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Abstract. The paper is concerned with the boundary-initial-value problems of the

nonlinear thermodynamics of electromagnetic materials. Uniqueness and continuous

dependence results are established.

1. Introduction. The equations of electromagnetic theory have been the subject of

many investigations.

In [1], Pettini has proven a uniqueness theorem for solutions of Maxwell's equa-

tions for isotropic materials without thermodynamic influences but with memory.

Fabrizio [2] has obtained a broad generalization of this result (see also, Graffi [3,

Sec. 2.9]). In the present paper we consider the thermodynamic theory of electro-

magnetic materials without memory. It concerns rigid materials which conduct both

heat and electricity. The purpose of this paper is to establish uniqueness and con-

tinuous dependence results in the nonlinear theory. Within the context of classical

nonlinear thermoelasticity, Dafermos [4] has established continuous dependence of

thermodynamic processes upon initial state and supply terms for materials without

heat conduction. These results are based on the local convexity of internal energy

and the strong ellipticity condition. In [5], Chirija extended the results of Dafermos

to heat-conducting materials.

The results established in the present paper are based on the notion of stability used

by Dafermos [4], which is equivalent to continuous dependence of thermodynamic

processes upon initial state and supply terms. Our analysis is developed both for the

materials without heat conduction and for definite conductor of heat materials.

2. Basic equations. We suppose that a properly regular region R of three-

dimensional Euclidean space £3 is occupied by a rigid body which does not move.

Since the configuration of the body is constant in time, there is no reason to distin-

guish a material point from its place in 1%. We let R denote the closure of R, call

dR the boundary of R, and designate by n the outward unit normal of dR. Letters

in boldface stand for tensors of an order p > 1, and if v has the order p, we write
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Vjj...k (p subscripts) for the components of v in the underlying rectangular Cartesian

coordinate frame. We shall employ the usual summation and differentiation conven-

tions: the subscripts are understood to range over the integers (1,2,3); summation

over repeated subscripts is implied; subscripts preceded by a comma denote partial

differentiation with respect to the corresponding Cartesian coordinate; a superposed

dot denotes partial differentiation with respect to f; the symbol | • | denotes the norm

either in an Euclidean vector space or in a tensor space, while || • || denotes Z,2-norm.

A thermodynamic process for R is described by a collection of ten functions of

place x and time t (cf. Coleman and Dill [6, 7] and McCarthy [8]). These functions

are: (1) the electric intensity E, (2) the electric induction D, (3) the magnetic intensity

H, (4) the magnetic induction B, (5) the electric current J, (6) the heat flux q, (7)

the free-enthalpy C, (8) the entropy density t], (9) the absolute temperature d > 0,

and (10) the heat supply S, per unit volume. The first six of these functions are

vector-valued and the last four are real-valued. Such a set of ten functions, defined

for all x in R, and all t in [0, ?o], is called a thermodynamic process if and only if it is

compatible with Maxwell's equations and the equation of balance of energy. Thus,

in every thermodynamic process, the following equations must hold (cf. [6,7])

curl E = B, (2.1)

curl H = D + J, (2.2)

c + dt] + dri + D ■ E + B • H = E • J -I- S - divq. (2.3)

We do not consider the relations

div D = 0, div B = 0,

since we regard these equations as consequences of (2.1), (2.2) and initial conditions.

It is evident that, in order to specify a thermodynamic process it suffices to pre-

scribe the nine functions E, D, H, B, J, q, £, t], and 6. The function 5 is then

determined by (2.3).

The material at each point x in R is specified by listing six functions C, D, B, fj,

j, and q, called constitutive functionals, which give the values taken by £, D, B, t],

J, and q at (x, t), as functions of the values of E, H, 6, and g = grad 6 at (x, t). We

consider that £, D, B, t/, J, and q are smooth functions defined for E, H, and g in

<§3, 6 in the set of positive real numbers 32+, and x in R. In particular we assume

that the partial derivatives of £, D, B, fj, j, and q, at any fixed state (E, H, 6,g) in

the space #3 x 1% x x l?3, are bounded functions of (x, t) on R x [0, J0]-

A thermodynamic process is said to be admissible in R if it is compatible with

the constitutive equations at each point x and each time t. We shall say that A =

(E, H, 6, g) is an admissible state if there exist the functions D, B, (, rj, q, and J such

that (E, D, H, B, J, q, C,ti,d) is an admissible thermodynamic process. The admissible

state A = (E, H, 6, g) is called smooth in R if it is such that E, H, 6, and g are Lipschitz

continuous, uniformly on bounded subsets of their domain.
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For the Clausius-Duhem inequality to hold for all smooth admissible thermody-

namic processes in R, it is necessary and sufficient that (cf. [6])

C — C(E, H, 6),

n = -°L ■--»! » = (2,4)
0E' dH' n 90'

g • q(E, H, 0, g) < 6E • J(E, H, 6, g). (2.5)

For smooth admissible thermodynamic processes the balance of energy reduces to

dt] = E J-divq + S. (2.6)

3. Preliminary lemmas. Let A = (E, H, 6, g)(x, t) and A = (E, H, 0, g)(x, t), (x, t) G

R x [0, /o], be two smooth admissible states. We define

W(t)= [ [C — C + D • (E - E) -(- B • (H - H) + rj(6 — 0)](x, t) dx, f € [0,f0], (3.1)
Jr

where

C = t{A), C — C(a),
(3"2)

dE ' an ' n dd '

Lemma 3.1. If ^4 and A are two smooth admissible states corresponding to the heat

supplies S and 5 in L°°(R x [0, ?0]), then

W= - \ [(E - E) x (H — H) + i(0 - 0)(q - q)] • nda
JdR "

+ JRl(d-0)(S-S)dx

+ [ 4(0 - 0)[J ■ (E - E) + E • (J - J) - jj(9 - 0)] dx
Jr v

+L{>-~e)

/»{"<

(qi - qt) dx
,i

B• - ^ ~ %<HJ ~ ^

+ E,

+ t

D' ~ ^ w,{H>" w(""5)

+ (E-E)-(J- J) J dx.

(3.3)
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Proof. In view of (2.3),

F = — [C - C + D • (E - E) + B • (H - H) + rj(6 - 0)]

= S - divq + E • J - (iS - divq + E • J) - 6(t] —7}) — 6(fj - tj)

+ n • (E - E) - E • (D - D) + 5 ■ (H - H) - H • (B - B) + (B - B) • (H - H)

+ (D - D) • (E - E).

(3.4)
Since

div(E - E) x (H - H) = (H - H) • curl(E - E) - (E - E) • curl(H - H)

curl(E - E) = -(B - B), curl(H -H) = D- D + J-J,

it follows that

- div(E - E) x (H - H) = (D-5)-(E-E) + (B-B)-(H-H) + (E-E)-(J-J). (3.5)

By (2.6),

S — divq + E J - J + divq - E • J - 0(17 - if) - j}{9 - 0)

= ^(6-d)[S-S + E-(J-J) + J (E-E)-Tj(0-0)] (3 6)

l(e-S) 0?« - Qi)-^{6 - 6){q,-q,) +

It follows from (3.4)-(3.6) that

F — - div[(E - E) x (H - H) + \{6 - 0)(q - q)] + D ■ (E - E)

- E • (D - D) + B • (H - H) - H • (B - B) + ij(d -6)- t{rj - Jj)

- (E - E) ■ (J - J) + i(0 - 0)[S - S - Tj(6 - 6) + E ■ (J - J) + J • (E - E)]
o

+

Next, by (2.4),

(Qi-Qi)- (3.7)
,/

% = iSi-t, + J, + 42-J,
dEi ' dE, 1 dE,

i, = d-2iij + + M-t, (3.8)
dHi 1 dH, ' 8H,

^ dDjdBj-£j drj-±
r\ = -^-E, + —^-//, + -46.

06 ' 86 1 dd
The relations (3.1), (3.4), (3.7), (3.8), and the divergence theorem imply the desired

result. □

For a heat-conducting material, we have

&(E,H,0,g) - <7/(E, H, 0, g) = -kij(gj -gj)-mi(d-d)

- m.jiEj - Ej) - p,j(Hj - Hj) (3.9)

+ o,(|E - E| + |H - H| + |d - 6\ + |g - g|),
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where

T =_9UA1 -ppf d9i(A) _ dUA)
dgj ' ' dd_' lJ dEj '

dUA)
p,] dHj '

We say that the smooth admissible state A resides in the region of state space

where the material is a definite conductor of heat if the tensor ktJ is positive definite.

Lemma 3.2. Let A = (E, H, 0,g) be a smooth admissible state on jR x [0, £0] which

resides in the region of state space where the material is a definite conductor of heat.

If A = (E, H, 6, g) is any smooth admissible state on R x [0, ?o] with the property

|E — E| + |H — H| + |0 - 0| + |g — g| < S (3.11)

where 8 is a positive constant, then there exist the positive constants /i\ and Hi such

that

(3.12)

(Qi ~ Qi)| (x, t)dx< - hi ||(g - g)( • ,

+ ^2||(E-E,H-H,0-e)(-,O|li2(Jl).

Proof. Since kt] is positive definite,

h-gi)(gj-gj) (x,t)dx > /co||(g - g)( • ,0lli*(*)» (3-13)

where ko is a positive constant. By (3.9) and (3.13), we have

L. i«lE

i(9-5) (Qi - Qi) } (x, t) dx

< —^oll(g — g)( • ,t)II2

,/

^"lhr)

+ [ {a(6 - d)2 + bi(6 - 6)(g, - gt)
Jr

(3.14)

+ Cj(d - d){Ej - Ej) + F,j(g, - g^Ej - Ej)

+ G:j(gi - - Hj) + Lj{6 - d)(Hj - Hj)}(x, t) dx,

where

a = 8 2midj, b, = 8 2(kjidj - 8m,), Cj = 8 2mjjdj,

Fij = -mlJ8~{, Gij = -pije~l, Lj = d~2pij6j.

By using the Schwarz inequality and the inequality

2xy < x2a~2 + y2a2, (3.15)
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the relation (3.14) becomes

(<?, - Qi) \ (x, t) dx■L
< (-2Ar0 + a?+a§ + a5)||(g-g)( • ,t)\\2Li{R)

+ (a + a~2b + a-2C + aJ2LM6 - 0)( ■ , t)\\l>(R)

+ (a2+a3-2F)||(E-E)(.,0||i2(R)

+ (a2 + Q4-2G)||(H-H)(.,/)||i2(R),

where aj, a-i, 03, a4, and q5 are nonzero arbitrary constants and a = 2 max |a(x, r)|,

b = max|b(x, f)|, C = max|C(x,/)|, F = max|F(x, *)|, G = max|G(x, t)\, L

max |L(x, ?)|.

We choose the arbitrary constants a\, a3, and q4 so that

2A:q — — a2 — al > 0.

If we define )X\ and Hi by

2/i\ - 2k0 - a] - a] - a\,

2H2 = max(a + a\2b + a^2C + a$2L, a2 + a^2F, a2 + a^2G),

then (3.16) implies (3.12). □

Within the context of nonlinear thermoelasticity, the above lemma has been es-

tablished in [5].

4. Nonconductors of heat. A nonconductor of heat is a material for which the

functionals q and J are independent of the temperature gradient. For a nonconductor

of heat the inequality (2.5) implies that

q = 0, E • J(E, H, 9) > 0. (4.1)

We introduce the notations

_ _ 3Di d2t(A) ^ dB, d2t(A)
aiJ urar ' P ii <>T7dEj dE,dEj' r'J dHj dHjdHj

3D, OBj dH(A)
Va = OH j 8E, dEjdHj'

8Dj dtj dH(A)

Clearly

„ _ u ^1 _ u 'I _ u V^1/ m 2)

06 d~E~ dEidO'

,  dB, dj _ dH(A±

86 8H, dHidd'

_ d2J] d2C(A)

C~dB2~~ d°2 '

q ij = aji, pij = pJi, r,j = y,i■ (4-3)
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Theorem 4.1. Suppose that the material is a nonconductor of heat. Let ,4 = (E, H, 9)

be a smooth admissible state which corresponds to the heat supply S e L°°(R x [0, *o])-

Let A = (E, H, 9) be any smooth admissible state on R x [0, ?o], which corresponds

to the heat supply S 6 L°°(R x [0, ^o]), and satisfies the relations

|E-E| + |H-H| + |0-0| <<J, on i? x [0, /0]> (4.4)

[(E - E) x (H - H)] • n = 0 on dR x [0, fo], (4.5)

where is a positive constant. Then there exist the positive constants C\, c2, and C3

such that

[ [ajj(Ei - Ej)(Ej - Ej) + ~plJ(Hl - H^Hj - Hj) + c(9 - 9)2
J R

+ 2yij(Ei - E:)(Hj - Hj) + 2£,(£,- - Et){d - 6)

+ 2ti(Hi-Hi)(d-0)](x,t)dx

< Ci||(E-E,H-H,0 - 0)( • ,0|||2(/?) (4.6)

+ c2^T||(E-E,H-H,0-0)( • ,t)\\lHR]dt

+ c3 f 11(5-S)( ■ , OILa^IKE - E, H - H, e - 0)( -, 0I|L2W dt,
J 0

for all t G [0,5], 5 e [0, ?0]-

Proof. In view of (2.4), (4.1), (4.3) and the Schwarz inequality, it follows from

(3.3) that there exist the positive constants d{ and d2 such that

W(t) < dx ||(E - E, H - H, 0 - 9)( ■ , t)\\2LHR)

+ ̂ ||(5-5)(-,oibw||(0-0)(-)/)lbw.
We fix s e [0, /0] and integrate (4.7) over [0, r], r € [0,5], We get

W(r)< W(0) + d{ /T ||(E - E,H - H, 0 - 0)( ■ ,t)\\2L2(R]dt

r - - (4'8)
+ d2 J ||(S-5)( • ,O||L2Wll(E-E,H-H,fl-0)( • ,t)\\\2(R)dt.

By (2.4),

C-C + D-(E-E) + B-(H-H) + i/(0-0) = ^A+0(|E-EI2 + |H-H|2 + |0-0|2), (4.9)

where

A = a,j(E, - ~Ej)(Ej - Ej) + p^H, - H,)(Hj - Hj) + c(9 - 9)2

+ 2y,J{El - ~E,)(Hj - Hj) + 2£,(£, - £,)(0 - 0) (4.10)

+ 2 UHi-HiW-O).
It follows from (3.1), (4.8)—(4.10) that

jR A(x, t) dx < 2W(0) + 2d\ jT ||(E - E,H - H, 9 - 0)( ■ , 0||i2(J?) dt

+ 2d2 f 11(5 - S)( ■, 0IIl^)II(E - E, H - H, 6 - 0)( ■ , 0ll^(«) dt.
Jo

(4.11)
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Clearly, there exists the positive constant di such that

W(0) < rf3||(E - E,H - H, 6 - 0){ ■ , 0)||iw (4.12)

From (4.11) and (4.12) we obtain the desired result. □

We say that the smooth admissible state A = (E, H, 0)(x, t) is positive if, for each

(x, t) £ R x [0, *o], there exists a positive constant d such that

aijUtUj + PjjViVj + cw2 + lyijUiVj + 2+ 2%,-VjW > d(|u|2 + |v|2 + w2), (4.13)

for all vectors u, v € <§3 and every w e 31.

If (4.13) holds then the specific heat c is strictly positive. Moreover, if B is in-

dependent of E, then (4.13) implies that the tensor /?;J is positive definite (see, for

example, Graffi [3], Sec. 2.4).

The convexity of thermodynamical potentials for electromagnetic materials has

been studied by Fabrizio (see [9, 10]).

In what follows we shall need the Gronwall-type inequality [4],

Lemma 4.1. Assume that the nonnegative functions y € L°°[0,5] and g G L'[0,s]

satisfy the inequality

y2{r)<M2y2{0)+ [\(2a + 4^)y2(t) + 2Ng(t)y(t)]dt, re [0,5], (4.14)
Jo

with a, /?, M, and N nonnegative constants. Then

y(s) < Mexp(ps + fis2)y{0) + Nexp(ps + 0s2) [ g(t)dt, (4.15)
Jo

where p = a + /?/a.

We have the following continuous dependence result.

Theorem 4.2. Suppose that the material is a nonconductor of heat. Let A = (E, H, 6)

and A = (E, H, 6) be as in Theorem 4.1. If A is positive then there exist the positive

constants S\, a\, M\, and N\ with the property that whenever (4.4) holds, we have

II(E - E, H - H, 0 — 6)( ■ ,5)||l2w

<[exp](a,j){^1||(E-E,H-H,0-0)( • ,0)||lHr} (4J6)

+ Nt [ II0S-S)(-,OIIl2(*)^},
^0

for any 5 € [0, Jo],

Proof. In view of (4.6) and (4.13), there exist the positive constants M\, a\, and

N{ such that

||(E-E,H-H,0 —0)(-,Olli2w

<M2||(E-E,H-H,0-0)( ■ ,0)|||2W

r..
/T{2a1||(E-E,H-H,0-0)( • ,t)||22(R)
Jo

+ 27V, ||(S - S)( • , 0IL2W||(E - E, H - H, 6 - 0)11^} dt.

The application of Lemma 4.1 leads to (4.16). □

The next uniqueness theorem is a direct consequence of Theorem 4.2.
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Theorem 4.3. Let A — (E, H, 6) and A = (E, H, 0) be as in Theorem 4.1. If the cor-

responding heat supplies 5" and S coincide on R x [0, ?o] and the both states originate

from the same initial data, then E = E, H = H, 6-8.

5. Conductors of heat. For a heat-conducting material we have the following result,

similar to that given in Sec. 4.

Theorem 5.1. Let A = (E, H, 6, g) be a smooth admissible state on R x [0, /o] which

resides in the region of state space where the material is a definite conductor of

heat and corresponds to the heat supply S e L°°(R x [0, ?0])- Let A = (E,H, 0,g)

be any smooth admissible state on R x [0, ?o] which corresponds to the heat supply

S € L°°(R x [0, fo]) and satisfies the relations

|E-E| + |H-H| + |0 —0| + |g —g| <S2 onRx[0,t0], (5.1)

t(E-E) x (H-H)]-n = 0, (0 - 0)(q - q) • n = 0 on dR x [0,?0], (5.2)

where <52 is a positive constant. If A is positive then there exist the positive constants

Q2, M2, and N2 with the property that whenever (5.2) holds, we have

||(E-E,H-H,0 —0)(-,5)||L2W

< {exp(a25)}[Ar2||(E-E,H-H,0-0)( • ,0)||i2w

+N2 f* \\(S -S)( ■ ,t)\\LHR)dt],
J o

for any jg[0,/0].

Proof. In view of Lemmas 3.1, 3.2, there exist the positive constants m, and m2

such that, whenever (3.11) holds, we have

W{t) < m,||(E - E,H - H, 6 - 0)( ■ , t)\\2LHR)

+ m2\\(S -S)( ■ J)\\LHR)\\(6 -d)( ■ ,t)\\L2{R).

This relation implies

W( T) < W(0)+ f {my ||(E-E,H-H,0-0)( ■ ,011
Jo

2
LHR)

+ ^21| ("S* - S)( ■ , Ollz.2(fl)ll(0 _ ^)( • >011 L2(R)}dt> r S [0,5],
(5.4)

As in Sec. 4, we conclude that there exists a positive constant 8\ such that whenever

(4.4) holds, the inequality (4.11) is satisfied. In (5.1) we take S2 = min(<5i,<5), so that

(4.11) and (5.4) hold. In view of (4.12) and (4.13) we conclude that there exist the

positive constants M2, a2, and N2 such that

II(E - E, H - H, 0 - 0)( • , Olli^)

<M2||(E-E,H-H,0-0)(.,O)||i2w

+ J\2a2\\(E-E,H-H,d-9)(-,t)\\l2(R)

+ 2./V2IIOS - S)( • , OIL'wIKE - E, H - H, 6 - d)( ■ , t)\\2LHR)} dt.

The application of Lemma 4.1 implies the desired result. □

An immediate consequence of Theorem 5.1 is the following uniqueness result.
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Theorem 5.2. Let A = (E, H, 0,g) and A = (E, H, 6,g) be as in Theorem 5.1. If ^4

and A correspond to the same heat supply and they originate from the same initial

data, then E = E, H = H, 6 = 6.
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