. Anal. Appl. 142 (1), 170-187 (1989)