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Abstract. The spectral function 6{t) = exp(-fA„), where are the

eigenvalues of the Laplace operator A = X^=1(<9/3x')2 in the x'x2-plane, is studied

for a general convex domain Q c R2 with a smooth boundary dQ together with

a finite number of piecewise smooth impedance boundary conditions on the parts

rlt...,rm of dQ such that dQ = IJJLi 0-

1. Introduction. Let Q C R2 be a simply connected bounded domain with a smooth

boundary dQ. Consider the impedance problem

-Au = Xu in Q, (1.1)

d
dn+y)U = ° °n

where d/dn denotes differentiation along the inward pointing normal to dQ., y is a

positive constant, and u e C2(Q) f| C(Q).

Denote the eigenvalues of problem (1.1), (1.2) counted according to multiplicity

by an increasing sequence

0 < X\ < X2 < • • • < <•••-+ 00 as n —► 00. (1.3)

Sleeman and Zayed [4] have recently discussed the problem of determining the ge-

ometry of Q as well as the impedance y from the asymptotic expansion of the trace

function
OO

d(t) = tr[exp(-/A)] = ^exp(-/A„) as t —> 0. (1.4)
n= 1

Problem (1.1), (1.2) has been investigated by many authors (see, for example [1-3,

5, 6]) in the following special cases.

Case 1.1. 7 = 0 (Neumann problem).

e(,) = Wt + ̂ n+a<' + W6[tl")iplll/(a)da+0{,) as'"a (1'5)

Received February 15, 1989.

1 Present Address: Mathematics Department, University of Emirates, Faculty of Science, P.O. Box 15551,

Al-Ain, U.A.E.
directorate of Military Education, P.O. Box 6688, Abu Dhabi, U.A.E.

©1990 Brown University

181



182 E. M. E. ZAYED AND A. I. YOUNIS

Case 1.2. y —► oo (Dirichlet problem).

m~to-ru^+a°+^{'i*y'2Lk2i°)d''+0U> as'"a (1'6)

In these formulae, |ft| is the area of ft, |dft| is the total length of 3ft and k(o) is

the curvature of dQ. The constant term ao has geometric significance, e.g., if ft is

smooth and convex then a0 = 5 and if ft is permitted to have a finite number H of

smooth convex holes, then a0 = (1 - H)\.

The object of this paper is to discuss the following problem:

Suppose that the eigenvalues (1.3) are known exactly for Eq. (1.1) together with

the impedance boundary conditions

JL + y7) M = ° on Tj, j = (1.7)

where the boundary <9 ft of the domain ft consists of a finite number of parts ...,

Ym such that <9ft = (J^l, Fy. while d/drij denote differentiations along the inward

pointing normals to Tj, and are positive constants.

The basic problem is that of determining the geometry of ft as well as the imped-

ances y\,...,ym from the asymptotic form of the spectral function d(t) for small

positive t.

2. Statement of results. Suppose that the parts Fi,...,rm of the boundary dQ

are given locally by the equations xn = y"((Jj), n = 1,2, j = in which Oj

are the arc lengths of the counterclockwise oriented boundary and yn((Jj) € C°°(ri).

Let L\,...,Lm be the lengths of the parts H,..., Ym, respectively, and let

be the curvatures of H,..., Tm, respectively. Then, the results of our problem

(1.1), (1.7) can be summarized in the following cases.

Case 2.1. (0 < yj < 1, j = 1 k and yj » 1, j = k + 1,..., m).

Lj + y~l Jr kj((Tj)d(7jf)(A l"l ■ 1
[ ' Ant + 8(ntyi2

(2.1)

+ I l- = Y.VjLj I \ + 0{t"2) as ? —► 0.

Case 2.2. (yj » 1, j — 1 ,...,k and 0 < < 1, j = k + 1,...,m).

In this case the asymptotic expansion of 6(t) as t —► 0 follows from (2.1) with

the interchanges rv, j = *-* Tj, j = k + 1,...,m, Lj, j — <-+ L,,

= k+ and yjt j = ~ yjt j = k +
Case 2.3. (yj » 1, j = 1

£ |LJ + yj 1 Jr kAai) dai| + I + 0(?1/2) as 1 -* 0- (2-2)o(t\ = H
( ) 4Tit 8(

J

Case 2.4. (0 < yj < 1, j — 1,..., m).

jft[

4 nt
0(?) = S + (EL>|/8("01/2++ as / —> 0. (2.3)

^'=1
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With reference to formulae (1.5), (1.6) the asymptotic expansions (2.1)—(2.3) may

be interpreted as follows:

(i) £2 is a convex domain and we have the impedance boundary conditions (1.7)

with small/large impedances as indicated in the specifications of the four

respective cases.

(ii) For the first three terms, ft is a convex domain of area |ft|.

In Case 2.1, it has H = 3/7r XZy=i 7j^j holes, the parts Tj, j = 1,..., k of lengths

Hkj=i Lj with Neumann boundary conditions and the other parts Tj, j = k+ 1,..., m

of lengths
m

£ LJ + yj
j=k+1 .

with Dirichlet boundary conditions, provided H is an integer.

In Case 2.3, it has no holes (i.e., H = 0), the parts Tj, j = 1,..., m of lengths

/ kj(Oj) do j
ry

+ ̂  1 lrj=
together with Dirichlet boundary conditions.

In Case 2.4, it has H - 2>/n J^jLi VjLj holes, the parts Tj, j = 1,..., m of lengths

H/li Lj with Neumann boundary conditions, provided H is an integer.

We close this section with the remark that, the author [7] has recently discussed

problem (1.1), (1.7) in its special case when m = 2 and has obtained results which

are in agreement with the above results (2.1)-(2.3).

3. Formulation of the mathematical problem. Following the method of Kac [1] and

following closely the procedure of Sec. 3 in Zayed [7], it is easy to show that 6{t) is

given by

0{t) = JJ^G(x,xj)dx (3.1)

where C?(xi,x2;0 is Green's function for the heat equation

A - \ u = 0 (3.2)
dt.

subject to the impedance boundary conditions (1.7) and the initial condition

limG(x1,x2;0 = <5(x, - x2), (3.3)
(-»o

where <5(X) - x2) is the Dirac delta function located as the source point x2. Let us

write

G(xux2-,t) = G0(x!,x2;/) + *(xi,x2;f), (3.4)

where o

G0(xi,x2;0 = (47it)~l exp|-^'4/X^ j. (3-5)

is the "fundamental solution" of the heat equation (3.2) while ^(xi,x2;/) is the "reg-

ular solution" chosen so that G(xi,x2;?) satisfies the impedance boundary conditions

(1.7).
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On setting Xj = X2 = x we find that

where

6{t) = ^-t+K{t), (3.6)

K(t) = jj x(x,x\t)dx. (3.7)

In what follows we shall use Laplace transform with respect to t and use s2 as the

Laplace transform parameter; thus we define

rOO

G(xi,x2\s2) = / e~sl'G(x\,x2\t) dt. (3.8)
Jo

An application of the Laplace transform to the heat equation (3.2) shows that

G(x!,x2;52) satisfies the membrane equation

(A - S2)G(X\,X2',S2) — -^(X| - X2) in Q, (3.9)

together with the impedance boundary conditions (1.7).

The asymptotic expansion of K(t) as t —► 0 may then be deduced directly from

the asymptotic expansion of K(s2) as 5 —► 00, where

K(s2) = JJ^x(x, x;s2) dx. (3.10)

4. Construction of Green's function. It is well known [6] that Eq. (3.9) has the

fundamental solution
— 7 1
Go(xi,x2;5z) = 2^K0(srXlX2),

where

>"x,x2 = |xj - x2|

is the distance between the points xj = (x},x2), x2 = (x^x2) of the domain Q and K0

is the modified Bessel function of the second kind and of zero order. The existence

of this solution enables us to construct integral equations for (7(xi,x2;s2) satisfy-

ing the impedance boundary conditions (1.7) for small/large impedances

Therefore, Green's theorem gives

Case 4.1. (0 < yj < 1, j = 1,..., k and yj > 1, j - k + 1,..., m).

G(x\,xi\s2) = ~KQ(srXlX2) C?(x,,y;52) |^-A:0(5/-yX2) + 7;A'o(5ryX2)J dy

+ j Y.JTi ErfnW){**«■*,)+*>■
(4.1)

Case 4.2. (yj » 1, j = 1,..., k and 0 < y, < 1, j = k + 1,..., m).

In this case G(xi,x2;52) has the same form (4.1) with the interchanges r;, j =

\,...,k <-► rJt j = k + and yh j = \,...,k <-► yh j = k +
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Case 4.3. (y7 » 1, j = 1,..., m).

G(XUX2\S2)= (srXlX2) + fr -^~G(xuy,s2) i^Koisr^)

+ y71j^yK°(sry*j}dy- (4-2)

Case 4.4. (0 < yj < 1, j = 1,..., m).

1 1 C ( r)

G(x!,x2;s2) = 2^/sTo(5rXlX2) - ~J2jr G(xi,y,s2) | —^(sr^)

+ yjKoisr^)^ dy. (4.3)

On applying the iteration method (see [4, 7]) to the integral equation (4.1), we

obtain the Green's function (j(xi,x2;s2) which has the regular part

Z(xi,x2;52)

*°(srx") {wK~K°(sry*^ + yyA'o(-S'^yx2)| dy■±u
+2y .£ /rj {K»(sr"=>+'71 ^~K«isr^}dy

+HU, K0(srXly)Myj(y,y') ;K0(sryx2) + yjK0(sryXl) j dydy1

X |is:o(fy'X2) + >'71^-;^o(5''y'x2)} dy dy1

i m r I k r l
~r^2 J2 / Ko(srXly)M*j{y,y')dy

27l2 „, , „,
7=A:+1 I j=l ' '

x |a:0(5VX2) + y. l-^—K0{sryX2) J dy1

X { dn ^°(sry'X2^ ^ yj^o(sry'x2) j- dy*

(4.4)
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where
OO

^(y,yy) = E(-1)'/<)(y/'y)' (4-5)

c=0

oo

and

Mr-,( y,y/) = EA:!-'(y#'y)' (4-6)
7 i/=0 7

OO

^(y.y/) = D-1)"*4,')(y,.y). (4J)
i/=0

oo

M;_,(yY) = (J^y), (4.8)
> n V//=0

^(y'.y) = ^ {^o(%) + VjKoisryy,)}, (4.9)

W™ m H4Sr°(IV) + (4',0)

''s:"()/'s) = ; {sS^K°{sr"'>+7'^7/°{sr"'>}- (4-n)

*^-.(y»y/) = ^ jtfo^o + y-'^^oKy')}. (4.12)

Similarly, we can find x(xi,x2',s2) for the other three cases.

On the basis of (4.4) the function /(x1;x2;52) will be estimated for large values

of 5 together with small/large impedances y\,...,ym. The case when X] and x2 lie in

the neighbourhood of the parts H,..., Tm of dQ. is particularly interesting. To this

end we shall use coordinates similar to those obtained in [4, 7] as follows:

5. Differential geometry of the boundary. Let tij, j = 1 be the minimum

distances from a point x = (x\x2) of the domain Q to the parts Tj, j = 1 m of

dQ, respectively. Letters n,(oy), j = 1 denote the inward drawn unit normals

to Tj, j — 1,..., m, respectively. We note that the coordinates in the neighbourhood

of T, and its diagrams are in the same form as in Sec. 3 of [4] with the interchanges

a <-> Oj, n *-* rij, h <-► hj, I Ij, C(I) <-> C(/;) and S <-+ Sj. Thus, we have the same

formulae (3.1)—(3.4) of Sec. 3 of [4] with the interchanges c(a) kj(aj), n +-► n},

and n(ff) <-► n_,(o)).

6. Some local expansions. It now follows that the local expansions of the functions

K0(srxy), ———K0(srxy), (6.1)
orijy

when the distance between x and y is small, are very similar to those obtained in Sees.

4, 5 of [4], Consequently, for small/large impedances y\,...,ym the local behaviour

of the kernels

Kytf, y), y), (6.2)

y), *Ky-.(y'.y), (6.3)
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when the distance between y and y' is small, follows directly from the knowledge

of the local expansions of the functions (6.1). This follows from the definition of

^-functions (see [4, 7]) in small domains C(Ij), j = 1 Thus, using meth-

ods similar to those obtained in Sees. 6-10 of [4], we can show that the functions

(6.1) are ^-functions with degrees 1 = 0, -1, respectively. Consequently, for small

impedances y} the functions (6.2) are eA-functions with degrees A = 0, -1 while

for large impedances yj the functions (6.3) are ^-functions with degrees A = 0, 1,

respectively.

Definition. If x1;x2 are points in large domains Q + r7, j - 1 then we

define

fi2 = mm(rx,y + rXiy) if y e Tj, j = 1,..., k

and

Rl2 = min(rx,y + rX2y) if y € Tj, j = k + 1,..., m.

An i?*(xi,x2;.s)-function is defined and infinitely differentiable with respect to xi

and X2 when these points belong to large domains Q + except when xi = x2 e r,,

j = 1 Thus the ^-function has a similar local expansion of the ^-function

(see [3, 4]).

By the help of Sees. 8, 9 in [4] it is easily seen that formula (4.4) is an £°(xi, x2; s)-

function and consequently

k m ^

G(x1)x2;52) = ^0{[1 + |log^12|]e-^}+ £ 0{[\ + |logsRl2\]e~A'sR^} (6.4)

j=1 j=k+\

which is valid for 5 —► oo and for small/large impendances yi,...,ym where A\,...,

Am are positive constants. Formula (6.4) shows that G(x1,x2;52) is exponentially

small for s -* oo. Similar statements are true in the other three cases.

With reference to Sec. 10 in [4], if the ^-expansions of the functions (6.1)—(6.3)

are introduced into (4.4) and if we use formulae similar to (6.4), (6.9) of Sec. 6 in

[4], we obtain the following local behaviour of /(xi,x2;i'2) when rl2 or R\2 is small

which is valid for 5 —► oo and for small/large impedances y\,...,ym'-

m

X(xi ,x2-,s2) = J2xj(x i,x2;s2), (6.5)

7=1

where if xi,x2 belong to sufficiently small domains C(Ij), j = 1 ,...,k, then

7y(xi,x2;52) = ^ |l J AT0(^>0i2) + O^-'e-^^12), (6.6)

while, if xi,x2 belong to sufficiently small domain C(Ij), j = k + 1 then

Yj{x\,\2\s2) = 11 - yjl J ^oispn) + 0(s~le~AjSPil). (6.7)

Whenr12 > Sj, j = l,...,k or Rl2 > S},j = k+l,...,m the function ^"(xl5x2;52) is

of order 0(e~Ns) as 5 —► oo, N > 0. Thus, since \im(ri2/P\2) = 1 or lim(^]2/^i2) = 1



188 E. M. E. ZAYED and A. I. YOUNIS

(see [4]) when r12 or Rl2 tends to zero, then we have the asymptotic formulae (6.6)

and (6.7) with pn in the small domains cases being replaced by rl2 or R!2 in the

large domains £2 + Tj, j = 1 Similar formulae for the other three cases can

be found.

7. Construction of our results. Since for £2 > hj > 0, j = 1 the functions

Xj(x,x4,s2) are of order 0(e~2sA'h'), the integral of the function ^(x,x;52) over the

domain can be approximated in the following way (see (3.10)):

"> rhj r-L, m

^s2) = E/ / xM*\s2){\-kJi!?)?}d?d? + Y,0i.e-2sAih')
Ji2=o Jp=o

as 5 —> oo. (7.1)

If the el-expansions of x/x,x;.s2), j — 1,..., m are introduced into (7.1), one obtains

an asymptotic series of the form

p

K{s2) = J2anS~n + 0{s-p~l) as 5 —> oo, (7.2)

n=1

where the coefficients an for all four cases are calculated from the ^-expansions by

the help of formula (11.3) of Sec. 11 in [4],

Finally, on inverting Laplace transforms and using (3.6) we arrive at our results

(2.1)—(2.3).

Acknowledgment. The authors would like to express their sincere thanks to the

referee for his suggestions and comments.

References

[1] M. Kac, Can one hear the shape of a drum'!, Amer. Math. Monthly 73, No. 4, part II, 1-23 (1966)
[2] H. P. McKean, Jr., and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential

Geom. 1, 43-69 (1967)
[3] A. Pleijel, A study of certain Green's functions with applications in the theory of vibrating membranes,

Ark. Mat. 2, 553-569 (1954)
[4] B. D. Sleeman and E. M. E. Zayed, An inverse eigenvalue problem for a general convex domain, J.

Math. Anal. Appl. 94 (1), 78-95 (1983)
[5] L. Smith, The asymptotics of the heat equation for a boundary value problem, Invent. Math. 63,

467-493 (1981)

[6] K. Stewartson and R. T. Waechter, On hearing the shape of a drum: further results, Proc. Camb.

Phil. Soc. 69, 353-363 (1971)
[7] E. M. E. Zayed, Hearing the shape of a general convex domain, J. Math. Anal. Appl. 142 (1), 170-187

(1989)


