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Abstract. The two-dimensional, deep-water, wave-body interaction problem for a

single-hulled body, floating on the free surface of an ideal liquid, is considered. The

body boundary may be nonsmooth and may intersect the free surface at arbitrary

angles. The existence of a unique solution representable by a multipole-series expan-

sion is proved for all but a discrete set of oscillation frequencies. The proof is based

on the property of the associated multipoles to be a basis of the space Lp(-n,0),

1 < p < 2. Strict estimates of the form Dn - 0(n~a) are also obtained for the

coefficients of the multipole-series expansion for piecewise smooth (0 < a < 2) and

smooth (a = 2) body boundaries.

1. Introduction. Consider an infinitely long, horizontal cylinder floating on the free

surface of an unbounded, infinitely deep, incompressible and inviscid liquid. In this

paper we are concerned with the solvability (well-posedness) of the boundary-value

problems arising when the floating body is forced, by an incident harmonic wave or

by an external force, to perform time-harmonic oscillations of small amplitude about

its position of stable hydrostatic equilibrium.

The uniqueness question for the wave-floating body interaction problem has been

studied by means of two, essentially different, methodologies. The first one is of

geometric character and appropriately uses Green's theorem to ensure that the only

possible solution of the homogeneous problem is the trivial one. Such an approach

was inaugurated by John [18] in 1950 (see also Lenoir [24], who reworked the two-

dimensional case, and Kleinman [21]). Recently, Simon and Ursell [33] essentially

generalized John's uniqueness theorem in a manner permitting them to consider

floating and/or submerged bodies of quite a general shape. In general, the uniqueness

results obtained via this methodology are valid for all wavelengths but have suffered,

up to now, from some geometrical restrictions concerning the shape of the floating

body. Having established uniqueness, the well-posedness of the problem can be

deduced by using various methods, such as the integral-equation formulation [18,

21, 22] or the limiting absorption principle [11, 24, 25].
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The second methodology for tackling the uniqueness (and, in fact, the well-

posedness) question is of analytic character and proceeds as follows. The problem

is extended to the complex frequency domain and it is properly reformulated as a

Fredholm functional equation of the second kind of the form

(B+T(X))u = v, (1.1)

where B is a bounded operator and T(X) is a compact operator analytically dependent

upon the complex wavenumber X. Then, the Fredholm theory for analytic families of

compact operators is invoked ensuring the unique solvability of Eq. (1.1) for all but

a discrete set of values of X. (Note, however, that the well-posedness remains valid at

these exceptional frequencies too, provided that uniqueness can be established there

by any manner; see Remark 4.1.) The first author who used this method to deduce

uniqueness of the wave-body interaction problem was apparently Beale [9, Theorem

5.4], See also Vullierme-Ledard [43], who treated the infinite-depth case for either

a floating or a submerged body. In these works the body boundary is assumed to

be smooth. Recently, Athanassoulis [3] has used a multipole-series expansion [2]

to obtain a functional-equation of the form (1.1) for the two-dimensional problem.

The geometric assumptions used in the latter work were that the wetted surface of

the floating body is smooth and it intersects the free surface perpendicularly. These

unnecessarily restrictive assumptions will be removed in the present paper.

In the present paper the wetted surface of the floating body may be nonsmooth

and may intersect the free surface at arbitrary angles (different from 0 and n). More

precisely, it can belong to the class Wij>, p > 1, (see Def. 2.1), where the class index

p is related to the maximum slope-incremental discontinuity of the wetted-surface

tangent. To obtain the well-posedness results, the liquid domain is conformally trans-

formed onto the lower exterior semidisk {Im£ < 0, |C| > 1}, and the problem is

reformulated in the transformed plane. Then, taking into account the boundary be-

haviour of the conformal mapping function and its derivative (Theorem 2.1), and

using the multipole-expansion representation of the solution (Theorem 3.1), we prove

that the traces of the multipoles onto the lower semicircle form a basis in the space

Lp'(-7i, 0), p* = min(/?,2), (Theorem 4.3). This result is used to prove the existence

of a unique wave potential F(C;&o) representable by means of a multipole-series con-

vergent up to and including the body boundary (Theorem 5.1). It is also proved that,

in general, the coefficients Dm of the multipole-series expansion of dF(£-,ko)/d£ sat-

isfy the relation £ \Dm\q' < oo, q* = p'/(p* - 1). For piecewise smooth boundaries

the above estimate for D,n is improved to Dm = 0{m~n), where an is the smaller

exterior angle of the double-body boundary (Theorem 6.1). For smooth boundaries

we have Dm = 0{m~2), which is inconsistent with Ursell's result for the floating

semicircle [42]. The latter estimate cannot be further improved however smooth the

boundary is (Theorem 6.2).

2. Notation, terminology and some preliminary results. A Cartesian coordinate

system Ox2X3 is introduced with the x2-axis lying on the mean free surface dDp,

the _x3-axis directed vertically upwards and the origin O fixed inside the floating

body. A point in the plane Ox2X3 (the physical plane) is denoted by x = (x2,xj)
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or w = X2 + ix3, in the complex notation. The mean liquid domain, the mean

position of the immersed part of the floating body and the mean position of the

wetted surface of the body are denoted by D~,Dg, and dDg, while their mirror

images with respect to the ^2-axis are denoted by D+, Dg, and dD^, respectively.

The pointsets Db = Dg U Dg, 8DB = dDg U dDg, and D = Z>~ U D+ U dDF will be

referred to as the double body, the double-body boundary, and the exterior domain,

correspondingly. The unit normal on dDg, directed inwards with respect to the

liquid, is denoted by n = (n2, /J3); see Fig. 1.

The pointsets D~, D+, and D are considered topologically open, whilst Dg, Dg,

and Dg are considered topologically closed. The points of intersection of the body

boundary and the free surface B(, Br are considered to belong to dDg and dDg, but

not to dDp.

+^ n
I B

Fig. 1

For the exact mathematical formulation of the boundary-value problem which we

intend to study, we need to characterize exactly the double-body boundary 8Db. We

recall that a closed rectifiable Jordan curve dDB is said to be quasi-smooth [29], or

of bounded arc-length-chord-length ratio [45], if

t(w\,wi)l\w\ - W2I < b, 1 < b < 00, W],W2 G 8DB, (2.1)

where £(wi,w2) is the length of the shorter arc of dDB between wx and w2. Also, a

closed rectifiable Jordan curve 8Db is called of bounded rotation [31, p. 225], if the

forward half-tangent exists at every point of dDB, and the tangent angle 1(5) which

it makes with a fixed direction (the slope) may be defined as a function of bounded

variation of the arc length s, 0 < s < L. Let u+(j) be the positive variation function
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of r(s), and define the (positive) jump index a of dDB by

a = sup [u+(s + 0) - o+(s - 0)]/n. (2.2)
o <s<L

Geometrically, the jump index is related to the maximum slope-incremental discon-

tinuity. See below, Eq. (2.3).

Definition 2.1. (Cf. [45, p. 203].) We shall say that the boundary dDB belongs

to the class W{'p if: (i) it is quasi-smooth, and (ii) it is of bounded rotation, with

jump index a < \/p. The positive constant p will be referred to as the class index.

An interesting special case of boundaries belonging to the class IV1,P are those

which are sectionally smooth and satisfy condition (2.1). In this case the tangent

angle r(s) is continuous except for a finite number of points, at which dDB has

vertices with exterior angles a0n, 0 < a„ < 2, a = 1,2, ...,X. The jump index a is

now given by

a - max [1 - aCT,0] = max[l - a*,0] < 1, (2.3)
1<CT<Z

where a* = min^ a^]. In this case the class index p is related to the smaller

exterior angle a*n as follows

atn > (p - 1 )n/p. (2.4)

In treating the wave-body interaction problem by means of the multipole-expansion

method use is made of the conformal mapping function (cmf) /(C), which transforms

the exterior unit disk K onto the exterior of the double-body boundary D. Such a

function may be chosen so that the lower exterior unit semi-disk K~, the lower unit

semi-circle dKg, and the part dKp of the real axis outside the unit circle of the

C-plane correspond to the pointsets D~, dDg, and dDf of the u>-plane, respectively;

see Fig. 1.

Assuming that dDB is a closed, rectifiable Jordan curve, the cmf/(C) admits of a

Laurent expansion of the form

OO

/(C) = £c„C2-n, C„ e R, c, >0 (2.5)

n= 1

which converges absolutely and uniformly up to and including the unit circle dKB.

The function w(8) = f(e'8), -it < 6 < it, is absolutely continuous on dKB and it

defines a parametric representation of dDB. The derivatives f'{e'e) and w'{6) =

df(e'e)/d6 exist almost everywhere (a.e.) on dKB, belong to Ll(dKB), and satisfy

the relation

w'{9) = ieie df(eie)/dt;^ 0,oc, a.e. on dKB. (2.6)

Moreover, the unit normal n(w) = «2 + /«3 is defined a.e. on dDB and is expressed

in terms of /(C) by means of the equation

n(w) = C/'(C)/|/'(C)|, w=f(t),t; = e'e. (2.7)

The proofs of the above propositions may be found in [14, 28, 37],
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The boundary behaviour of /'(C) and w'{6) for domains whose boundaries belong

to the class Wl'p is characterized by means of

Theorem 2.1. Let dDB e Wl-P. Then /'(C) belongs to the Hardy space HP(K) and

the functions f'(e'e) and w'(d) belong to Lp(-n, n). □

This theorem is sharp in the sense that the space HP(K) is the best possible for

the class fVl-p. Indeed, there exist curves (e.g., polygons) with jump index a = l/p,

but for which /'(C) £ HP(K). Theorem 2.1 has been proved by Warschawski and

Schober [45] for bounded simply-connected domains, but it may be easily extended

to exterior domains [26, 30, 32]. It should be emphasized that the above seemingly

simple theorem is a deep and difficult to obtain result, and constitutes the key tool

for treating the wave-body interaction problem when the body boundaries are non-

smooth. It permits us to obtain all the required analytic properties of the derivative

of the conformal mapping function f'{e'e), 6 e [—n, n], without resorting to its series

expansion, which, in this case, may converge slowly or even diverge at some corner

points.

Finally, we note that in the present work two noninteracting, functionally differ-

ent, imaginary units / and j are used, generating the sets of /-complex and j-complex

numbers, denoted by C, and C/, respectively. The unit / is used for the complexifica-

tion of the physical plane, while the unit j is used for factoring out the time-harmonic

dependence. Formal products of /- and /complex numbers also occur, generating

the set of i./-complex numbers, denoted by C/y. For a complete study of the algebraic

and topological structure of C,-; see [2, Appendix I].

3. The multipole expansion method. Under the assumptions stated in Sec. 1, the

liquid motion may be described by a velocity potential 0«(x; t) = Rey {jco<t>(x\ co)eja"},

where <x> is the frequency of oscillation. In treating the wave-body interaction prob-

lem, two different physical problems are to be considered, namely, the radiation prob-

lem and the diffraction problem [46, Sec. 19]. In either case the potential <X> = <l)(x; u>)

has to satisfy the Laplace equation, the boundary conditions

- <E>j3 = 0, on dDF, d<t>/dn = V(x; &o), on dDg, (3.1a, b)

|<D,2|, |03| -0, as x3 —► -oo, (3.1c)

and the radiation condition

^,2 T jko® —* 0, as x2 —> ±00, (3.Id)

where ko = a>2/g is the wavenumber, g is the acceleration of the gravity, d/dn

denotes differentiation along the normal n = («2,«3) of dDg, and ja>V(x-,ko) is the

normal boundary velocity on dDg, depending on the physical problem considered.

Since, in general, we assume that 8DB E Wx-p for some p > 1, the unit normal n is

defined a.e. on dD^.

Using the /./complex wave potential F(w,ko) = <&(x-,ko) + ^(x^ko), where

^(.xjfco) is the ^-complex amplitude of the stream function, the body-boundary con-

dition (3.1b) takes the form

Rej{n(w)F'(w, &o)} = Re,{(T(u;; k0)n(w)}, for a. a. w e dDg, (3.2)
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where "a.a." stands for "almost all," the prime denotes differentiation with respect

to the space variable, the overbar denotes /-complex conjugation, and v(w,ko) is the

iy'-complex body-velocity field. In the case of rigid-mode oscillations of the floating

body with amplitudes £2 (sway), £3 (heave), and £4 (roll), we have

v{w\ko) = [£2 + it:3 + i&w], (3.3)

while in the case of the diffraction problem we have

o{w\ko) = A{j - i) exp(ikow), (3.4)

where A is the amplitude of the incident wave.

Consider now the conformal mapping function /(£) introduced in Sec. 2. Ap-

plying the change of variable w = f(Q we transform F(w,ko) into the potential

F(C,k0) - F(f(Q;ko), defined on the lower exterior semidisk K~. Using F(C\ko)

and the geometric relations (2.6) and (2.7) we reformulate the boundary-value prob-

lem (3.1) in the following form:

Problem P(f;&o). Let dDB e fVl-p, p > 1 and k^eCj - {0}. Find an //'-complex

function F(£;/co), analytic with respect to C 6 K~ ((-analytic) and satisfying the

conditions

Im,{F'(C;/co) + ikofUmhko)} = 0, £ e dKF, (3.5a)

Re,{CF'(C;/co)} = Re,{U(C;^)C/'(C)}, for a.a. f G dK~, (3.5b)

|F'(C;fco)|ctJ — 0, as Im,{C} — -00, (3.5c)

F(C;^o) — A±(^o)(l T ij)k0exp{-ik0f'{oo)C), A±(^) e Cj, Re,{£} -► ±00,
(3.5d)

where v{C,ko) = v{f{Q\k0).

Since the right-hand side of (3.5b) belongs to Lp(dKg), p > 1, the equality should

be understood in the LP-sense. Condition (3.5d) is an alternative form of the radia-

tion condition (3.Id); see [2],

In the present work, the problem P(£; ko) will be treated by means of the multipole-

expansion method. This method has been first introduced by Ursell in 1949 [38, 39]

(see also [40, 42]) for smooth floating bodies with a vertical axis of symmetry, and

it was extended to smooth nonsymmetric bodies by Wehausen [47], Count [10], and

Athanassoulis [2, 3]. Here, the applicability of the multipole-expansion method is

confirmed for arbitrary (nonsmooth, nonsymmetric) floating bodies. All technical

features of the multipole-series expansion used in this work are presented in

Theorem 3.1. (The expansion Theorem [2].) Let dDB = dDg u dDg be a closed

Jordan curve. A function F(£;/co) is £-analytic, C € K~, and satisfies (3.5a, c, d) iff

it may be represented in the form

OO

F(C;^o) = d0G0{C',k0) + </iG|(C;£0) + dmMm{C,ko), (3-6)
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where dm € C/, m — 0,1,2,...,

/■f 00 (T _ p\~ r2-l-m

Mm(C;^o) = C"m - iko / u~mf'{u)du = C-m - IfcoE 7 »
•/ oo+(0 i-i-m

m = 2,3,..., (3.7)

G m(C;ko) = Gm(f(C);ko), m = 0,1, (3.8)

G0(w,k0) = (1 - ij)exp(-ikow) - jFQ(w,ko)/it, (3.9a)

G\{w,ko) = (1 - ij)koexp{-ik0w) - 1Fi{w;k0)/ic, (3.9b)

and
rW

Fm(w,ko) — exp(-ikow) / exp(ik0u) du, m = 0,1. (3.10)
•/ oo+zO

The path of integration in Eqs. (3.7) and (3.10) is taken in the lower half-plane. □

The function F0(w;ko) admits of the series representation, [15]

.Fo(u;;fco) = exp(-jfc0w)
i / -i \ (ik0w)n

+ ln(ik0w)-iTi + JJ ,
n=l

(3.11)

where y is Euler's constant. This expression shows that Fo(w;ko) is, for each w ± 0,

an analytic function of k§ e Q, where Q c C7 - {0} is any open bounded simply-

connected region. Moreover, the function koFo(w,ko) —> 0 as ko —<► 0, for each fixed

w ^ 0. Since

Fi(w\ko) = ik0Fo(w,ko) - w~l, (3.12)

and

dFm(w,ko)/dw = w~(m+^ - ikoFm(w;ko), m = 0,1, (3.13)

it follows that F\(w;k0) and dFm(w,k0)/dw are also analytic functions of k0 e Q

and they remain bounded as ko —<• 0, for each w ^ 0.

Substituting the expansion (3.6) into the body-boundary condition (3.5b) and for-

mally differentiating term-by-term we obtain

J2Dn,(ko)<t>m(6-,k0)=Y(e-,k0), in Lp(-n, 0), (3.14)
m=0

where

Dm = dm, m = 0,1, Dm = -rndm, m = 2,3,..., (3.15)

cPm(d-k0) = Rei{eieG'm(eie-k<))} m = 0,1, (3.16a)

with

H0(e'e-,k0) = (-1 + ij)kow'{6)exv(-ik0w{6)) + jk0w'{B)F0{w{dy,ko)/7i

+ ijw'(6)/(nw(6)), (3.16b)

H\{e,e-k0) - (-1 + ij)kQw'(d)exp{-ik0w(d)) + ikQw'(d)F0(w(6)-k0)/n

- k0w'(d)/{nw{d)) + iw'{d)/(nw2(6)), (3.16c)
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<t>m{Q\ko)= Rei{ewM'm{ei0;ko)/m}

= R et{e-'m0 + ikoe-imeeief(eie)/m} (3.17a)

= cos(m0) + kogm(6)/m, m = 2,3,...,

with

gm{Q) = Rei{e~""ew'(9)} = x^id) cos(m6) + x'3(6) sin(md), (3.17b)

and

V(0;fco) = RBi{o(eie;ko)ei9f(e,e)} = R Ci{-iS(eu',ko)w'(0)}. (3.18)

In this way the question of the solvability of the problem P(£; ko) has been reduced

to the question of the expansibility of the forcing function \(d\ko) in terms of the

functions (j>m(6\ko), m - 0,1,— In this connection, before proceeding any further,

we should characterize these functions.

Lemma 3.1. Let dDB € fVItP, 1 < p < oo. Then,

(i) For any given k0 G Cthe functions \(6\ko), gm{Q',ko), m> 2, and <$>m(6;/co),

m > 0, belong to the space Lp(-n, 0);

(ii) For almost all 6 e [—tt, 0], the above functions are analytic functions of

ko € Cj - {0};
(iii) The following inequalities hold true:

fowrUmid', ko) - cos(m0)||£, = |*o| J2
m=2 m=2

m
<NIK(0)||P

W

Proof, (i) It is a straightforward consequence of Theorem 2.1.

(ii) It is an obvious consequence of Eqs. (3.11)—(3.13) and (3.16)—(3.17).

(iii) This is a direct consequence of the fact that

(3.19)

||x2(0)cos(m0) + .X3(0)sin(m0)||z> < \\w'(6)\\lp,

and the Theorem 2.1.

Remark 3.1. It should be emphasized that the characterization ("smoothness")

of the functions V(0;fco), gm(9\ko), m> 2, and <t>m{d\ko), m > 0, given in the above

lemma, is the best possible, in the sense that, for a boundary 8Db with a jump index

a, these functions belong to Lp(-n, 0) for all p < 1 /a, but they do not belong to
L'/a(-7t, 0).

We are now in a position to state the following alternative formulation of the

problem P(£;&o).

Problem P(D;/co). Let dDB, k0, u(C',k0) be as in Problem P(£;&o). Find a j-

complex sequence D(/co) = {^(A^)}^0 such that Eq. (3.14) is satisfied in Lp(-n,0).

To clarify the method that will be used in treating the general problem P(D;&o),

ko > 0, it seems expedient to consider first the zero-frequency case.

The zero-frequency case. In the low-frequency limit k0 —> 0, the functions 4>m(0\ko)

and \(8\ko) admit an asymptotic expansion of the form

f 0(/co In A:o), m — 0,1,
4>m(0;/co) = <M0;O)+ 0 '' (3.20)

I O(ko), m = 2, 3,...
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and
f 0, for the radiation problem,

V(0;fco) = V(0;O) + < (3.21)
\ O(ko), for the diffraction problem,

where

MO', 0) = —jlmi{w'(d)/(nw(d))}, fa(0; 0) = - lmi{w'(e)/(nw2(d))}, (3.22a)

(f>m(6-,0) - cos(md), m = 2,3,... (3.22b)

and

J £2*3(0) - €3X2(0) ~ £4*4(0)> f°r the radiation problem, (3.23a)

(0)0) | a(x'2(6) +jx'3(d)), for the diffraction problem, (3.23b)

with

x4(9) = (x22(0) + jc|(<9))/2. (3.23c)

Clearly,

lim = 0m(0;O), rn > 0, and lim V(0;fco) = V(0;O), (3.24)
fco-'O /co—►O

and the functions \(6-,0),<j)m(6;0), m> 0, belong to Lp(-n,0) (cf. Lemma 3.1).

The above asymptotic expansions permit us to consider the zero-frequency prob-

lem (formal limit problem) P(D;0). This simple problem has been extensively stud-

ied by many authors since it provides useful hydrodynamic quantities for floating

cylinders. See, e.g., [4] for a recent survey. However, the relation of its solution with

the solution of the frequency-dependent problem P(D; ko) as ko —► 0, is by no means

trivial, and it can be found in [39, 41] (for smooth, symmetric bodies), and in [4, 5]

(for the general case).

We shall now establish the solvability and the regularity results for P(D; 0), working

along the same lines as for the general problem P(D; ko). This simple case is free of

obscured technicalities and permits us to present clearly the underlying ideas.1

Theorem 3.2. Let dDB € Wl<p, 1 < p < 00, Then, the sequence {0m(0;O)}o° forms

a Schauder basis of LP(-n, 0). □

Proof. Motivated by the fact that cpm(9; 0) = cos(m6), m > 2, we decompose the

space Lp = Lp{-n, 0) in the form Lp = LPA® LPB, where LPA — [1, cos 6] and LPB —

[cos(m6),m >2], It should be noted that this decomposition is introduced here,

although it could be avoided as regards the formal limit problem, since it becomes

necessary in the treatment of the general case ko > 0. See Theorem 4.3.

Let v(6) be an arbitrary element of Lp, and consider the element

U(d) = 0(0) - aoMS-,0) - ai<h(6\0), (3.25)

where the coefficients an, n = 0,1, are determined so that u(6) belongs to LPB. This

is equivalent to

uc(n) = 0, n = 0,1, (3.26)

1 We are grateful to the referee of this paper who recommended the separate treatment of the zero-frequency

case.
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where uc(n) is the nth-order cosine-Fourier coefficient of the function u{6) defined

by
1 f°

uc(n) = - / u{6) cos{n8) d6, n = 0,1,2,— (3.27)
n J-n

Condition (3.26) can be written as

ao0Oc(»;O) + ai0lc(«;O) = uc(n), n = 0,1, (3.28)

which constitutes a linear system for the coefficients an, n = 0,1. This system is

always solvable, since its determinant A(0), can be expressed in the form

r° x3{0)
sin Odd, (3.29)

\w(6)\2

which is always a positive quantity.

Thus, given any o{6) € Lp, we can construct a unique u(6) € LPb, and using

the basis property of the trigonometric sequence {cos(m0)}f in Lpb, we obtain the

expansion
OO

= X/ uc(m) cos(md), in LPB. (3.30)
m=2

Note that the latter series converges in the LPB norm (see [20, p. 50]). Relation (3.30),

in conjunction with (3.25), provides us with the expansion

OO

«(*) = £/«(»)*«(*; °), in LP, (3.31)
m=0

where,

fm{v) = am, m — 0,1, and fm(u) = uc(m), m> 2. (3.32)

The latter relation shows that any element v{9) of Lp can be expanded in terms of

the functions <pm(6,0), m > 0, and the corresponding series converges in the V norm.

This means that the sequence {(/>m(0;O)}o° forms a Schauder basis of Lp(-n,0), and

completes the proof of the theorem.

In what follows it is very important to know the behaviour of the sequence of the

expansion coefficients {/m(f)}o° with respect to m. The basic tool to obtain this in-

formation is the Hausdorff-Young Theorem [20, p. 98], which states that the sequence

of the Fourier coefficients {uc(m)}f, defined through the expansion (3.30), belongs

to the sequence space lq", for q* = max{2,p/{p - 1)}. This fact, in conjunction with

relation (3.32), leads to the estimate

OO

XI< °°> = ma\{2,p/{p - 1)}. (3.33)
m=0

Theorem 3.2 in conjunction with relation (3.33) immediately implies that, for a

given 8Db 6 W'-p, p > 1, the formal limit problem P(D;0) admits a unique solution

{Dm(0)}o° in the sequence space ig', q* = max{2,p/{p- 1)}. We shall now show that

the estimate {Z)m(0)}g° e , is the best possible in the case where the only fact that
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we know about the body boundary is that it belongs to the class WUp. (Stronger re-

sults will be subsequently established for piecewise smooth boundaries.) Taking into

account relations (3.20)-(3.23), we can write the body-boundary condition (3.14),

for the case ko = 0, in the form

OO

Z)o(O)0o(0; 0) + D\(0 )M6-, 0) + J2 A*(0) cos (md) = V(0; 0). (3.34)
m=2

Then, taking the cosine-Fourier coefficients of the two members of (3.34), we obtain

the following relations for the expansion coefficients Dm(0):

A)(0)</>oc(m; 0) 4- D\(O)0ic(m; 0) = Vc(w; 0), m = 0,1, (3.35a)

D0(0)^oc(m-,0) + Dl(0)Mm-,0) + Dm(0)/2 = \c(m-0), m> 2. (3.35b)

These equations show that the order 0(Dm(0)) is dominated by 0(Vc(m;0)), which

implies that the estimate {Z)w(0)}o° e lq~ cannot, in general, be improved, since the

estimate {Vc(m;0)}o° € lq* is the best possible. Indeed, there exist even continuous

functions V(#;0) (e.g., continuous x'k(6), k = 2,3,4) with no better estimates for

their Fourier coefficients Vc(m;0); See, e.g., [8, p. 228],

To obtain individual estimates2 for the coefficients Dm(0), the body boundaries

should be confined to an appropriate subclass of Wl'p. For the subclass consisting of

polygonal body boundaries we can prove the following:

Theorem 3.3. Let dDg — dDg u dDg be a polygonal section of which the smaller

exterior angle is an, 0 < a < 2, a ^ 1. Then, Dm(0) = 0(m~a), and this estimate is

the best possible. □

We shall sketch here a proof of the theorem, referring to Sec. 6, Theorem 6.1 for

a complete proof.

Sketch of the Proof. Using the explicit form of the conformal mapping func-

tion /(C) (obtained via the Schwartz-Christoffel transformation), we can express the

Fourier coefficients of w'(9) in terms of the incomplete Gamma function. Then,

applying standard asymptotic results for this function, in conjunction with some

geometric relations given in Appendix A and Theorem CI of Appendix C we can

establish the estimates,

Vc(m-0) = 0{m~a), <Mm;0) = 0(m~a), <Mm;0) = 0(m~a). (3.36)

In the course of the proof it becomes clear that the above estimates are the best

possible. These estimates, in conjunction with relation (3.35b) give us the individual

estimates for the coefficients Dm(0) stated in the theorem.

Proceeding along the same lines as in the above theorem, we can prove that the

estimate given in Theorem 3.3 remains valid for piecewise smooth boundaries dDB,

consisting of sufficiently smooth arcs (curvilinear polygons). See Remark 6.1.

When the body boundary is sufficiently smooth (see Definition 6.1), we obtain

Dm(0) = 0(m~2). Note that, in the case of heave and roll motion, this estimate

2We shall call an individual estimate of the sequence {Om}g° any relation of the form Dm = 0(X(m)),

where A(m) is a monotone sequence.
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cannot be further improved however smooth the boundary is, while in the case of

sway motion stronger results can be obtained depending on the smoothness of the

body boundary dDB. See [4, Appendix 3].

Motivated by the basis property of the sequence {<^m(0;O)}o° proved in Theorem

3.2, we shall prove in the next section that the sequence {(/>m(0',ko)}jj°, > 0, is also

a basis of Lp(-n, 0), 1 < p < 2, for all ko e R+ - F, where F is a set of isolated

values of ko (possibly empty).

4. The basis property of (pm(6',ko), m = 0,1, To prove the basis property of

the sequence {4>m(6-,ko)}o° use is made of the theory of bases in Banach spaces (see,

e.g., [34]) and the spectral properties of analytic families of compact operators [13,

17, 35]. We recall here some basic notions and results, which will be extensively used

in this section.

Definition 4.1 (Singer [34, p. 68]). Two sequences (or bases) and {jn}o°

in a Banach space E are said to be equivalent, if there exists a bounded invertible

operator (automorphism) T: E —► E, such that Txn = y„, for every n.

Definition 4.2. Let {JC/i}o° be a basis of a Banach space E and {fn}^cE' (the

dual of E) be its associated sequence of coefficient functional (a.s.c.f.). We shall

say that the pair (E, {xn}o°) possesses ^-bounded a.s.c.f. if there exists a positive

constant A such that

/ OO \ ^/P

ll/n(*)ll*' = ^a\\x\\e, for all x E E. (4.1)

Lemma 4.1. (i) If a sequence {y«}o° in a Banach space E is equivalent to a (Schauder,

Riesz) basis {x„}q° of E, then it is also a (Schauder, Riesz) basis of E.

(ii) If, moreover, the pair (E, (x„}o°) possesses ^-bounded a.s.c.f., then the pair

(E, {yn}o°) also possesses ^-bounded a.s.c.f. □

Let us now examine the basis property of the system

{ym(0;/co)}o° = {l,cos0,0m(0;/co) = cos(m0) + k0gm(6)/m, m = 2,3,...}, (4.2)

which is obtained by {</>m(0; ^o)}o° if we replace (f>o{6; ko) and <p\(0; ko) by the simpler

functions 1 and cos 0, respectively.

Theorem 4.1. Let dDB € W{'p, 1 < p < oo, and k0 e C,. Then, for sufficiently small

\ko\ we have

(i) If 1 < p < 2, the sequence {i//m(0-,ko)}o° is a Schauder basis of Lp(-n, 0)

with ^-bounded a.s.c.f., q = p/(p - 1);

(ii) If 2 < p < oo, the sequence {^m(0;&o)}o° is a (nonorthogonal) Riesz basis of

L2(-7T,0).

When p ^ oo the above results are the best possible (see Remark 3.1). □

Proof, (i) First we note that the trigonometric system {cos(md)}^ is a Schauder

basis of Lp = Lp(-7i,0), 1 < p < oo, and, in virtue of the Hausdorff-Young Theorem

[20, p. 98], the pair (Lp, {cos(w0)}q°), 1 < p < 2, possesses ^"-bounded a.s.c.f.

<7 = P/{P ~ 1). That is

\\fm{x)\\f, < A\\x\\u, for all x € Lp(-7i,0), 1 < p < 2, (4.3)
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where A > 0, and {/m(-*)}o° are the a.s.c.f. given by

1 f°
fm(x) = — x{9)cos(m9)dd, m = 0,1,  (4.4)

n J iz

We now define the operator TkkoeCj, by setting

oo

2E /m(jO(cos(m0) - y/m{Q\h))- (4.5)
m=0

This operator is defined on LP, its range lies in LP and it is bounded. For any given

x e Lp, we can apply the Holder inequality obtaining

OO

l/^WI II cos(md) - y/m(8-,ko)\\Lp
m=0

/ OO \ '/« / oc \ '/P

< X^I/mMM ( S I|cos(m0) - M0;*o)lli,) ,
\m=0 / \m=0 /

which, in conjunction with (3.19) and (4.3) leads to

/ OO \

\\Tkox\\l^<2A\k0\\\w'(d)\\LP[Yjm-p) 11x11^ = 51^111x11^. (4.6)

The latter inequality proves the boundedness of Tk- Lp —* Lp, and that ||ftJ<5N.

But then, for \ko\ < B ', ||7*J| < 1, and thus, the operator I -T^ is bounded and

invertible on Lp. Now, since (/ - T^){cos(md)) = y/m(9;ko), m = 0,1,..., Lemma

4.1 permits us to conclude that the sequence {y/m{9;k0)}o° is a basis of Lp, 1 < p < 2,

equivalent to {cos(w0)}q°, and that the pair (Lp, {ym(0;^)}o°)' 1 < P < 2, possesses

^-bounded a.s.c.f., for |/co| < B~[.

(ii) For the case p — 2 the trigonometric system {cos(m0)}g° is an orthonormal

(thus a Riesz) basis of L2, and, consequently {\i/m{9\ko)}g° is a (nonorthogonal) Riesz

basis of L2, for |/cq| < B~l. This result cannot be, in general, extended for p > 2,

since the Hausdorff-Young Theorem cannot be extended to p > 2 [8, p. 223]. Thus,

for p > 2 we should content ourselves with the L2-basis property of {y/m(9, ko)}™-

This completes the proof of the Theorem.

The basis property of {y/m{9\&o)}q° would be extended for |&0| > B~{, ko £ Cj, if

it would be possible to extend there the operator I - as an automorphism on Lp.

We shall now prove that such an extension is indeed possible for almost all ko € C7.

To proceed to this direction we need the following two properties of the operator

Oo-

lemma 4.2. The operator 7^ is compact for each ko e Cj, and analytic with respect

to ko £ Cj. □

Proof. We define the finite-dimensional operator T^, ko e Cj, by

N

Tk0x = fm(x)(cos(md) - y/m{6\ ko)). (4.7)
m=0
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Then, in virtue of (3.17) and (4.3) we have

/ oo \ '//>

||7^- rj| < A\ko\\\w'(6)\\v £ m-"\ , (4.8)
\m=V+l /

which implies that ||TP - -* 0, as N —► oo, from which the compactness of the

operator follows immediately.

The analyticity of follows at once by making use of the fact that, for each

x e LP and /' e Lq = (LP)', q = p/(p - 1), the function
OO

h(k0) = /'(T^x) = J2Ux)f'(cos(md) - y,m(6]ko)), (4.9)
m=0

is well defined and analytic with respect to ko e Cj [36, p. 205].

The extension of I - as an automorphism on LP for ko e Cj - S, where S is

a set of isolated points, is now a direct consequence of Theorem 4.1 and a theorem

of Gohberg on the invertibility of I-Tko when 7^ is analytic [13, p. 21]. Thus, we

have proved the following:

Theorem 4.2. Let dDB e Wl'p, 1 < p < oo, and ko e Cj. Then, for all ko e Cj - S,

where S is a set of isolated points, the conclusions (i) and (ii) of Theorem 4.1 remain

valid. □

Unfortunately, the above results cannot be directly transferred to the system

{<pm(0~, A:o)}o°. The reason is that <f>o(0; Icq) and <j>\(8; k0) are not "small" perturbations

of 1 and cos0, respectively, and thus we cannot ensure that ||r*J < 1 for small |fco|.

To cope with this difficulty we shall decompose the space Lp into a direct sum of two

subspaces, and we shall proceed in a manner analogous to that used in Theorem 3.2.

Theorem 4.3. Let dDB E fV1,p, 1 < p < oo, and let q = p/{p - 1) be the conjugate

exponent. Let also Q c C, - {0} be an open bounded simply-connected region,

containing an interval of the form (0, h), h > 0.

Then, for all k0 G Q - S, where S is a set of arbitrarily small plane measure, we

have

(i) If 1 P — 2, the sequence (^, ^o)}g is a Schauder basis of Z/^( 7r,0)

with ^-bounded a.s.c.f;

(ii) If 2 < p < oo, the sequence {0m(0;fco)}o° is a (nonorthogonal) Riesz basis of

L2(-tt,0).

When p ± oo the above results are the best possible (see Remark 3.1). When p =

oo stronger results would be obtained, dependent on the smoothness of the body

boundary dDB. □

Since the proof is lengthy and cumbersome we first give a description of its basic

steps.

Step One: We decompose the space Lp(-n, 0) into two subspaces Lpa and LPB as in

Theorem 3.2, and we appropriately modify the multipoles <f>m(6\ko),m > 2, so that

the modified ones 4>*m{Q\ko) belong to the subspace LPB.

Step Two: We prove that the sequence {4>*m{6\A^)}|° forms a basis of LPB equivalent

to the trigonometric basis {cos(md)}™.
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Step Three: We prove that the set of all multipoles </>m(0; ko), m > 0, forms a basis

of the whole space LP.

Step Four: We prove that the pair (LP, &o)}o°) possesses ^-bounded a.s.c.f.

Proof, (i) The case 1 < p < 2.

Step One: We decompose the space Lp — Lp(-n,0) in the form LP = LPa ® LPB,

where VA = [l,cos$] and LPB = [cos(md),m > 2], and we modify the elements

m > 2, in such a manner that the modified ones become "small" pertur-

bations of cos(md), m> 2, belonging to LPB.

To start, we observe that the sequence {cos(md)}f is a basis of VB and that,

in virtue of the Hausdorff-Young Theorem, the pair (L",{cos(m#)}2°), 1 < p < 2,

possesses ^-bounded a.s.c.f., that is

(oo \ l/<7

X!l/'"(x)l9) <a\\x\\l>>b, for all x e LPB, (4.10)
m=2 J

where {/m(^)}f are the a.s.c.f. defined by (4.3).

Since, in general, 0m(0; ko), m > 2, do not belong to LPb (they have components in

tPA too), we cannot deduce any basis property of the sequence {</>m(0;&o)}2°in LPb.
In this connection we define

0m(0;^o) = 4>m{d\k0) - am0(t>o{8',k0) -tfmi0i(0;&o), m > 2, (4.11)

where amn e Cj, m > 2, n — 0,1. Then, (j>*m{6\ko) € Lpb, m > 2, if and only if

o)) = 0, n = 0,1, m > 2. This condition leads to the following linear

system for the coefficients amn

amoMMd',k0)) + tfmi/o(<M0;£o)) = kofo{gm{6))/m, (4.12a)

amofi{MQ',ko)) + amJx((j)\(e\ko)) = kofi{gm(6))/m, (4.12b)

which is uniquely solvable, for each m >2, provided that

A(ko) = MM6-,ko))fi(MB;ko)) - MM0-,ko))MM0-,kO)) * 0.

The function A (ko) is analytic with respect to ko 6 Q, and it admits of the following

asymptotic approximation for small k0 [19]

A(k0) = A(0) + 0(k0lnk0), (4.13)

where A(0) is given by (3.19). Equation (4.13) implies that A(ko) cannot be identically

equal to zero; it may have only isolated zeros in Q. If this is the case we modify the

region Q by excluding from it arbitrarily small neighborhoods of the zeros of A(A^)

and introducing cuts, so that the modified region, Q\ = Q - S\ is simply-connected.

Then, for e Q\, we have A(ko) ^ 0, and the system (4.12) is always solvable there.

The solution of the system (4.12) can be written in the form

amn = amn(k0) = kobmn{ko)/m, n = 0,l,m>2, (4.14)

with

\bmn(k0)\ < B„, (4.15)
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where Bn = Bn(Qx) is independent of m and k0 e Qx. Note that amn(k0) and bmn(ko),

m > 2, n = 0,1, are analytic functions of ko € Q\. Now taking into account (3.17),

(4.11), and (4.14), we see that the modified elements (j)*m{0\ko) e LPb, m > 2, may be

written in the form

<t>*m(d-,ko) = cos(md) + kogn(6-,ko)/m, m> 2, (4.16a)

where

8m(d'ko) = gm(0) ~ bmo(k0)Md\k0) - bmi(ko)<f>i(0-,ko). (4.16b)

Step Two: Now, we shall show that ko)}f forms a basis of VB, equivalent

to {cos(m0)}2°. The proof proceeds along the lines of proofs of Theorems 4.1 and

4.2. Define the operator on LPB by

OO

Tkox = 2^2fm(x)(cos{rnd)-<t>*m{d\k())), ko£Q\. (4.17)
m=2

In virtue of (4.10), (4.15), and (4.16) we can see that the operator Tko, ko G Qx, is

compact (cf. Lemma 4.2), and moreover that

/ OO \ '/p

117^11 < 6A\ko\(\\w'(d)^ + + B^(QX)MP (Qx))^p £ m~p ,
\m=2 /

(4.18)
where Mn{Q\) = sup{||0„(0; k0)\\u>, k0 € Q\} < oc,n = 0,1. Thus, for sufficiently

small |&o|, we obtain that || 7^ || < 1. On the other hand, since the operator Tko is

analytic with respect to k0 G Q\ (cf. Lemma 4.2), we can use Theorem 5.1 of Gohberg

[13, p. 21] to deduce the invertibility of the operator I - 7^0 for all ko € Q\ - S2,

where S2 is a set of isolated points of ko. This fact, in conjunction with the relation

(/ - r^)(cos(w0)) = (j)*m{6\ko), m > 2, and Lemma 4.1, implies that {<t>*m(d\ko)}f

is a basis of LPB, equivalent to {cos(m0)}2°, and that the pair (LPB, ^o)}^)

possesses ^-bounded a.s.c.f. for all ko E Qj — Q\ - 5*2 = Q - S, where 5 = S\ USS is

a set of arbitrarily small plane measure.

Step Three: We now proceed to show that {4>m(6\^o)}q° forms a basis of L" for

all k0 e Qi. Let u(0;/co) € LP and consider the element

u{6\ko) = v{d\ko) - a0{ko)4>o(S\ko) - ax(ko)4>i(0\ko), (4-19)

where an(ko), n = 0, 1, is the solution of the linear system

ao{ko)fo{M&\ko)) + ai(ko)fo(<f>\{0', ko)) = fo(v{0',ko)), (4.20a)

ao(ko)fi (Md; ko)) + a, (k0)fi (0. (0; ko)) = /. («(0; k0)). (4.20b)

Then, clearly, /„(m(0;/co)) = 0, n = 0,1, which means that u(d\ko) e LPB, and conse-

quently we may write
OO

u(d-ko) = Y^hm(w,ko)<t>*m{d\k 0), (4.21)
m=2

with
/ 00

l^KivkoWj < ax{Q2)\\u\\lv (4-22)
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Now combining (4.11), (4.19), and (4.21), we obtain

1 OO

v(d;ko) = am{ko)<t>m(d-,k0) + h*m{u\k0)(j)*m{e-,kQ)
m=0 m=2

oo

m=0

where

(4.23)

hn{v,ko) = an(ko) - J2 hm(u\ko)amn{ko), n = 0,1, (4.24a)
m=2

hn{v\ ko) = h*n(u\ ko), n> 2. (4.24b)

Equation (4.23), in conjunction with (4.15), (4.22), and (4.24), shows that each

element t>(0;/co) G LP has a unique expansion in terms of 0m(0;&o), m = 0,1,2,

convergent in the norm. Thus, the system {^m(0;/co)}o° is a Schauder basis of Lp for

all ko & Q2.

Step Four: We shall now prove that the pair {LP, {</>m(6>; &o)}o°), ̂ 0 € Q2, possesses

^-bounded a.s.c.f. Consider the projection Pb'. Lp —* tPB. Since both its range

R(Pb) = Lpb and its null space N(PB) — LPa are closed, Pb is continuous. Thus,

Md-,k0)\\K = \\PBo(8-,ko)\\L, < ||Pa|| \\o(e-,ko)\\^, (4.25)

which, in conjunction with (4.22), gives

(00 \

£ \h'Ju- k0)\« J <A2(Q2)\\o(9-k0)\\D,. (4.26)

On the other hand, from the linear system (4.20) we obtain

\a„(ko)\<Dn(Q2)\\o(e-ko)\\^, n = 0,1, (4.27)

which, in conjunction with (4.15), (4.24a), and (4.26), implies that

<Ai{Q2)\\o{0-,ko)\\u. (4.28)
\m=0 /

Finally, combining the inequalities (4.26) and (4.28), we obtain

\\hm{v,ko)\\t, < C(£?2)IN0;&b)||z/,

which proves that (LP, {0m(0;&o)}o°) possesses ^-bounded a.s.c.f.

(ii) The case p > 2. Consider first the case p = 2. Then, although all the above

arguments hold true, the basis property of &o)}g° can also be proved easier,

using Hilbert-space techniques (cf. [3, Sees. 4, 5]). Since now {cos(m0)}g° is an

orthogonal basis of L2, it follows that {0m(0;^o)}o° is a Riesz basis of L2 (cf. Lemma

4.1). The above results in general cannot be improved for 2 < p < 00, since the

Hausdorff-Young Theorem cannot be extended for this case (see Theorem 4.1 (ii)).

This completes the proof of the Theorem.
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Remark 4.1. In proving the invertibility of the operator I -T^, in Theorem 4.3,

use was made of the fact that ||7^0|| < 1, for sufficiently small |&o|. However, the

invertibility of and thus all the conclusions of the Theorem remain true if

there exists at least one kq e Q, for which the sequence ^o)}o°^-linearly

independent (see Theorem 5.1 [13, p. 21]). This is equivalent to a uniqueness theorem

for the problem P(£;&q). When this is the case e Q- S.

Remark 4.2. For Im ko > 0, a uniqueness theorem can be proved for the problem

P(C;Ar0) [21, p. 9], Thus, we can assert that 5n{^: Imfco > 0} = 0.

Remark 4.3. The basis property of {(/>m(0-,ko)}o° holds true for all ko eR+ ~ F,

where F is a set of isolated points. However, the existing experience permits us to

conjecture that F = 0; see, e.g., [33],

Remark 4.4. The property that the pair (LP, {</>m(0;^o)}o°) possesses ^-bounded

a.s.c.f. is, in fact, equivalent with the boundedness of the resolvent operator of the

problem P(D;/co), which to any given forcing term V(0;&o) (see (3.14)) corresponds

its coefficients hm(\;ko), (see (4.23)), with respect to the basis {(f>m(6\ko)}g°.

We conclude this section by stating a theorem concerning the /^-analyticity of the

associated to {<pm(d',ko)}g° coefficient functionals.

Theorem 4.4. Let Q c C;- be an open set for which the sequence {(f)m(d\ko)}o°,

ko £ Q, is a basis of LP (-it, 0). Then, for any given x(6) e Lp(-n,0), its coefficient

functionals hm(x\ko), m = 0,1,..., are analytic with respect to ko e Q. Moreover,

if x(d)ko) G LP(-ii,0) is analytic with respect to ko € Q, its coefficient functionals

h*m(ko) = hm(x(8-,k0);k0) are also analytic in Q. □

The proof of this Theorem is simple and so it will be omitted (see [7, pp. 37-38]).

5. The solvability of the problem P(£;&o). Theorem 4.3 immediately implies that,

for dDB e IV' , p ^ 1, and for a.a. ko E Cj ^0}, the problem P(D,/cq) admits

a unique solution in the sequence space lq~, q* = max{2,p/(p - 1)}, and that the

resolvent operator is bounded (see Remark 4.4). We now proceed to establish the

solvability of the problem P(£;/c0).

Theorem 5.1. Let dDs e Wl'p, 1 < p < oo, and let q = p/(p - 1) be the conjugate

exponent. Let also ko e Q - S, where Q, S are as in Theorem 4.3 (in the physical

problem ko e (0, oo)). Then, there exists a unique ./-complex sequence {£>m(&o)}o° e

iq', q* = max{2,^}, defining the ij-complex function

F(C;^o) = Do(k0)G0(C-,k0) + DMG^ko) - ^DM/m)Mm{t:-ko), (5.1)
m=2

which has the following properties

(i) It is C-analytic in K~ and satisfies conditions (3.5a, c, d). Moreover, it is

extended as a single-valued C-analytic function over any simply connected

cover of K~, say A^, not intersecting the closed unit disk;

(ii) It is continuous on K~ U dKg\
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(iii) The nontangential limit limf_>exp(,0)((3?F(C;^o)/^C) exists for a.a. 6 e [—7T, 0]

and defines a function belonging to Lp" (~n,0), p* = min{p,2}, which satis-

fies the body-boundary condition (3.5b) a.e. and in LP' - sense;

(iv) It is analytic with respect \o e Q - S\

(v) If an arc Y of dDg not containing the end points B(, Br, is Dini-smooth [28,

p. 298], then the function F(C;&o) satisfies the boundary condition (3.5b)

pointwise in y = /_1(r), and uniformly in closed subarcs of y. □

Proof. According to the hypotheses, the forcing term V(6>; /to) in the body-

boundary condition belongs to LP(-n,0)\ see Lemma 3.1. On the other hand, ac-

cording to Theorem 4.3, the sequence {</>m(^;^o)}o° is a basis in LP' {-tc, 0), p* =

min{/?, 2}, and thus there exists a unique ./-complex sequence {A„(/c0)}g°, such that

OO

\(d-k0) = J2DM<Pm(e-,ko), in Lp' (-71,0), (5.2)
m=0

with

||A»(*b)||/.* < ^||V(0;^o)||^, \/p* + l/q* = 1. (5.3)

Consider now the function F(£;/co) defined by (5.1). Then

(i) F(C;&o) is C-analytic in K~, and satisfies conditions (3.5a, c, d) because of the

Expansion Theorem 3.1. Its extensibility on K\ follows at once from (5.1), (3.7), and

(3.9).
(ii) Clearly, the functions Gm(C',ko), m = 0,1, are continuous in AT- u dKB.

Since now /'(£) e HP(K), it follows that Mm(C,ko),m - 2,3,..., are also con-

tinuous and moreover uniformly bounded with respect to m, for £ e K~ u dKg.

On the other hand, from (5.3) we obtain that {Dm/m} e ix and thus the series

J2m=2 A«Mm(C; ko)/m is uniformly convergent and represents a continuous function

on K~ U dKg .

(iii) Assuming that |C| > 1 and differentiating (5.1) we obtain

CF"(£; ko) = HAt-ko) + H B(C; ko) + Hc(C; ko), (5.4)

where

l

HA((-,k0) = Cf'(0^2Dm(ko)dGm(w,ko)/dw\w=m, (5.5a)
m=0

oo

nB(C,k0) = J2D'Mi:-m, (5.5b)
m=2

oo

Hc(f;*b) = ikoCfiO J2(DmC<o)/m)rm. (5.5c)
m=2

We observe that Hc(C;^o) € HP(K) and HA(el6\ko) e Lp(dKg). Note, however,

that H^(C;^o) ^ Hp(K), since it is not single-valued in K. On the other hand, since

the series in (5.2) converges in Lp'(-n,0), and using the M. Riesz theorem for the

conjugate function [12, p. 54], we conclude that H#(£;£o) £ Hp'(K). Then, we have

that the nontangential limit of the function £F'(C;ko), as £ —>• e'e e dKg , exists a.e.
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and in the LP'- sense [12, pp. 21, 34], and the body-boundary condition (3.5b) is

satisfied a.e. and in the LP' -sense.

(iv) Since {(j)m(9; ̂ o)}o° ^ an analytic family of bases of LP' (-n, 0) for k0 e Q-S,

we can apply Theorem 4.4 obtaining that the coefficients Dm(ko), m = 0, 1,2,...,

are analytic functions of Icq e Q - S. This fact, in conjunction with the uniform

convergence of the series in (5.1), implies that F(£;&o) is an analytic function of

ko € Q - S.
(v) Under the imposed smoothness assumptions for the arc T we have that f'(e'e)

is continuous and different from zero in y [44], [28, p. 298]. Thus, the forcing term

V(0;/co), and the boundary functions YlA{e'e-,ko) and Hc(e'e;&o) are continuous in

y. The function Hfi(£;&o) e Hp' (K), and thus it may be represented as the Poisson

integral of its boundary values Hb(?'6';/co), which belong to Lp'(dKg). But fore'0 e y

we have that

Re,-{lW®;*b)} = V(0;*o) - Re,{Hj4(e,0;/co)} - Re,{Hc(^;/to)},

which implies that Re,{HB(C;fco)} is continuous in y, and, according to [37, p. 130],

Re,{HB(C;&o)} is continuous in K~ uy. This fact, in conjunction with the continuity

of H/((C; ko) and Hc(C;^o) in K~ u y, completes the proof of the part (v) of the

Theorem.

We shall conclude this section by commenting on the best possible character of our

results and by comparing our approach with the infinite-system approach by Ursell

[40, 42],
Taking into account (3.17) we can write (5.2) in the form

D0{k0)MQ',ko) + D\{ko)(j)\{6\k(i)
oo oo

+ ^2 Dm(ko)cos(m9) + k0 J2(Dm(ko)/m)gm{6) = V(0;&o). (5.6)
m=2 m=2

Then, taking the cosine-Fourier coefficients of the two members of (5.6), we obtain

the following infinite linear system (which also can be used for numerical calculations;

see [6]):

OO

Do(ko)4>oc{n\ko) + D\{k0)cp\c{n-,ko) + k0^2(Dm{k0)/m)gmc(n) = Vc(«;fco),
m=2

n = 0,1, (5.7a)

OO

D0(k0)4>0c(n-,k0) + Di{ko)<j>lc(n-,ko) + {Dn{k0)/2) + k0 y2(Dm(ko)/m)gmc(n)
m=2 (5.7b)

= \c(n\ko), n> 2,

where

gmc(n) = ~[x'2c{m -n) + x'2c(m + n) + x'is(m - n) + x'is{m + n)]/2, (5.8)

and, for any integrable function f(6), the symbol fc(n) denotes the mh-order cosine-

Fourier coefficient of f{6), 9 e [-^,0], defined by Eq. (3.27), while the symbol fs(n)

denotes the corresponding sine-Fourier coefficient defined similarly. (For example,
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x'2c(n) denotes the «th-order cosine-Fourier coefficient of the function x'2(d)). Equa-

tion (5.7b) shows that 0(Dn(ko)) is dominated by 0(Vc(n;ko)), and this implies that

the estimate (D„(A<))}e tq" is the best possible. (See the comments after the proof

of Theorem 3.2.)

Moreover, one would examine the solvability question of the problem P(£; ko) by

studying the solvability of the infinite linear system (5.7a, b). Such an approach

was introduced by Ursell [40, p. 93] for the case of a floating semi-circular cylin-

der (see also [42, p. 293]), and extended to floating bodies with analytic bound-

aries by Athanassoulis [3, Sec. 6]. In the above works the solvability of the sys-

tem (5.7) was proved in the Hilbert-space i2 and this had been made possible since

0(yc(n)) = 0(n~2). For nonsmooth body boundaries, e.g., when dDB € Wl>p, p > 1,

the solvability of the linear system (5.7) should be justified in £q", q* = p*/(p* - 1).

For this, we have to prove the compactness of the corresponding infinite-matrix op-

erator in iq", that is, we have to prove that

oo / oo \Q/P

Y, ( 5Z \Smc(n)/m\p' ) <00. (5.9)
n=2 \m=2 J

The proof of the convergence of the above double series, without having at our

disposal individual estimates for gmc(n), is a very difficult task, which the present

authors have not yet succeeded in carrying out.

The above observations permit us to compare our basis-theory approach to the

more traditional infinite-system approach. When using the former approach, the

main step is to prove the compactness of the operator defined in (4.17), and this

can be easily carried out by examining the convergence of a simple single series (cf.

Step Two of the proof of Theorem 4.3). When using the infinite-system approach,

we have to prove the convergence of the double infinite series (5.9), which is an open

question for body boundaries of the class Wx<p.

6. Regularity results. In this section, restricting ourselves to the radiation problem

for more useful and conventional body boundaries, we shall obtain individual esti-

mates for the sequence {Dm}g° 3 improving the crude general estimate {Dm}g° e £q*

obtained in Sec. 4. Consider first the case of a polygonal boundary dDB.

Theorem 6.1. Let dDs = dD# UdDg be a polygonal boundary the smaller exterior

angle of which is an, a ^ 1, 0 < a < 2. Then, Dn = 0(n~a), and this is the best

possible estimate. □

Proof. Consider first the case where 0 < a < 1 (the critical case). Then w'(6) e

Lp{-7i,n) for p e [1,1/(1 - a)], and, according to the Hausdorff-Young Theorem,

{^-(")}o° e k = 2,3,4, 4 where q e {q*,oo) and q* - max{2, 1 /a] (cf. Theorem

3In this section we omit the argument from all frequency-dependent quantities.

4The subscript * stands for c or 5.
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2.1). Taking into account (5.8) we write

Dn/2 = Vc(«) - D0j)0c(n) - Dx4>u{n)
OO

- k0 ^ Dm[x'2c{m - n) + x'2c{m + n) - x'is(m - n) + x'3s(m + n)\/2m,

m=2

n > 2. (6.1)

To obtain individual estimates for the coefficients Dn we shall estimate all the terms

appearing in the right-hand side of (6.1).

Estimation of the terms Vc(n), 4>ocW, 4>\c(n). Using the explicit form of the con-

formal mapping function /(£) (obtained via the Schwarz-Christoffel transformation),

we can express the Fourier coefficients of w'(6) in terms of the incomplete Gamma

Function. Then, with the aid of some standard asymptotic expansions, we find

\c(n) = 0(n~a), (6.2)

and this estimate is the best possible when 0 < a < 1. See Appendix A.

To obtain individual estimates for <j>kc{ti), k = 0,1, we observe that we actu-

ally have to estimate the cosine-Fourier coefficients of functions of the type h{6) =

w'(6)F(w(8)), (see (3.16a, b, c)) where F(w(0)) is infinitely differentiable with re-

spect to w(6), and absolutely continuous with respect to 6. Thus, we have

Fc(n) = o(n'1), Fc\n) = o(n~x). (6.3a, b)

The estimate (6.3a) can be improved as follows. Using an integration by parts we

obtain

Fc{n) = —- f° dF^^w'(d)s\n(nd)de. (6.4)
nn J_n aw

Now applying the Theorem CI (Appendix C) concerning the Fourier coefficients of

the product of two functions, and taking into account the estimates (6.3b) and (A 10)

(Appendix A), we find that

Fc(n) = 0{n~{l+a-e)), (6.5)

with arbitrarily small e > 0. After establishing (6.5) we can apply once more Theorem

CI to obtain

hc(n) = 0{n~a). (6.6)

Now, using (6.6) in conjunction with (3.16a, b, c) we easily find

<M") = 0(n~°), hc(n) = 0(n~a)- (6-7)

Estimation of the terms J2Dmx'kt(m±n)/m, k = 2,3. Using the Holder inequality,

and the estimates {Dm} e lq, q* < q < oo, and (A 10) we obtain

OO / oo \ '/' / OO \

\Dmx'k.{m±n)/m\ < I ̂  \Dm\" ) f J2 \*'kAm ± n)/m\p J
m=2 \m=2 J \m=2 J (C ox

/» \ </> <6-8)
< A J ̂ 2'm P\m i n\np

Km=2
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where the prime in the summation symbol indicates that the term |m - n\~ap corre-

sponding to m = n is omitted from the summation. The estimation of the last series

is difficult and laborious and is given without proof in Appendix B. The result is

OO

J2DmX'k*(m±n)/m = 0(n~a). (6.9)
m=2

Now combining (6.2), (6.7), and (6.9) we obtain the estimate

Dn = 0{n~~a), 0<q<1. (6.10)

It should be emphasized that, since the estimate (6.2) is strict, the individual

estimate (6.10) for the coefficients Dn is, in general, the best possible. Let it also be

noted that Eq. (6.1) cannot give better estimates than Dn = 0(«-1), however smooth

the boundary dDB is.

Now consider the case 1 < a < 2 (the noncritical case). In this case |w'(0)| e

C[-n, n], while w"(9) e Lp(-n,n), for p e [1,1/(2 - a)). Thus, by performing an

integration by parts in (6.1), we obtain

Z>„/2 = Vc(n) - D04>oc{n) - D^Xc{n)
OO

+ (k0/2n) ~2(Dm/m)(x'2S(n - m) + x"s(n + m) + x"c{n - m) +'X"c(n + m))

m=2

OO

+ (k0/2n) ^2 Dm(-x'2c(n - m) + x'2c(n + m) + x'3s{n - m) + x'3s(n + m)).

m=2 (6.11)

We now proceed to estimate the terms appearing in the right-hand side of (6.11). For

the first three we can use the same arguments as for the critical case. Thus, taking

into account the estimates (A 15), (A 16a), and (A19) we obtain

Vc(«) = 0{n~a), 4>oc(n) = 0(n~a), fac(n) = <9(n~a), (6.12a, b, c)

where now 1 < a < 2. The estimation of the first four infinite series containing

xkt(n ± m), k = 2,3, is accomplished by using the Cauchy-Schwartz inequality since

now {Dm}™ £ i1. Then, taking into account (A15), (A16a), and the results of

Appendix B, we find

OO

{\/n)^2Dmx'^{n±m)/m = 0(n~a), k = 2,3. (6.13)
m=2

Estimation of the terms ^Dmx'kt(n ± m), k — 2,3. Estimating the terms of Eq.

(6.1) as in the critical case, we easily obtain that Dm - 0(m~l). If we set =

ma~xDm, m > 2, then, = 0(ma~2) and {¥,„} e tq with q > 1/(2 - a). Now

using the Holder inequality and taking into account the estimates (A 15) and (A 16b)
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we obtain

CO OO

X! \Dmx'kAn±m)\ = \x¥mXlk,(n±m)lmn-x\

m=2 m=2

(°° \ ^ ^ / oo \ V/7

Ei^n (XI )
(oo

Y,'m~~(a~l)p\n±

m=2

which, in conjunction with the results of Appendix B, gives

OO

(1 /n)YJDmxUn±m) = 0{n-a), k = 2,3. (6.14)
m=2

Combining now (6.12), (6.13), and (6.14) we obtain the estimate

Dn = 0(n~a), I < a < 2, (6.15)

which is the best possible, since estimate (6.12a) is strict. This completes the proof

of the theorem.

Remark 6.1. Exploiting some classical results about the boundary behaviour of the

conformal mapping function in the vicinity of the corner points [23], we can prove

that the estimate of Theorem 6.1 remains true for piecewise smooth boundaries dDB,

consisting of sufficiently smooth arcs (curvilinear polygons).

Remark 6.2. A simple consequence of the estimate Dn = 0(n~a) is that the

transformed velocity field is continuous on dKg in the noncritical case (i.e., 1 <

a < 2), while it might become unbounded at the points of dKg corresponding to the

corner points in the critical case (i.e., 0 < a < 1). These conclusions are reversed in

the physical plane, as can be seen by means of the relation F'{w\ko) = F'(£; ko)/f'(Q.

When the boundary dDB is sufficiently smooth the estimate for the coefficients Dn

becomes Dn = 0(n~2). In this connection we introduce the following

Definition 6.1. We shall say that the boundary dDB belongs to C2-* if f"(e'e) is

continuous and of bounded variation for 9 e [~n, n].

For boundaries dDB £ C2'* we have the following

Theorem 6.2. Let dDB e C2-*. Then, Dn = 0(n~2) and this estimate is the best

possible, i.e., it cannot be improved however smooth the boundary is (cf. [42] and

[3]). □
Proof. The estimation of Dn is again based on the relations (6.1), which leads

directly to Dn = 0(n~~x), and (6.11), which, by means of a procedure very similar

to that used in the case of noncritical angles in Theorem 6.1, successively gives first

Dn = 0(n~2+e) and finally Dn = 0{n~2). In accomplishing the proof use is made of

the estimates (A20)-(A23). The best possible character of the estimate Dn = 0(n~2)

is a direct consequence of the fact that the estimates (A20), (A21a), (A22b), and

(A23a) cannot be improved; see (A24).
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Appendix A. Estimation of the Fourier coefficients of x'k{6), k = 2,3,4. Consider

the conformal mapping function f(Q transforming the exterior unit disk onto the

exterior of a polygonal section dDB [27]

m = p[c n tc-ar'f + c. (Ai)
k=-n+l f

P, C are properly determined constants, and = exp (ifik), k = -n +1, -n + 2,

are the points on the unit circle dKB, corresponding to the vertices Ak of the polygon

dDB (see Fig. 2).

Fig. 2

In accordance with the symmetry of dDB with respect to the x2-axis, we have

/?o = 0, /?„ = -n,p_k = ~Pk, k = - 1. Now, taking into account (2.6) we

obtain

n

w'{8) = X2(0) + /.^(fl) = z'P (exp(z'0) - exp(iPk)Yk~l exP(-id), (A2)

k=-n+1

from which

n n

K(0)| = 1^1 n |l-exp(/m-0))r-! =4|P| n |sin((^-0)/2)|«*-'. (A3)
k=-n+1 k=-n+1

Note that u/(0) is continuous at all points C of the unit circle dKB, except from the

points Ck = exp (ifik) corresponding to vertices of acute exterior angles, i.e., angles

with ak < 1 (critical angles).
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We shall now estimate the Fourier coefficients of x'k{6), k = 2, 3,4. For this, we

have to estimate, with respect to m, the integrals

r° , ( sin(md) r~n+e r° ^ r^+e " rfo-,-*
/ w'(d)\ \'dd= .+ . + Y * + Y
J-n I COS (md) J-n J-e

Now taking into account (A3) and the fact that Arg{io'(0)} is piecewise constant, we

conclude that the estimation of the integrals appearing in the right-hand side of (A4)

is reduced to the estimation of integrals of the form

rb

\w'(6)\<fim(0)dd, (A5)
/J a

ak-l

where 4>m(d) = sin(m6>) or cos (md), m = 0, 1, 2, 

In the neighborhood (fit - e, pt + e), I = 11, we have

n

K(0)| = 4|P||sin((^-0)/2)r-' n |sin((^-0)/2)|
k=—n+1

kjit

= I sin((^# - 0)/2)|Q,_1 • Q(d), (A6)

where Q(d) is analytic with respect to d at d — [it. Thus, we have

|w'(0)| = A\e-fi,\a'-i +B(d)\d-fit\°', de(pe-e,pi+e), (A7)

where B(d) is analytic in the neighborhood (Pi -e, fit + e). Therefore, the estimation

of the integrals in (A4) is reduced to the estimation of the following integrals

[E \d\a>~l<pm(d)dd, ['B(d)\d\a'<t>m(d)dd, fh~l '\w'(d)\4>m(d)dd. (A8)
J 0 »0 J fik

The first (and most difficult) integral can be explicitly calculated in terms of the

incomplete Gamma function [16, p. 183]. Then, using an asymptotic relation for

this special function [1, p. 263] we finally obtain the (strict) estimate

^ \d\a'-l<t)m(d)dd = <9(m-m,n{l'Q'}), m —► oo. (A9)
Jo

The order of magnitude of the second and third integral in (A8) is 0(m~{). This

is easily obtained by an integration by parts and taking note that B(d)\d\n' has its

first derivative in Lp(0, e), p > 1, and that \w'(d)\ is of bounded variation in (fik +

e,Pk-i ~e),k = 1
Consequently, for a polygonal section of which the smaller exterior angle is an,

a ± 1, 0 < a < 2, we have the following (strict) estimates for the Fourier coefficients

of the functions x'k(d)

x'k*(m) = 0(m~ min{f«'1}), f}i —► qo, k — 2,3, (A10)

where the subscript * stands for c or s.

In virtue of the above results and by using an integration by parts we obtain

Xit(m) = 0(m~ min{"+1.2>), m—* oo, (All)

xic(m) = 0(m-min<"+'-2>), xis(m) = 0(m"'), m —► oo. (A12a, b)
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Now using the estimates (A10), (A11), (A12), and the results of Appendix C we find

x'^(m) = m —► oo. (A13)

The above estimates can be improved in the case of a polygonal boundary without

critical angles (i.e., when 1 < a < 2). In this case w'(0) € C{-n, 0) and w"(6) e

LP(-n, 0), for p € [1,1/(2 — a)]. By repeating the above reasoning we can obtain the

estimates

x'il(m) = 0(ml~a), m —► oo, k = 2,3, 1 < a < 2, (A14)

from which, by an integration by parts we find

-*2*(m) = 0(m~a), m —> oo, 1 < a < 2, (A15)

x'3c(m) = 0(m~a), x'is(m) = 0(m~l), m -+ oo, 1 < a < 2. (A16a,b)

Now using these estimates and an integration by parts we find

= 0(m~(x+a)), m —► oo, 1 < a < 2, (A17)

*2c(m) = 0(m~(1+a)), X2S{m) = 0(m~l), m -> oo, 1 < a < 2, (A18a,b)

which, in conjunction with (A 15), (A 16) and the results of Appendix C, give

x\„(m) = 0{m~a), m -+ oo, 1 < a < 2. (A19)

Note that since the estimates (A9) and (A14) are strict, the estimates (A 10) and

(A 13) are the best possible in the case of polygonal boundaries with critical angles

(0 < a < 1), while the estimates (A15), (A 16), and (A 19) are the best possible in the

case of polygonal boundaries without critical angles (1 < a < 2).

In the case where the boundary dDB is sufficiently smooth, i.e., when 8Db 6 C2 *,

(see Def. 6.1), w"(6) is continuous and of bounded variation for 6 e [~n,n], and

thus we have that

x'kAm) = m—> oo, £ = 2,3, (A20)

which, by an integration by parts, leads to

*2c(m) = 0{m~2), x'ls(m) = 0(m~2), m —» oo, (A21a, b)

x'3c(m) = 0(m~2), x'is(m) = 0(m_1), m —► oo. (A22a, b)

Now using these estimates in conjunction with the results of Appendix C we easily

find

x\c(m) = 0{m~2), x'As{m) = 0(m~2), m —■» oo. (A23a, b)

The estimates (A21a), (A22b), and (A23a) cannot be further improved, however

smooth the boundary dDB is, as can be seen by integrating once again by parts. For

example, for the cosine-Fourier coefficient we have

am-mi-*)
c nml mz
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Appendix B. Asymptotic estimation of an infinite series. We give here asymptotic

estimates, for large values of n, of the series

OO

Q(n\p,a) = -n\~p,
m= 1

where the prime indicates that the term corresponding to m = n is omitted from

the summation. The proof of the results given in Table B1 is difficult and laborious

and will be reported elsewhere. Here we note that the series Q(n;p,a) is convergent

provided that p + a > 1, and that the asymptotic estimates are strict.

Table Bl. Order of magnitude of Q(n\p,a), n —» oo, p + a > 1.

a < 1

a > 1

p < 1

-(p+a-l)

n p In n

n " In n

n 1 In n

P > 1

n — min{/?,a}

Appendix C. Estimation of the Fourier coefficients of functions of the form h(6) =

ne)g(d). Let
+oo oo

/(0}~ J2 c«exP('"0) = fc(0)/2 + J2(fc(n)cos(n6) + fs{n)sin(n6)) (CI)
n=—oo n= 1

where fc,s(n) (resp. c„), are the real (resp. complex) Fourier coefficients of f(9),

9 G [—7t, 7r], (Cf. (3.27) where the function is restricted in [-7r,0].) Also let gc,s(n)

(resp. d„) and hCtS(n) (resp. yn) be the real (resp. complex) Fourier coefficients of the

functions g(9) and h(9), 6 e [-n,n], respectively.

Suppose that h{9) = f(9)g(9) e Lx{-n,n). Then, we have [8, p. 76]

+ 00 OO OO

yn — ^ ] Ck dn-k — Co dn + y ' ck dn_k + y ] dn+k- (C2)
k=—oo k= 1 k= 1

If we assume that f(9) and g(9) are even functions, then h(9) is even too, and

fs{n) = gs{n) = hs(n) = 0, n > 0. But for an even function f{9), 9 e [-n,n], we

have fc(n) = 2fc(n), and consequently the cosine-Fourier coefficients of the function

h(9), 9 e [—71,0], are given by

OO

~hc(n) = fc{0)gc{n)+ ^2fc{n){gc{\n - k\) + gc{n + k)), n> 0. (C3)
k = 1

On the other hand, if we assume that f{9) is even and g{9) is odd, then h{9) is odd

too, and fs(n) - gc(n) = hc{n) - 0, n > 0. Now using the relations fc(n) = 2fc(n)

and gs(n) — 2gs(n), we obtain the following formula for the sine Fourier coefficients
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of the function h(6), 8 e [-7t,0],

n oo

hs(n) = fc(0)gs{n) + 53/f(fc)&(« - k) - ^ fc{k)gs(k-n)
k=l k="+i (C4)

+ J2fc(k)gs{n + k), n> 0.
k= 1

Taking into account relations (C3) and (C4) and the results of Appendix B we can

easily prove the following

Theorem CI. Let h(8) = f(6)g{6) and fc(n) = 0(«~(l+a)) and gc,s{n) — 0{n~P).

Then

(i) If /? < 1, a = 0, we have hc>s(n) = with arbitrarily small e > 0;

(ii) If ft < 1, a > 0, we have hc<s(n) = 0(n~P)\

(iii) If P > 1, we have hCtS(n) = 0(n~mm(~l+a'^).

The estimates (ii) and (iii) are strict. □
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