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AN INVERSE PROBLEM FOR A GENERAL CONVEX DOMAIN
WITH IMPEDANCE BOUNDARY CONDITIONS
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Abstract. The spectral function 6(z) = > -, exp(—tA,), where {1,}2, are the
eigenvalues of the Laplace operator A = Ef=l(8/6x" )2 in the x!x2-plane, is studied
for a general convex domain Q C R? with a smooth boundary 9Q together with
a finite number of piecewise smooth impedance boundary conditions on the parts
I'y,...,T, of 8Q such that 0Q = U;’;l T

1. Introduction. Let Q C R? be a simply connected bounded domain with a smooth
boundary Q. Consider the impedance problem

—Au=Au in Q, (1.1)

3}
(%+y)u—0 on 9Q, (1.2)

where 9/0n denotes differentiation along the inward pointing normal to 0Q, y is a
positive constant, and u € C2(Q)N C(Q).

Denote the eigenvalues of problem (1.1), (1.2) counted according to multiplicity
by an increasing sequence

O<A <A< <A< > 00 ash— oo (1.3)

Sleeman and Zayed [4] have recently discussed the problem of determining the ge-
ometry of Q as well as the impedance y from the asymptotic expansion of the trace
function -
6(t) = tr{exp(—tA)] = ) exp(—t4,) ast— 0. (1.4)
n=1
Problem (1.1), (1.2) has been investigated by many authors (see, for example [1-3,
5, 6]) in the following special cases.
Case 1.1. y = 0 (Neumann problem)

Q| 109 1/2/ 2
m+—8( )1/2"’ °+256 (t/m) k*(o)da+0O(t) ast— 0. (l.5)
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Case 1.2. y — oo (Dirichlet problem)

0(t) = L‘;IZ -S—J%;JT+ °+256 (t/m) '/2/ k?(o)do +O(t) ast—0. (1.6)
In these formulae, || is the area of Q, |0Q)]| is the total length of dQ and k(o) is
the curvature of 8Q. The constant term ay has geometric significance, e.g., if Q is
smooth and convex then gy = % and if Q is permitted to have a finite number H of
smooth convex holes, then ap = (1 — H)$.

The object of this paper is to discuss the following problem:

Suppose that the eigenvalues (1.3) are known exactly for Eq. (1.1) together with

the impedance boundary conditions

(66 +yj)u=0 onl;, j=1,...,m, (1.7)
nj

where the boundary 9Q of the domain  consists of a finite number of parts I'y, ...,
I',, such that 0Q = U;”=, I';, while @/0n; denote differentiations along the inward
pointing normals to I';, and y; are positive constants.

The basic problem is that of determining the geometry of Q as well as the imped-
ances yi,...,Ym from the asymptotic form of the spectral function 6(z) for small
positive ¢.

2. Statement of results. Suppose that the parts I'j,...,I',, of the boundary 9Q
are given locally by the equations x" = y"(ag;), n = 1,2, j = I,...,m in which g;
are the arc lengths of the counterclockwise oriented boundary and y"(g;) € C>°(I’).
Let L,,..., L, be the lengths of the parts I'y,...,I,,, respectively, and let k;(ay),...,
km(om) be the curvatures of I'y, ..., I,,, respectively. Then, the results of our problem
(1.1), (1.7) can be summarized in the following cases.

Case2l. O<yi<l,j=1,...,kandy;> 1, j=k+1,...,m).
RN N RN R
o(2) 47zt 8(nn)1/2 z:l f—_;l J T, r j(a;)da;

= Jj=k+ J

(1——Zy, ) +0(t'?) ast—0.

Case22. (y;j>»1,j=1,...,kand 0<y; <1, j=k+1,....,m).

In this case the asymptotic expansion of 6(¢) as ¢t — 0 follows from (2.1) with
the interchanges I';, j = 1,...,k &« T, j=k+1,....m, Lj, j=1,....,k & Lj,
Jj=k+1,...omandy;,j=1,....key,j=k+1,....m

Case23. (y;>1,j=1,....,m).

Q 1 “ _ 1
60 = ‘Lnlt 8(m)1?2 Zl {L, +7; /r k,(a,)daj} +g 0 ast—0. (2.2)
J= J

Case24. O<y; <1, j=1,....,m).

(1) = %+ (ZL ) /8(mt)' /2 + (1 - —Zyj ) —+0(t'?) ast—0. (2.3)

J=1

m

(2.1)
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With reference to formulae (1.5), (1.6) the asymptotic expansions (2.1)—(2.3) may
be interpreted as follows:

(i) Q is a convex domain and we have the impedance boundary conditions (1.7)
with small/large impedances y,,..., ¥ as indicated in the specifications of the four
respective cases.

(ii) For the first three terms, Q is a convex domain of area |Q|.

In Case 2.1, it has H = 3/xn ELI y;L; holes, the parts I';, j = 1,..., k of lengths
Zf=l L; with Neumann boundary conditions and the other partsI';, j = k+1,...,m
of lengths

m
> [Lf +y7! / kj(aj)deJ
Jj=k+1 T
with Dirichlet boundary conditions, provided H is an integer.
In Case 2.3, it has no holes (i.e., H = 0), the parts I';, j = 1,..., m of lengths

3 Li+y7' | kj(g))da;
;{ it /r, j(a;) GJ}

together with Dirichlet boundary conditions.

In Case 2.4, it has H = 3/n 3°7" | y;L; holes, the parts ', j = 1,...,m of lengths
Z;”: ; L; with Neumann boundary conditions, provided H is an integer.

We close this section with the remark that, the author [7] has recently discussed
problem (1.1), (1.7) in its special case when m = 2 and has obtained results which
are in agreement with the above results (2.1)—(2.3).

3. Formulation of the mathematical problem. Following the method of Kac [1] and
following closely the procedure of Sec. 3 in Zayed [7], it is easy to show that 6(¢) is
given by

0(1) = // G(x, x: 1) dx (3.1)
Q
where G(x1,X3;1) is Green’s function for the heat equation
0
(A - 5;) u=20 (3.2)
subject to the impedance boundary conditions (1.7) and the initial condition
lim G(x1,x2;1) = 9 (x1 =~ ), (3.3)

where J(x; — x;) is the Dirac delta function located as the source point x,. Let us
write

G(x1,x2;1) = Go(x1, X2 1) + X (X1, X23 1), (3.4)
where

_ 2
Gulxi, ) = (dme)~ exp { - KX, (35)

is the “fundamental solution” of the heat equation (3.2) while y(x;,X3;¢) is the “reg-

ular solution” chosen so that G(x,, x,; ¢) satisfies the impedance boundary conditions
(1.7).
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On setting x; = X; = x we find that

o(t) = ' ' L+ K(0), (3.6)

K(t) = //Qx(x,x;t)dx. (3.7)

In what follows we shall use Laplace transform with respect to ¢ and use s® as the
Laplace transform parameter; thus we define

where

E(xl,xz;sz)=/ e‘SZ’G(xl,xz;t)dt. (3.8)
0

An application of the Laplace transform to the heat equation (3.2) shows that
G(x,xy; 5%) satisfies the membrane equation

(A = s2)G(x,%3;8%) = =0(X; —X3) in Q, (3.9)

together with the impedance boundary conditions (1.7).
The asymptotic expansion of K(¢) as t — 0 may then be deduced directly from
the asymptotic expansion of K(s2) as s — oo, where

K(s?) =//97(x,x;s2)dx. (3.10)

4. Construction of Green’s function. It is well known [6] that Eq. (3.9) has the
fundamental solution

— 1
Go(x1,X2;8%) = 77 Ko(s7xx),

where
rX|X2 = ’xl - x2'

is the distance between the points x; = (x!, x?), X, = (xJ,x3) of the domain Q and K
is the modified Bessel function of the second kind and of zero order. The existence
of this solution enables us to construct integral equations for G(x;,Xy;s?) satisfy-
ing the impedance boundary conditions (1.7) for small/large impedances y,..., Ym.
Therefore, Green’s theorem gives

Cased.l. O<y;<l,j=1,...;kandy; > 1, j=k+1,...,m).

- 1 9
G(x1,%z;8%) = 37 Ko(srax,) Z/ G(x1,y;s {3—Ko(sryx2) + VJKO(Sryxz)} dy

~ Ny
L2 Z / _G xl’y’s ){Ko(sry,‘z) + yj Ian‘ (Sryxz)} dy.
JY

j =k+1
(4.1)

Cased.2. (y;>»1,j=1,...,kand0<y; <1, j=k+1,...,m).
In this case G(xi,X;;s2) has the same form (4.1) with the interchanges I, j=
kel j=k+1,...omandy;, j=1,....k oy, j=k+1,....m
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Cased3. (y;>1,j=1,...,m).

= 1 1 & 0 —
G(x1,X2;8%) = EKO(srxm) +o Z/r WG(xl,y,s ) {Ko(srm)
j=1J4 7y

., 8 }
+7; —anijo(Srsz) dy. (4.2)

Cased4d. (0<yi<l,j=1,....,m).
1o}
G(x1,x;5%) = Ko(srx.x2 - —Z / G(x1,y; s* { 5 Kolsrew,)
J)’
+ 1iKalst) | dy. (43)

On applying the iteration method (see [4, 7]) to the integral equation (4.1), we
obtain the Green’s function G(x;,X»;s?) which has the regular part

X(xi, Xz;SZ)

= /.71'2 Z/ KO(srxly { Ko(Sryxz) + )’_,Ko(SI‘YxZ)} dy

1 & / a { 0 }
+ =— E —Ko(sry, Ko(srw )+ vy~ ——Ko(sr d
2n? j=k+1 r, Onjy 0(S7ay) | KolSrya) +7; onjy o(s7yx,) ¢ dy

1 0
T Z L [, Kt ) { Kty + 7, Kolorye) | dyay

2 3 [ [ g Kalora)M, . 0.9)

j=k+1

-, 0
X {Ko(sry:,‘z) + yj IWKO(S"Y'XZ)} a'ydy’
JY

m > [ {Z [ Kotsrnar (y,f)dy}

j=k+1

-1 0
 {Koloryn) + 77 50— Kolsryn) | ¥
JY

B ZI?Z/I- { Z /l' ai, KO(S’Xny)M;J-I(yaYJ)dY}

Jy

0
X {3 ) KO(er'Xz) + YJKO(er’Xz)} dyj
njy
(4.4)
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where
M, (v.¥) =Y (-1)'K (v, ¥), (4.5)
v=0
M,-(v,¥) = 3 K (Y, ), (4.6)
v=0 "’
M;(y,y) =Y (-1 K (¥, y), (4.7)
v=0
M_(vY) =D K.y, (4.8)
/ v=0 /
K (9) = 7 { e Kol + 1Kol . 49)
2
_. v,y %{ Ko(sryy +7; WKO(SMI)}, (4.10)
Ky (Y,y) = % {8n,y8n,y o(Sryy) + y,aaijo(sryy )} (4.11)
and | 5
K0 = 7 {Kalor) 477 50 Kot . (4.12)

Similarly, we can find ¥(xi, x,;52) for the other three cases.

On the basis of (4.4) the function ¥(x;,x;s%) will be estimated for large values
of s together with small/large impedances yy,..., 7». The case when x; and x; lie in
the neighbourhood of the parts I'y,..., I, of 8Q is particularly interesting. To this
end we shall use coordinates similar to those obtained in [4, 7] as follows:

5. Differential geometry of the boundary. Let n;, j = 1,...,m be the minimum
distances from a point x = (x!, x2) of the domain Q to the partsI';, j = 1,...,m of
0Q, respectively. Letters n;(o;), j = 1,...,m denote the inward drawn unit normals
tol';, j=1,...,m, respectively. We note that the coordinates in the neighbourhood
of I'; and its diagrams are in the same form as in Sec. 3 of [4] with the interchanges
g—dgj,nenj,hehi, I -1, CI)~ C()and § — J;. Thus, we have the same
formulae (3.1)-(3.4) of Sec. 3 of [4] with the interchanges c(g) — kj(g;), n < nj,
and n(g) < n;(g;).

6. Some local expansions. It now follows that the local expansions of the functions
0 .
Ko(sryy), 5—K0(srx,), j=1,...,m, (6.1)
njy
when the distance between x and y is small, are very similar to those obtained in Secs.

4, 5 of [4). Consequently, for small/large impedances 7,,..., y» the local behaviour
of the kernels

K‘/’,(yj’ Y), ‘K7,(yJ’Y)v (62)
Kyl"(yl,y)a ‘Kyj—l(yl, y)’ (63)
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when the distance between y and y’ is small, follows directly from the knowledge
of the local expansions of the functions (6.1). This follows from the definition of
e*-functions (see [4, 7]) in small domains C(I;), j = 1,...,m. Thus, using meth-
ods similar to those obtained in Secs. 6-10 of [4], we can show that the functions
(6.1) are e*-functions with degrees 4 = 0, —1, respectively. Consequently, for small
impedances ; the functions (6.2) are e*-functions with degrees A = 0, —1 while
for large impedances y; the functions (6.3) are e*-functions with degrees A = 0, 1,
respectively.

DEFINITION. If x;,X; are points in large domains Q + I, j = 1,...,m, then we
define

Fi2 = myin(rxly+r,‘2y) ifyel;, j=1,...,k

and
R12=myin(rx,y+ery) ifyel, j=k+1,...,m.

An E*(xy,xy;s)-function is defined and infinitely differentiable with respect to x,
and x, when these points belong to large domains Q + I'; except when x; =x, €T},
j = 1,...,m. Thus the E*-function has a similar local expansion of the e*-function
(see [3, 4]).

By the help of Secs. 8, 9 in [4] it is easily seen that formula (4.4) is an E(x;, x,; §)-
function and consequently

k m -

G(x1,x2;5%) = > Of[1 +|logsille™ 2} + S~ O{[1+]|logsRyalle~ 4R} (6.4)
j=1 j=k+1

which is valid for s — oo and for small/large impendances y,..., y» wWhere 4,,...,

A,, are positive constants. Formula (6.4) shows that G(x;,X,;s?) is exponentially

small for s — oo. Similar statements are true in the other three cases.

With reference to Sec. 10 in [4], if the e*-expansions of the functions (6.1)-(6.3)
are introduced into (4.4) and if we use formulae similar to (6.4), (6.9) of Sec. 6 in
[4], we obtain the following local behaviour of ¥(x;, X2;s2) when 7, or ﬁlz is small
which is valid for s — oo and for small/large impedances yi,..., m:

m
T(x1,%2;8%) = Y T,;(X1,X238%), (6.5)

j=1

where if x;, x; belong to sufficiently small domains C(J;), j =1,...,k, then

_ 1 o\ . 1y
Xj(xl,xz;sz) =31 {1 - (525> }KO(SPIZ) +O(s™lem M2, (6.6)
1

while, if x;, x, belong to sufficiently small domain C(/;), j =k +1,...,m, then
1 0 A
Txisd) =~z {177 (5 | Kalso) + O te=40). (67
J 27{ J 6&12

When 7y, > 6, j = 1,....,korR;; > dj,j =k+1,...,mthe function ¥(x;, X; %) is
of order O(e="$) as s — oo, N > 0. Thus, since lim(?,/p12) = 1 or lim(R2/p12) = |



188 E. M. E. ZAYED anNpD A. 1. YOUNIS

(see [4]) when 7y, or R, tends to zero, then we have the asymptotic formulae (6.6)
and (6.7) with p;, in the small domains cases being replaced by 7, or Ry, in the
large domains Q +I';, j = 1,..., m. Similar formulae for the other three cases can
be found.

7. Construction of our results. Since for &2 > h; > 0, j = 1,...,m the functions
X ;(x,x;5?) are of order O(e~%4/h), the integral of the function ¥(x,x;s?) over the
domain Q can be approximated in the following way (see (3.10)):

mo o oL m
Ret=3 [ ] Zoxsti -k et de + 3 ote k)
j=1782=0J¢!= =1
as s —»oo. (7.1)

If the e*-expansions of 7 (% x;s2), j = 1,..., m are introduced into (7.1), one obtains
an asymptotic series of the form

P
K(s?) = Za,,s‘” + 0P ass — oo, (7.2)
n=1

where the coefficients a, for all four cases are calculated from the e*-expansions by
the help of formula (11.3) of Sec. 11 in [4].

Finally, on inverting Laplace transforms and using (3.6) we arrive at our results
(2.1)-(2.3).
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