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Abstract. This paper is concerned with the asymptotic behavior of solutions of a

class of inhomogeneous second-order quasilinear partial differential equations in two

independent variables defined over rectangular plane domains whose lengths greatly

exceed their widths. Solutions to a Dirichlet problem for such equations are shown

to be well approximated, away from the ends of the rectangle, by solutions to the

corresponding one-dimensional problem for an ordinary differential equation on the

cross-section of the rectangle. Applications to problems in geometry and nonlinear

continuum mechanics are discussed.

1. Introduction. In this paper, we are concerned with investigating the asymptotic

behavior of solutions of a class of inhomogeneous second-order quasilinear partial

differential equations in two independent variables defined over rectangular plane

domains whose lengths greatly exceed their widths. For such long 'thin' domains, one

would anticipate that solutions to partial differential equations of this class might

be well approximated by solutions to the corresponding one-dimensional problem

for an ordinary differential equation on the cross-section of the rectangle. Such an

approximation might be expected to be accurate sufficiently far away from the ends

of the rectangle.

Questions of this kind have long been of concern in elasticity theory, where they

arise in connection with using one-dimensional theories as approximations to two-

dimensional theories. Similar issues arise in connection with Saint-Venant's princi-

ple, governing the spatial decay of end effects (see, e.g., [1,2] for recent reviews).
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Here we are concerned with second-order quasilinear equations in two independent

variables of the form

[p(q2)u,n],a+2k = 0, {q2 = u,p u,p) (1.1)

where k > 0 is a constant. In (1.1) the usual summation convention is employed

with subscripts preceded by a comma denoting partial differentiation with respect to

the corresponding Cartesian coordinate.

Equations of the form (1.1) occur in geometry as well as in problems of nonlinear

continuum mechanics. Thus, for example, if

p = (l+q2)~'/2, (1.2)

(1.1) is the equation of a surface of constant mean curvature k. This equation also

occurs in a theory of torsional creep [3, 4]. Quasilinear equations of the form (1.1)

also occur in nonlinear elasticity theory concerning deformations governed by states

of finite anti-plane shear (see, e.g., [5, 6]). In this context, p is determined by the

constitutive model governing material behavior, and 2k is the constant body force.

A commonly used constitutive model gives rise to functions p of power-law form

p = p(\ + bq2/n)"~\ p,b,n>0. (1.3)

The case n = 1 in (1.3) corresponds to the neo-Hookean material for which p is

constant and (1.1) is Poisson's equation. When n = | in (1.3), Eq. (1.1) is reducible,

by a change of scale, to the equation of a surface of constant mean curvature.

We consider a Dirichlet problem for (1.1) on the rectangular region R* =

{{x\,x2) I 0 < Xi < 21, 0 < X2 < h), where / » h. On the long sides of the

rectangle, we have homogeneous boundary conditions so that

m(X|,0) = u(x\,h) = 0, 0 < X\ < 21, (1.4)

while the data at the ends X\ - 0, X\ = 21 are assumed to be symmetrically distributed

so that

u{0,x2) = f(x2), u(2l,x2) = f(x2), 0 < x < h, (1.5)

where the prescribed function / is sufficiently smooth and satisfies /(0) = f(h) — 0.

In view of the form of the differential equation (1.1) and the symmetry of the data

in (1.5), we conclude that if (1.1) is elliptic, then the solution u(x\,x2) is such that

u(x\,x2) = u(2I - x\,x2) so that

u,\ — 0 on ii = /, 0<x2<h. (1.6)

Furthermore, sufficiently far away from the ends x\ = 0, X\ = 21, one might ex-

pect u(xi,x2) to be well approximated by the solution v(x2) of the one-dimensional

problem

d

dx 2

/ 2, dv

p[p ]d72
+ 2k = 0, 0 <x2<h, (1.7)

u(0) = 0, v(h) = 0, (1.8)
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where p2 = (dv/dx2)2. To investigate this issue, it is sufficient to confine attention

to the half-rectangle R = {(xi,^) | 0 < X\ < /, 0 < x2 < h} and so we consider

solutions of (1.1) on R subject to the boundary conditions

m(xi,0) = u(x\,h) — 0, 0 < X[ < /, (1.9)

u,i = 0 on x, = /, 0 < x2 < h, (1-10)

u{0,x2) = f(x2), 0 <x2<h, (1.11)

where / » h. We shall examine the spatial evolution of u(x\,x2) to the solution

v(x2) of the one-dimensional problem (1.7), (1.8). We assume the existence of clas-

sical solutions u e C2(-R)nC' (R) of the problem (1.1), (1 -9)—(1.11). For an extensive

discussion of the existence issue for general second-order quasilinear elliptic equa-

tions, see, e.g., Serrin [7],

2. Energy decay estimates. In this section, we establish an energy-decay estimate

for solutions of (1.1), (1 -9)—(1.11). We show that the energy measure

E(z)= p(q2)w„, w,a dA, (q2 = u,au,n), (2.1)
J R-

contained in the subdomain Rz = {(xi,^) I 0 < z < X\ < /, 0 < x2 < h} has

exponential decay in z, where the function w(x\,x2) is defined by

w(x\,x2) = u{x\,x2) - v(x2), (2.2)

and v is the solution to the one-dimensional problem (1.7), (1.8). Thus E(z) can be

viewed as a "weighted energy" associated with the difference (2.2) between u(x\,x2)

and v(x2).

The hypotheses that we make concerning p may be conveniently separated into

two cases. In this section we shall be concerned with generalizations of equations

of surfaces of constant mean curvature where p is given by (1.2). Thus we consider

p for which p~] > m2 > 0, where m2 is a constant. In Sec. 4, where a modified

energy norm is used, we shall be concerned with equations of the form (1.1) where

p > m\ >0, m i constant. To conform with terminology introduced in our previous

work [8, 9, 10], we will designate by Case 2 the class of functions p to be considered

in this section, while the functions p considered in Sec. 4 will be described by Case

1.

It is assumed henceforth in this section that there exist positive constants m2, c2, d2

such that for all values of the arguments s, I we have

Case 2.
p~x > m2 > 0, (2.3)

|/?-I(52) - p~\t2)\\t\p{t2) < cz\t -s|, 0 < c2 < 1, (2.4)

and

|/?~'(52) - /?"'(/2)|[^(/2) + />(^2)] < d2p{t2)p(s2)\s2 - t2\. (2.5)

In our applications, the argument t will be taken to be p, where p = \dv/dx2\, and

c2,d2 will, in general, depend on the maximum value of p on [0, /?]. It will be seen

in Sec. 3 that the equation of constant mean curvature ((1.1) with p given by (1.2))
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satisfies these hypotheses. It should be noted that (2.3)—(2.5) do not require that

Eq. (1.1) be elliptic, that is, p + 2p'q2 > 0 (p' = dp/dq2) for all solutions u and at

all points of R, even though the issues of concern here are of interest primarily for

elliptic equations.

We now proceed to establish that, for functions p satisfying (2.3)-(2.5), the expo-

nential decay estimate

E(z) < K2e-2^/h)^z, 0 < z < /, (2.6)

holds. Here v2 = v2{p) is a function of p (to be determined) which depends on

the form of p. The estimated rate of energy decay is thus Invj/h. The constant

K2 = K2(E0,m2,c2,d2,p) depends on the quantity E0 = E(0), which is the total

energy contained in the rectangle R = Ro. It is shown in Sec. 5 how an upper bound

for Eq in terms of geometry, boundary-data, p, and v may be obtained.

The result (2.6) is established in two stages. First we derive the differential in-

equality

E'(z) + 2k2{z)E(z) < 0, z > 0, (2.7)

where the prime denotes differentiation with respect to z. Here

*2(2) - m2^(1"C2) (2.8)

B2{Z)

and

B2{z) = [ p~\q2)dx2. (2.9)
Jo

The inequality (2.7) may be immediately integrated to yield

E(z) < Eoexp ■i: k2(s) ds z > 0. (2.10)

The second stage of the proof consists of using the hypotheses (2.3), (2.5) to obtain

a bound for the exponential term in (2.10) leading to the result (2.6).

To establish (2.7) we proceed as follows: If L- denotes the line segment X\ = z,

0 < x2 < h, we find, on using the divergence theorem and (1.1), (1.9), (1.10), (1.7)

that

E{z) = - J p{q2)ww,{dx2 + [p(p2)~ p{q2)]v,pw,p dA. (2.11)

Denoting the second integral on the right in (2.11) by I, we use the hypothesis (2.4)

with s = q, t = p, to obtain

I <c2 [ Ip-q\p(q2
J R-

V,pW,p
dA. (2.12)

Now, since v = v(x2), we have

p2 = vz= v,pv,p, pq = {v,pv,p)l,2{u,nu,n)l/2 > v,pu,p, (2.13)

and so

\p — q\ = (p2 -2pq + q2)1'2 < (v,pv,p-2v,pu,p+u,pu,p)l/2 = {ui,pw,p)l/2. (2.14)
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Thus (2.12) yields

/<c2 / p(q2)w,p w,/j dA, (2.15)
J R:

which, by virtue of (2.1), can be written as

I < c2E(z). (2.16)

Thus, (2.11), (2.16) show that

(1 -c2)E(z)< [ p(q2)ww,i dx2, (2.17)
Jlz

< ^ p{q2)w,] dx^j ^ p{q2)w2 dx^j , (2.18)

on using Schwarz's inequality.

We now obtain an upper bound for the integral

J J p(q2)w2dx2 (2.19)

appearing on the right hand side of (2.18). Following a scheme introduced in [8], we

make the change of variable, for fixed X\,1

t = [ p~1(xl, rj) dr], (2.20)
Jo

so that dt = p~x dxj. It follows from (2.8), (2.9), and (2.2) that w{0) — 0, w(B2) = 0,

(where B2 is given by (2.9) as follows from (2.20)), and so we have the well-known

inequality (see, e.g., [11, p. 185])

- (2'2|>

But dw/dt = w,2 dx2ldt = pw,2 and so (2.21) yields

[ pw}2dx2>-£—fp-xw2dx2. (2.22)
J L- "2 ' ^ ' ■' L;

Since p~x > m2 > 0, by virtue of (2.3), we deduce from (2.22), (2.19) that

B2
J < fL P(V2)W>2 dx2. (2.23)mln2

On inserting (2.23) into (2.18) and using the arithmetic-geometric mean inequality,

we obtain

(1 - c2)E(z) < f p(q2)w,a w,„ dx2, (2.24)
2m2n JL_

and so, by (2.1),

(1 -c2)E(z)<B2l~^'{z)]. (2.25)
lm2n

This establishes (2.7), and so (2.10), as desired.

'Here we regard /;_l evaluated on a solution u as a function of X] and V2.
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We now show that (2.10) yields the following decay estimate

cv \ / zr \-2nm2{\ - c2)z2\E(z) < Eq exp <    V. (2.26)
1 I0B2{s)ds J

The result (2.26) is an immediate consequence of (2.10) and use of the inequality

B;\s)ds> Z" , (2.27)
f0 B2(s)ds

which in turn follows from Schwarz's inequality (see [8, pp. 315-316]).

The final step in establishing (2.6) is to use the hypothesis (2.3), (2.5) to obtain an

upper bound for the quantity f0~ B2(s)ds = G2(z) appearing in (2.26). It is only at

this stage that the third hypothesis (2.5) in Case 2 is used. We have

G2{z) = [ B2(s) ds = f [ p~\q2)dA, (2.28)
Jo Jo Jo

which we write as

Gi(z)= [' f\p~\q2)- p~\p2))dA+ [' I" p~\p2)dA. (2.29)
Jo Jo Jo Jo

On using (2.5), with s = q, t = p, we obtain

rh n! n2\ rz Ch

G2(z) = d. f f r <VfqX^-p2\dA+ I /Vv>^ (2.30)Jo Jo [p(p2) + />(<?-)] Jo Jo

f r \w,n W,n +2v,n W,n I . f f —l/2\^y a P 31)

Jo Jo [p~l(p2) + P~l(Q2)] Jo Jo P {P)dA• ( 3 }

Using the arithmetic-geometric mean inequality in the form

lab < ya2 + 0' > 0)> (2.32)

we obtain from (2.31)

w„y w,a dA
G2(z) < d2(l + y) [' [

Jo Joo Jo [p~l(p2) + P~l(<72)] ^ 33)

Since p~[ > 0, we drop p~](P2) 'n the first integral, p~l(q2) in the second integral

in (2.33) and obtain

G2(z) <d2(l + y)p(q2)w,„wm dA + yp2p{p2) + p~l(p2) dx^z

<d2{\+y)E0 + F(d2,p2,y)hz, y > 0, (2.34)

where the definition (2.1) has been used to obtain the last inequality in (2.34) and

we have introduced the notation

rh \d2p2
F(d2,p\y)^H -P(P2) + P \P2) dx2. (2.35)

7

The inequality (2.34), valid for arbitrary y > 0, is the desired upper bound for G2(z).
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To use (2.34) in (2.26), we write

(J~B2{s)ds^ =GT\z)>{d2(l + y)E0 + Fhz}-i (2.36)

so that

 z f, , d2(\ + y)E0\~\ z d2(\+y)E0
(z)^Trri1+ rrz  t ^ IFl IFlU z G2 (z) > Fh jl + Fhz | > Fh F2h2 ■ (2.37)

On substitution from (2.37) into (2.26) we thus obtain the result

E(z) < K2e~2{n/h^z, z> 0, (2.38)

where

- wkprr <2-39)
and

K2 = K2{E0,m2,c2,d2,p)

r I"2m2nEod2(\ - c2)(\ + y)] (2.40)
°exp[ F2(d2,p2, y)h2

Here F(d2,P2,y) is given by (2.35), y > 0 is an arbitrary parameter and m2,c2,d2

are the constants appearing in the hypotheses (2.3), (2.4), (2.5), respectively. This

completes the proof of the decay estimate (2.6) in Case 2.

3. Discussion of results in Case 2. We now specialize the results of Sec. 2 to the

case when

P = (1 + <?2r1/2 (3.1)

so that (1.1) is the equation of a surface of constant mean curvature k. It is shown

in the Appendix that when p is given by (3.1), the hypotheses (2.3)-(2.5) hold for

s — q, t = p if the constants m2,c2,d2 are chosen to be

m2= 1, c2 =pm{\ +pi)~1/2, d2 — 1. (3.2)

Here pm = max[0,A]j7, and we recall that p2 = (dv/dx2)2 where v(x2) is the solution

of the one-dimensional problem (1.7), (1.8). For finite pm > 0, we see from (3.2)

that 0 < c2 < 1 as required in (2.4).

When p is given by (3.1), the solution v(x2) of (1.7), (1.8) may be found explicitly.

Thus, (1.7) may be integrated once to yield (we write v' = dv/dx2)

p{p2)v' = -2k x2 + const, (3.3)

and so, when p has the form (3.1), we find from (3.3) that

= k(h - 2x2). (3.4)
VT+P2

The constant of integration in (3.3) has been written down in (3.4) to conform with

the symmetry of ^(*2) about x2 = h/2. On squaring both sides of (3.4) and solving

for v' we obtain
v'= , ki"-2x') . (3.5)

s/1 - kHh - 2x2)2
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which is bounded and real if and only if

m = kh < 1. (3.6)

Thus, we see that a solution to the one-dimensional problem exists only if the curva-

ture k is restricted to satisfy (3.6). It is well known that a solution of the Dirichlet

problem (1.1), (1.4), (1.5) (with p given by (3.1)) will not exist unless the boundary

data are suitably restricted and a geometric condition similar to (3.6) holds. For in-

stance, it follows from a result of Bernstein [12] that no solution can exist if kh > 2.

For a general discussion of existence criteria, see, e.g., Serrin [7],

Assuming that (3.6) holds, we integrate (3.5) to find

V = {jk) {>/l ~ k2(h - 2x2)2 - Vl - mA . (3.7)

Recalling that p = \v'\, we obtain from (3.5) that

pm - maxp - m(\- m2)~^2. (3.8)
[0 ,h)

Thus, from (3.2), we obtain

c~i = m (= kh). (3.9)

By virtue of (3.6), we see that 0 < c2 < 1, as required by (2.4).

Next we evaluate the function F(d2,p2,y) given by (2.35). With p given by (3.1),

we find, using (3.5), that

h i
p2p(p2)dx2 = 2^{sin~'(w) - m( 1 - m2)l//2}, (3.10)fJo

/*■J 0
p 1 {p2) dx2 = j sin [(m), (3.11)

K

so that, since dj = 1, we have

F{di,p2,y) = ™—{sin~'(m) - m( 1 - m2),/2} + — sin-1(m) = 7{m,y). (3.12)
2 my m

Thus, by virtue of (3.2), (3.9), we obtain from (2.39) that the estimated decay rate

V2 appearing in (2.38) is given by

i/2 — u2(m) = (\- m)/T(m,y). (3.13)

The multiplicative constant K2 appearing in (2.38), given by (2.40), now can be

written as
[ 2uEq{ 1 - m)( \ + 7)]

K2 = E0exp   -t~7  ■ 3.14
7-{m, y)hz

The role of the arbitrary constant y > 0, still to be chosen, is now clear. If one seeks

to maximize the estimated decay rate v2(m) in (3.13), one would choose y = e-1,

£ < 1. As s —> 0,
(1 - m)m . .

v2{m) —»  . (3.15)
sin (m)

However, the multiplicative constant K2 then has the asymptotic form 0(e~~l) as

e -+ 0. On the other hand, to minimize K2 one would choose y = e, e « 1 so
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that Ki — Eq as e — 0. For this choice of y however, (3,13) shows that V2 = 0(e)

as £ — 0. Of course, y could be taken to be y = 1 (so that (2.32) is the simplest

form of the arithmetic-geometric mean inequality), preserving a balance between the

estimated decay rate i>2 and the multiplicative factor Ki in the estimate (2.38).

It is of interest to consider the limiting behavior of the estimate (2.38), (3.13),

(3.14) as k — 0. As k — 0 in (1.1), with p given by (3.1), Eq. (1.1) becomes the

minimal surface equation. As k — 0, (3.5) shows that p = \v'\ —► 0, and (3.7) shows

that v — 0. On letting m = kh —> 0 formally in (3.15), we find

1/2-1/2(0)= 1, (3.16)

and from (3.14),
(2nE0{ \ + y)\

^2 — £0exp ^  . (3.17)
V h2

Thus, in the limit as k — 0, (2.38) provides the estimate

E{z) < Eq exp {27ZEo{hl + 7)^e-2*"h, (3.18)

(where y can be chosen to be arbitrarily small) for solutions of the minimal surface

equation on a rectangular domain subject to the boundary conditions (1.9)—(1.11).

Since v — 0 as k — 0, E(z) has the form

E(z) = [ q2{\+q2yl2dA. (3.19)
Jrz

A result of the form (3.18) for the minimal surface equation on a semi-infinite strip

was established in [8]. A pointwise decay estimate, with the same estimated decay

rate, was obtained earlier in [13] using arguments based on maximum principles. It

is shown in [14] that this decay rate is, in fact, optimal.

4. Decay estimate in Case 1. We turn now to solutions of (1.1) where the function

p is such that p > m\ > 0, m\ constant. A simple example is p = (1 + <?2)1//2, where

we can choose m i = 1. The class of equations considered will be such that for all

values of the arguments 5, t there exist positive constants m I; d\, and a constant C\

such that

Case 1.

p > m\ > 0, (4.1)

-[/?(s2) - />(/2)](52 - t2) < c{[p{s2) + />(/2)](5 - t)2, (4.2)

and

|/?(s2) - p(t2)| < dx[p(s2) + M?2)]|52 - t21. (4.3)

In treating Case 1, we find it convenient to use an energy measure different from

that employed in Sec. 2 for Case 2. Thus we consider the functional

E{z) = / [p(q2) + p(p2)]w,nw,a dA, (4.4)

where w is still given by (2.2). We will now show that, for functions p satisfying

(4.1)—(4.3), the exponential decay estimate

E(z) < ke~2(nlh)f,:, z> 0, (4.5)
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holds. Here z> = v{p) and K = k{Eo,m\,C\,d\,p), where E0 = E(0) is the total

energy contained in the rectangle R.

The proof of (4.5) is similar to that of (2.6) in Sec. 2. Thus we first show that

E'{z) + 2k{z)E(z) <0, (4.6)

where

k(z) = mxn{\-ci)/2B(z), (4.7)

and ^

B{z) = [ p{q2)dx2. (4.8)
Jo

The inequality (4.6) may then be integrated to yield

E(z) < Eq exp ■ [ k(s)>
Jo

z> 0. (4.9)i ds ,

On using the divergence theorem, and (1.1), (1.7)—(1.10), we have

E{z) = - p(q2)ww,i dx2 + / [p(p2)u,a-p{g2)v,a]w,a dA, (4.10)
J Lz J R:

which may be written as

E(z)= - / p(q2)ww,i dx2 + \ / [p{q2) + p(p2)]w,nw,n dA
J L: J R,

+ J [p(p2) - p(q2)]{u,« +V,a ){U,a -v,a ) dA,
' Jr.

on recalling from (2.2) that w = u - v. We now employ the hypothesis (4.2), with

s = q,t = p, to obtain an upper bound for the third integral on the right in (4.11)

and so find

(4.11)

E(z) < ~ p{q2)ww,i dx2 + + j [p(q2) + p{p2)](q - p)2 dA, (4.12)

where the definition (4.4) has also been used. Making use of the inequality (2.14) in

the third integral on the right in (4.12) and recalling (4.4), we obtain

E{z) < -2(1 - Ci) lJ p{q2)ww,{ dx2,

<2(1-0- (/ p{q2)w2dx^j ^ p{q2)w,j dx2

(4.13)

on using Schwarz's inequality.

An upper bound for the integral

7 = y p{q2)w2 dx2 (4.14)

appearing on the right hand side of (4.13) is now obtained. We make the change of

variable, for fixed X\,

a = p(x\, ti) drj (4.15)
Jo
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so that da - p(q2)dx2. Since w(0) = 0, w(B) = 0 (where B is given by (4.8) as

follows from (4.15) when X2 = h), we have

fB 2 , B2 fB (dw\2 ,
/ w do < —^ I —j— da,
Jo n2 Jo \do J

(4.16)

which can be written as

J = f p{q2)w2dx2 < J P'l(l2)w,l dx2. (4.17)

Since p>ni\ >0, we deduce from (4.17) that

J < -4-2 / p(q2)w,2 dx2. (4.18)
m\n2 JL;

On inserting (4.18) in (4.13) and using the arithmetic-geometric mean inequality,

we obtain
B f

E(z) < (1 -Ci)-1  / p{q2)w,a w,a dx2
m\7i JiL~ (4.19)

<(l-c,^' B
m \ii

J^ [p(r) + PiP2)]W,a W,a dx2,

the last inequality following from the fact that p{p2) > 0. Thus by (4.4), we write

(4.19) as

t < (4.20)
mi 7i

This establishes (4.6), and so (4.9), as desired.

From (4.9), (4.7) and an obvious analog of (2.27) we thereby obtain

It remains to find an upper bound for

G(z) = f B(s) ds = ^ f p(q2) dA. (4.22)
J 0 J 0 JO

We write

G(z)= [ f [p{q2) - P{P2)\dA + [ [ p{p2) dA, (4.23)
J 0 Jo JO Jo

and so, on using (4.3) with s = q, t — p, we obtain

G(z) < d\ f [ [p(q2) +p(p2)]\q2-p2\dA+ [ [ p{p2)dA (4.24)
Jo Jo Jo Jo

= d\ [ [ [p{q2) +p(p2)]\w,aw,a+2v,aw,a\dA
Jo Jo

+ [ [" P(P2)dA. (4.25)
Jo Jo



764 C. O. HORGAN and L. E. PAYNE

Using the arithmetic-geometric mean inequality in the form (2.32), we obtain from

(4.25)

G{z) < dx(\ + y) f [ [p(q2) + p{p2)]w,aw,n dA
Jo Jo

[ [ [p{q2) +p{p2)]p2 dA+ f [ p{p2)dA (4.26)
Jo Jo Jo Jo

rh d[p2

+ «
y

+

< d\{\ + y) f [ [p(q2) + p{p2)]w,nw,n dA + -^G(z)
Jo Jo y

[ [ P(P2){y~[diP2 + l)dA, (4.27)
Jo Jo

p,n = maxp. (4.28)
[oM]

1 _ *l£mi ) G(z)<d[(\+y)Eo + F(dup2,y)hz, (4.29)

where

Thus we have

7

where the definition (4.4) has been used to obtain (4.29) from (4.27) and we have

introduced the notation

rh rd\P2

F(dup\y)^\ja
-P(P ) + P(P ) dx 2. (4.30)

y

The inequality (4.29), valid for arbitrary y > 0, yields an upper bound for G(z) in

the form
,2 ^

G(Z)<( \-^£k) {dd\+y)E0 + Fhz}, (4.31)
y

provided y is chosen so that

1 _ £> o. (4.32)

When (4.31) is inserted into (4.21) we may proceed as in (2.37) and obtain the

desired result (4.5) where

i> = Hp)=m i('-f)('-^/y) (4,33)
2F{d\,p2,y)

and
K = k(E0,muci,dup)

Eq exp
m\nE0d\{ \ -C|)(l +y)(l -d{p2,/y) (4.34)

F2{d\,p2,y)h2

This completes the proof of the decay estimate (4.5) in Case 1.

The parameter y > 0 appearing in (4.33), (4.34) is arbitrary, except that (4.32)

must be satisfied. To obtain the largest estimated decay rate i>, we choose y to

maximize the right hand side of (4.33) with respect to y. Such a choice for y is given

by
y = d^L, (4.35)
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where e > 0 is an arbitrary parameter. The choice (4.35) conforms to (4.32) provided

e < 1. (4.36)

With y chosen as in (4.35), we obtain from (4.30) that

F = F(p
Pm

and so the decay rate 0 follows from (4.33) as

tlx,, (4.37)

7 c')('-". (4.38)

2 F{p\e)

The multiplicative constant K, given by (4.34), now has the form

minE0di(l — Ci)(l +dlp}n/e)( 1 - e)'
K - Eq exp

ay rate

to zero, in which case

(4.39)
F2(p2,s)h2

The largest decay rate v(p,e) given by (4.38) would occur if e were allowed to tend

. ^ )h (4 40)

2 /„ pip1) dX2

However, the multiplicative constant K then has the asymptotic form 0(e~l) as

e —> 0.

When the function p is given by

p = ( \+q2)1'2, (4.41)

the hypotheses (4.1)—(4.3) of Case 1 can be shown to hold with s = q, t = p if the

constants m\,C\,d\ are chosen to be

mi = 1, C\ — 0, d\ = ^ (4.42)

(see Appendix). The solution v(xi) of (1.7), (1.8) may then be found as in Sec. 3.

From (3.3) with p given by (4.41), we find

v' = [{1 + 4k2(h - 2x2)2}1/2 - 1 ]l'2/y/2. (4.43)

Note that, in contrast to the problem treated in Sec. 3, there is no restriction necessary

on m = kh for existence of the solution v(x2) when p is given by (4.41). From (4.43),

we have

v(x2) = 4= f ~[{1+4k2(h-2s)2}1/2 - l]'/2ds. (4.44)
v2 Jo

The integral in (4.44) may be evaluated by using an algebraic substitution. Since the

resulting expression is algebraically cumbersome, we shall not record it here.

Recalling that p = \v'\, we obtain from (4.43) that

p,„ = maxp = {[(1 + 4m2)l/2 - 1 ]/2}1 /2, (4.45)
[0,A]

and so, in view of (4.42), the parameter y given by (4.35) can be written as

y = [(l+4w2)1/2 - l]/8e, e > 0. (4.46)
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The final expressions for i>, K given by (4.38), (4.39) can be found once the quantity

F(p2,e) given in (4.37) is evaluated.The procedure follows that carried out in Sec. 3

for Case 2. Since the calculations are algebraically cumbersome, we omit the details

here.

5. Total energy bounds. The total energy E0 = E(0) contained in the rectangle R

appears in the multiplicative constant K2 in the estimate (2.38) in Case 2. Here we

show how an upper bound for E0 in terms of the geometry, boundary data, p, and v

can be obtained. Bounds of this type have also been discussed in our previous work

[8] (see also [1]).

We begin with the inequality (2.17) evaluated at z = 0. Thus we obtain

(1 -c2)E0<- [ p{q2)(u - v)u,{ dx2, (5.1)
Jl0

which, in view of the boundary condition (1.11) may be written as

(1 - c2)E0 < - f p{q2){f - v)u,\ dx2, (5.2)
J L0

where f(x2) is prescribed. For the special case when p = (1 + q2)~[/2, (5.2) provides

an upper bound of the desired form immediately. In this case

\p(q2)u,i | < 1 (5.3)

and so (5.2) yields

E0<(l-c2)-1 f |f-v\dx2, (5.4)
J L0

where v is given explicitly in (3.7), and we recall from (3.9) that c2 — kh.

For general p in Case 2, we proceed from (5.2) as follows. Denoting the right

hand side of (5.2) by I* we write I* in the form

I* = [ e~"x> p(q2)(f-v)u,p npds, (5.5)
J OR

where OR denotes the boundary of R, rip the components of the outward unit normal

on dR, and 5 is arc length on dR. A weight function e~"x' {a > 0, an arbitrary con-

stant) has been introduced in (5.5), the utility of which will become clear presently.

The equivalence of (5.5) with the right hand side of (5.2) makes use of the boundary

condition (1.6) and the fact that / = v = 0 on x2 = 0, h (0 < Xi < I). On applying

the divergence theorem, assuming the differentiability of f(x2), using the differential

equation (1.1) and the fact that f - v depends only on x2 we may write

I* — f e "V|(-2 k)(f-v)dA+ [ e "x> p(q2){f - v),p u,p dA
J R J R

— a f e "Xl p(q2)(f -v)w,i dA.
J R

(5.6)
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The second integral in (5.6) may be written as

[ e "x'p(q2)(u,2~v,2+v,2)(f-v),2dA= [ e ax' p{q2)w,2(f - v),2 dA
Jr Jr

+ [ e-ax'p(q2)v,2{f - v),2 dA,
Jr

on recalling the definition of w in (2.2). Now

(5.7)

V,2(f-v),2=V,2f,2-V,22< - 1^ V,l+—lJjf,2, (5.8)

the last inequality following from the arithmetic-geometric mean inequality (2.32)

with weight y = ft > 0. Choosing ft = 2, we find

v,2(f~v),2<^f,2- (5-9)

On using (5.9) and Schwarz's inequality, the second and third integrals in (5.6) may

then be bounded above by

J^p(q2)w,$ dA^j i^j^e 2aX< p(q2){f,2 -v ,2 )2 dA^j

+ (/ p(q2)w,2 dA^j a2e~2nx> p(q2)(f - v)2 dA^J (5.10)

+ (j) f e~nXl p(q2)f' dA = H.

We now apply the arithmetic-geometric mean inequality (2.32) with weight y = 8 > 0

to the first two terms in (5.10) and find that

H < ̂  J p(q2)w„, w,n dA + ~ J e x'p(q )(f,2~v,2) dA

(5.11)
[ e~2ax'p{q2)(f-v)2dA + ^- [ e~ax'p{q2)fdA.
J R 4 J R

The first term on the right in (5.11) is just {8/2)Eq, by virtue of (2.1), and so from

(5.11), (5.10), (5.5), (5.2) we obtain

^1 — c2— Eq < - 2k - v)dA + ~ J e~2aXi p(q2){f,2-v,2)2 dA

[ e~2"x'p(q2)(f-v)2dA + j[ e~ax< p(q2)f,l dA,
Jr 4 Jr

a2
+ 25

(5.12)
for arbitrary a, 8 > 0. In Case 2, p~x > m2 > 0 and so p < m2 Using this bound

for p in the last three integrals in (5.12), the integration with respect to X\ may be



768 C. O. HORGAN and L. E. PAYNE

carried out (since f — v depends only on x2) and so we find

o—al \'

~ [2*(' / ~]J0 <-f~v'>dx:L

[ (f,2 -V,2 )2 dx,
Jo4 aSm

a(l - e~2"')] rh

Ad mi

(1 -?~Q/)

L
(5.13)

(f-v)2dx2
o

al\1

4a W2

for arbitrary a,<5 > 0. If S is now chosen such that

Â0 dx2,

l-C2-i>0. (5.14)

(5.13) provides the desired upper bound for E$. A simple choice for a, 3 would be

to take

a — 5 = I - c2. (5.15)

For simplicity in the final estimate, we then drop the exponential terms in the last

three terms of (5.13) and obtain

E0<2(l-c2)-1 i-2k{\-e->) j\f-v)dx2

rh

+ [{l - c2)4m2]~l (/,2 -v,2)2dx2 (5.16)
Jo

[(1 -c2)4m2]~l (/- v)2dx2 + (4m2)"' f,\ dx21.+

Using similar arguments, bounds on Eq in Case 1 may also be obtained. In this

case, an a priori restriction on the boundary data is necessary in order to obtain a

result comparable to (5.16). Similar considerations arise in the analysis carried out

in [8], For special classes of functions p, however, (e.g. p — (1 + <?2)1/2) this a priori

restriction can be eliminated.

6. Concluding remarks. The decay estimates established in Sec. 2, Case 2, and in

Sec. 4, Case 1, can be shown to hold when (1.1) is generalized to the equation

[p(q2)umU+g{u,x2) = 0, (6.1)

where g is monotone nonincreasing in its first argument. Thus the decay estimates

(2.38) and (4.5) continue to hold, thereby ensuring the decay of solutions of (6.1),

(1.9)—(1.11) (assumed to exist) to solutions v(x2) of th6 one-dimensional problem

d
dx 2

, 2\dv
>3£ + g(v,x2) = 0, 0 <x2<h, (6.2)

v{0) = 0, v{h) = 0. (6.3)
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A special case of (6.1) in Case 2 which has attracted much interest occurs when

p = (1 + <r)~1/2, g(u,x2) = -cu, (6.4)

where c > 0 is a constant. Equation (6.1) is then the equation of the fluid surface in

a capillary tube. Investigations of associated one-dimensional problems have played

an important role in the study of capillary surface phenomena [15].

Appendix,

Verification of (3.2) and (4.42). When p is given by (3.1), we have

p~l = (1 + q2)1'2 (A.l)

and so p~l > 1 so that the constant m2 in (2.3) can be taken as m2 = 1, as stated in

(3.2)]. To verify that (2.4) holds with s = q, t = p, and with c2 chosen as in (3.2),

we must show that

|(1 + <r)1/2 - (1 +p2y/2\p{l +/r)~1/2 < c2\p - q\, (A.2)

or equivalently,

\q2 -p21[(1 +<?2)1/2 + (1 +/r)1/2r'p( 1 + p2)~1'2 < c2\p - q\. (A.3)

Thus c2 must be chosen such that

c2 > (q + /?)[(1 + <?2)1/2 + (1 +p2)l/2]~lp( 1 + p2)~l/2. (A.4)

Since
q + p < (\ + q2)l/2 + (\ + p2)l/2, (A.5)

(A.4) will hold provided

c2 > p(\ + p2)~[/2. (A.6)

The right side of (A.6) is monotone increasing in p and so (A.6) will be satisfied for

all p if we choose

c2 =Pm( 1 +/>2,)~1/2, pm = max/7. (A. 7)
[0,A]

This completes the verification of (3.2)2.

To see that (2.5) holds with s = q, t — p, and with d2 chosen as in (3.2)3, we must

show that

|( 1 +<72)'/2-( 1 +/>2)'/2|[( 1 +/?2)~'/2 + (l +#2)~1/2] < d2(\+p2)~xl2(\+q2)~{ll\q2-p2\.

(A.8)
On multiplying both sides of (A.8) by (1 +p2)1/2( 1 +<?2)l/2, it is seen that (A.8) is

equivalent to

\q2 - p2\ < d2\q2 - p2\, (A.9)

and so we take

d2 = l, (A. 10)

as stated in (3.2)3.

When p is given by (4.41), that is

P = ( l+<72)'/2, (A. 11)
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we have p > 1 and so the constant m\ in (4.1) can be taken as W] = 1, as stated in

(4.42),.
To see that (4.2) holds with s — q, t - p, and with C| = 0, we observe that the left

hand side of (4.2), with p given by (A. 11), reads

_[(! +Q2)l/2_{l+p2y,2]{q2_p2^ (A 12)

which can be written as

-(<?2-/>2)2/[(l +r)1/2 + (l +p2)l/2] (A. 13)

which is nonpositive for all p, q. But the right hand side of (4.2) is clearly nonnegative

and so the constant c\ in (4.2) can be chosen c, = 0. To verify that (4.3) holds with

s = q, t = p, and with d\ chosen as in (4.42)3, we must show that

|(1 +^2)'/2_(l +p2)l/2| <rf|[(1 + ^1/2 + (1 + p2)M2]W2 _ p2^ (A u)

or equivalently,

[(i+r)1/2 + (i+,p2)l/2r2<^. (a. 15)

Thus if we choose d\ such that

dx >[(l+P2)1/2+l]"2, (A. 16)

(A. 15) will be satisfied for all q. The maximum of the right hand side of (A. 16)

occurs when p — 0 and so if we choose

dx = \, (A. 17)

then (A. 14) is satisfied for all p,q. This completes the verification of (4.42).
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