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Abstract. The three Barnett-Lothe tensors S, H, L, appear very often in the so-

lutions to two-dimensional anisotropic elasticity problems. So do their associated

tensors S(9), H(0), L(0) for line forces and dislocations and S(v), H(i>), L(v) in the

problem of surface waves. Explicit expressions of the components of these tensors

are derived and presented for orthotropic materials in which the planes of material

symmetry coincide with the coordinate planes. With minor modifications, the results

for S, H, L and S(0), H(0), L(0) can be applied to orthotropic materials in which

only the X3 = 0 plane coincides with one of the planes of material symmetry.

1. Introduction. In a fixed rectangular coordinate system Xj, i = 1,2,3, let w,

and (jjj be the displacement and stress, respectively. The stress-strain laws and the

equations of equilibrium are

"7 j CijksUfcs, (1-1)

Cijks^k,sj (1-2)

in which C,^s are the elastic constants, repeated indices imply summation, and a

comma stands for differentiation. We assume that Cjjks are fully symmetric and

positive definite such that the strain energy is positive. Let

Qik(8=Cijksnj(d)ns(d),

Rik(O) = Ci]ksnj{6)ms(6),

Tlk{0) = Cjjksmj(0)ms(d),j

n,(6) — (cos 6, sin 9,0), w,(0) = (- sin 9, cos 9,0),

where 9 is a real parameter and, in matrix notation,

N,(0)= -T~](9)Rt(9), N2(0) = T-1 (0),|

N3(0) = R(0)T-'(0)Rr(0)-Q(0). j

(1.3)

(1.4)
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The superscript T stands for the transpose. Define the incomplete integrals

rS

S(e) = ^-[ N\{0')d0',
n Jo
1 [e

- / N2(0')d0',
n Jo

1 fe
- / N3{6')d0',
71 Jo

H(0)
71

1.5)

L(0) =

and the complete integrals

S = S(7t), H = H(tt), L = L(tt). (1.6)

The three complete integrals S, H, L are the Barnett-Lothe tensors [1]. The tensor

-L-1 was first introduced by Stroh who denoted it by B in [2]. The Barnett-Lothe

tensors and their associated tensors S(0), H(0), L(0) appear often in the solutions to

two-dimensional anisotropic elasticity problems [1, 3-15],

Other related tensors S(v), H(i>), L(u), where v is the real wave speed, appear in

the problem of steady state moving line dislocations and Rayleigh surface waves [4,

7-9]. We generalize Q(0), R(0), T(0) of (1.3) by

Q(6,v) = Q(0) - pv2 cos2 01,

R(0, v) = R(0) + pv2 cos 6 sin 01,

T(0,t>) = T(0) -/?w2sin2 01,

where p is the mass density and I is the 3 x 3 identity matrix. If we define Nj(6,v)

in terms of Q(0, v), R(0, v), T(d,v) similar to that of (1.4) we have

S(u) = - /"Ni(0,v)d6,
n Jo

H(v) = i[ N2(0, v) dd,
n Jo

L (v)=--f N(6,v) d0.

1.7)

We see that S, H, L are a special case of S(v), H(u), L(u) with v = 0.

Explicit expressions of S(0), H(0), L(0) for isotropic materials can be obtained

easily by integrating (1.5). For S{v), explicit expressions are available for orthotropic

materials [16], cubic materials [8, 16], and for transversely isotropic materials [17]

is which the axis of symmetry is in the (X\,X2) plane or the (jci,^) plane. Recently,

Chadwick [18] obtained explicit expressions of S(u) for monoclinic materials for

which the plane of symmetry is at *3 = 0.

In this paper we give explicit expressions for S, H, L, S(0), H(0), L(0), S(v), H(f)

and L(f) for orthotropic materials. We obtain the expressions not by integrations,

but by identities which relate these tensors to certain combinations of eigenvalues

and eigenvectors of 6 x 6 matrices N of elastic constants to be defined later. Basic

equations and the eigenvalues and eigenvectors of the elastic constants are presented

in Sec. 2 and 3. Since S, H, L are the simplest and are special cases of 5(0), H(0),
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L(0), when 0 = n, or S(v), H(v), L(v), when v = 0, we present the derivations of

S, H, L in Sec. 4. This serves as a basis for the derivations of the more complicated

tensors S(0), H(0), L(0) in Sec. 5. In the derivations we assume that the planes of

material symmetry of the orthotropic material coincide with the coordinate planes.

In Sec. 6 we present modifications required when only the x3 = 0 plane coincides

with one of the planes of material symmetry. Finally in Sec. 7 we derive explicit

expressions for the components of S(v), H(i>), L(u) for orthotropic materials whose

planes of material symmetry are the coordinate planes.

2. Basic equations. Instead of the integral representation for S, H, L, we con-

sider an algebraic representation which avoids the integration. Let pa and a„, (a =

1,2,..., 6) be the eigenvalues and eigenvectors of the following equation

{Q + P(R + Rr) + /?2T}a = 0, (2.1)

Qik = Cim, Rjk = Cj\k2, Tik = Ci2k2- (2.2)

We see that Q, R, T are Q(0), R(0), T(0) of (1.3) with 0 = 0. Introducing the new

vector

b = (Rr + />T)a = ~^(Q + pR)a, (2.3)

in which the second equality comes from (2.1), the two equations in (2.3) can be

recast in the standard eigenrelation
"N, N2'

N£ = K, N =
Nj N[j

where N,, i = 1,2,3 are N,(0) of (1.4) with 0 = 0. Since pa cannot be real if the

strain energy is positive [19], p„ come in three pairs of complex conjugates. We let

Pa+3=Pa, Im/?a > 0, Q= 1,2,3, (2.4)

where an overbar denotes the complex conjugate and Im stands for the imaginary

part. If we introduce the 3 x 3 matrices

A = [ai,a2,a3], B = [b,, b2, b3],

in which b„ is related to a„ through (2.3), it can be shown that [7]

S = /(2ABr - I), 1

H = 2/AAr, L = -2/BB7'',
(2.5)

provided afl and b„ are normalized such that

2a' b,( = 1, a not summed. (2.6)

It should be pointed out that (2.5) hold when N is simple or semisimple. Modifi-

cations required when N is nonsemisimple can be found in [20]. Assuming that N is

simple, we will use (2.5) to derive S, H, L, explicitly in terms of the elastic constants

Cijks' After we have obtained the results which do not contain p„, a„, b„ explicitly,

the problems associated with nonsemisimple N disappear and the results apply to

nonsemisimple N as well. Equations (2.5) show that we need the eigenvectors a„ and

b„. This is presented in the next section.
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In closing this section, we note that the three tensors S, H, L are not independent

of each other. They are related by

HL - SS = I, SH + HSr = 0, LS + SrL = 0. (2.7)

More studies of the relationships between these tensors and their structure and in-

variance properties can be found in [21, 22],

3. The eigenvalues and eigenvectors for orthotropic materials. Using the contracted

notations, we replace C,^j by a 6 x 6 symmetric matrix Cap. Assuming that the planes

of material symmetry of the orthotropic material coincide with the coordinate planes,

Ca/j vanishes whenever a or P assumes the value of 4, 5, 6, except C44, C55 and C66-

For the two-dimensional deformations considered here, the necessary and sufficient

conditions for the strain energy to be positive are

(3.1)

a = 0. (3.3)

Cii >0, C44 > 0, C55 > 0, Cg6 > 0,

C11C22 - cf2 > 0. )

Equations (3.1) 1 and (3.1)5 imply that C22 > 0 and that

d+ = (CuC22)l'2 + Cn> 0, d. = (CmC22)1/2-C12>0. (3.2)

Equation (2.1) now has the expression

C\\+p2C(>(> p{C\2 + C(>(,) 0

P(C 12 + Cm) C(,(, + pC22 0

0 0 C55+/?~C44_

The vanishing of the determinant of the 3x3 matrix on the left provides the eigen-

values p\, p2, Pi which should have the positive imaginary part according to (2.4).

We let

Then p\ and p2 are the roots of

pA + lap2 + y?2 = 0, (3.5)

in which, for convenience, a and /? are given in (4.2) where we summarize the results

for S, H, L. From (3.5) we have

p} + pl = -2ot, P\P2 = ~P, (3.6)

and hence

P\ +P2 = i[2(a + P)]1'2, (3.7)

where a + ft can be shown to be positive (see (5.5) and (4.2)).

The minus sign in (3.6)2 can be justified as follows. We see from (3.5) that p\ and

p\ are real or complex conjugates depending on a2 > /?2 or a2 < /?2. Noticing that

the imaginary parts of pi, p2 are positive, we conclude that p\, p2 have the form

Pi = iPi, P2 = IP2, P\,P2>0,
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when a2 > p2 and

Pi = W- + iw+, P2 = -w- + iw+, w+ > 0,

when a2 < p2. The minus in (3.6)2 is therefore justified.

Using the second row of the 3x3 matrix in (3.3) to construct the eigenvectors ai

and a2, we have

ki(Cb6 +P^C22) ^2(Q6 + P2C22) 0

-k\P\(C\2 + Cte) ~k2P2(C\2 + Cm) 0 , (3.8)
0 0 kj

where k\, k2, kj are complex constants to be determined and, by (2.3) 1,

-k\PiC(,6(C\2 -p2C2i) -k2p2C^(C\2 -P2C22) 0

B = k\C^{C\2~ p2C22) k2C(,(,{C\2 ~ P2.C22) 0 . (3.9)

0 0 kiPiC^_

The normalization condition (2.6) for a = 1,2,3 leads to

-2k2p\C(,(,{C\2 - p]C22)(C\2 + 2C66 + P\C22) = 1,

-2k2p2C66(Cn-p22C22)(Cn + 2C66 +p22C22) = 1, (3.10)

2kjpiC44 = 1.

With k\, k2, k-i given by (3.10), A and B contain the elastic constants Cap and the

eigenvalues pn.

4. Explicit expressions for S, H, L. When we substitute (3.8) and (3.9) into (2.5),

each component of the matrices S, H, L has the factors k2, k2, k$ which can be

eliminated by using (3.10). The results contain the terms P1P2, {Pi +P2), and (pj+pl)

which are given in (3.6) and (3.7). Thus all components of S, H, L can be obtained

in terms of Cap only. We list below explicit expressions of S, H, L. Only the nonzero

components are presented.

S2l=z+, Sn = -p-lS2

(4.1)

>21) .

L\\ = d+T+, L22 = p-{Ln, £33 = (C44C55)1/2,

HU=P-1H22, #22 = ^7, H33 = L~l

All notations appeared above and those which will appear later on are defined below:

2a = {C11C22 - C,2(C,2 + 2C66)}(C22C66)_1,

y?=(^;)/2, C,2 = (CnC22)1/2,

d± = C12 ± C\2, y± = 2C^e + C12 ± Ci2>

T+ =

2w+ =

^66 d-

. C22Y+

d- y+
C22Q6

1/2

1/2

T_ =

2w_

C(,(, d. 1/2

.ci2\y-\

d+\y-V1/2

C22Q6

e __ c 12 + c66 ^ _ C12 - C66

C\2 - C12 C12 + C12

(4.2)
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From (3.1) and (3.2), all quantities in (4.2) are positive except a, and y_ which

can be negative. It can be shown that a > 0 when y_ < 0.

5. Explicit expression for S(0), H(0), L(0). In this section we consider the func-

tions S(0), H(0), L(0) defined in (1.5). They appeared, among others, in the problems

of line forces and dislocations [3, 6, 10, 15] and the wedges [6, 12]. As before, we

will employ an alternative representation for these tensors. We notice that N,(0) are

periodic in 0 with periodicity n. Therefore

S(0 + 7t) = S + S(0), H(0 + 7t) = H + H(0), L(0 + 7t) = L + L(0), (5.1)

and hence it suffices to find S(0), H(0), L(0), for 0 < 0 < n. The alternate represen-

tations are (see Eq. (7.10) of [12])

S(0) = -Re{A¥(0)Br},
71

H(0) = — Re{A4'(0)Ar}, (5.2)
71

L(0) = - - Re{B¥(0)Br},
71

in which *P(0) is the diagonal matrix

«P(0) = diag{lnC1(0),lnC2(0),lnC3(0)},

C„(0) = cos 0 + pn sin 0.

From the structure of A, B, *P(0), it is readily shown that the 5]3(0), §23(0),

53i(0), 5*32(0) components of S(0) vanish. The same components of H(0) and L(0)

also vanish. For the nonzero components, 533(0), H^(Q) and £33(0) are very simple

to calculate. The remaining nonzero components are Sap(6), Hap(6), Lap(6), a,p =

1,2, which contain the eigenvalues p\,p2 and lnC,,ln£2. They all have the form

f(P\,Pi) In Ci (0) + f(P2,Pi) In C2(0),

where f(p\,pi) is a function of P\,P2- This can be rewritten as
'Ci(0)~

LC2(0).

The calculations of f{p\,pi) +f{Pi,P\) are exactly the same as in the previous section.

The calculations of f{P\,Pi)~ f(p2,p\) involve p\ -p2 and p\-p\ which are discussed

next.

It can be shown that

P2_ai= iCnCn-Ch)
P (C22C66)2 /+7-'

where y± are defined in (4.2). From (3.1)5 and the fact that y+ > 0, the inequality

P2 $ a2 can be replaced by ^ 0. One can then show that, with w+, W- define in

(4-2),
p 1 = ui- + iw+, P2 = -W- + iw+, p > |q| > 0,

w\ - w2_ - a, w\ + w2_ = /?, if > 0,

\{f(P\,Pi) + f(P2,P\)}MU0K2(0)] + \{f(P\,Pi) - f(Pi,P\)}\n (5.4)
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and
Pi = (w+ + w-)i, p2 = (w+-w-)i, a>P>0,

u>l - wl. = P, w\ + wl_ = a, if y_ < 0.

The combination p\ -p2 and p\ -p\ can now be obtained. Regardless of y_ positive

or negative, we have

pi+p2 = 2iw+, W2 = <a±£). (5.5)

We next investigate the logarithmic terms in (5.4). Using (5.3), (5.5) and (3.6)2,

we have

ti{0)C2{0) = (cos 6 + P\ sin 6)(cos 6 + p2 sin 6)

- cos2 0 - p sin2 6 + iw+ sin 26.

Hence,

ln[Ci (0)£2(6)] = ^ ln{(cos2 6 - p sin2 6)2 + w2 sin2 26}

4- i tan 1
w+ sin 26 (5.6)

cos2 6 - P sin2 8

For ln[£i(0)/C2(0)]. we need to consider > 0 and y_ < 0 separately. When y_ > 0,

In Ci {6) = j ln(cos2 6 + P sin2 6 + w- sin 26)

+ / tan 1
w+ sin 6

cos 6 + sin 6

In C2{6) = ^ ln(cos2 6 + P sin2 6 - W- sin 26)

+ i tan 1

Employing the identities

2

w+ sin 6

l-y

tan"1 y\ - tan-1 y2 = tan

we obtain for y_ > 0,
"Ci (6)

cos 6 -W- sin 6

= tanh 1 y,

y 1 -y 2

.1 +yiy2_

In tanh A, -/tan A2, (5.7)
LC2WJ

where A,,A2 are given in (5.10). Similarly, it can be shown that for < 0,

'uey
In

U6)\
— tanh A2 + /tan Aj. (5.8)

With the aid of (5.6) and (5.7) or (5.8) in the decomposition (5.4), the calculations

of S(0), H(0), L(6) of (5.2) can be accomplished with less effort. We list below
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explicit expressions of the nonzero components of S(0), H(0), L(0), for 0 < 0 < re:

5,, = <D + r2, »S22 = O — r2

$2i=r3-rt, 5,2 = -/?-'( r3 + r,).

s33 = ^'n cos2 0 + sin2 0
C44

L,, =d+Ti + d-Tx, i22 = /?-1(rf+r3-rf-r1),

L>12 = -^21 = 2C66r2, L33 = (C44C55)'^2<54,

#11 = (y?c66)-'(e+r3 + r 1), H22 = c6-6'(e+r3 - e_ri),

#12 = #2. = ?.(C'2 + r2, 7/33 = (C44C55)-i/2J4.
<-ll<-22 - <-12

The new notations appearing above are

<*> = T-ln
4re

[cos2 0 - p sin2 0)2 + w\ sin2 20

<y,T_, r2 = (^ ) (52t+t_, r3 = j3r+,
(5.9)

1 T T"*t =r T .

,^66

in which S,, i = 1,2, 3,4 are functions of 0 defined as follows. Let

u;_sin20 A 2w+w- sin2 0 .. tn.
A, = , A2 =   5—. (5.10)

cos2 0 + p sin" 0 cos2 0 + a sin" 0

Then, for 0 < 0 < re,

'-i

62 =

S3 = tan"
Z71

1
d4 = — tan

71

2^ tanh 1 A(, if y_ > 0,

^tan-'A,, -g<<*i<5, if 7- < 0,

C ̂ tan-'A2, 0 < <52 < j, if > 0,

[ 2^tanh"'A2, if y_ < 0,

w+ sin 20

cos2 0 - p sin" 0

r \ '/2
tan 0,

C44 )

0 < Si < i for 0 < 0 <

^ < <*3 < 1, for^ < 0 < re,

0 < S4 < for 0 < 0 < y,

^ < <54 < 1, for ^ < 0 < re.
2 - 4 - ' 2

Three special cases should be noted. In the first, when 0 = re, O, F1, r2 all vanish

and r3 = r+,S4 = 1. The results presented here reduce to (4.1).

The second special case is the degenerate case y_ = 0, which corresponds to p\ =

P2■ When y_ = 0, S\,S2 vanish while r_ becomes infinite. A proper limit taken for

T,, r2 in (5.9) leads to

r, =
d+ sin 20 d+d- sin2 0

4reC22(cos2 0 + P sin2 0)' ~ 4reC22(cos2 0 + a sin2 0)



EXPLICIT EXPRESSIONS OF BARNETT-LOTHE TENSORS 731

The third special case is the case of isotropic materials for which =0. If X and

H are the Lame constants,

_ X + /2 . _ „ A + n . 2 ar' = 2iir^)sm2l>- r> = sm "■

= e.=L />=!,
J n(X + 2/i)' * 2fi ' 2'

Q
d+ = 2(X + fi), d- = 2\i, 0 = 0, dt\ = —.

n

6. S, H, L, and S(9), H(9), L(9) referred to a rotated coordinate system. In appli-

cations, the planes of symmetry for orthotropic materials may not coincide with the

coordinate planes. If the X3 = 0 plane is the only plane which coincides with one of

the planes of material symmetry, there is a simple relation by which S*, H*, L*, and

S*{9*), H*(0*), L*(9*) referred to this new coordinate system x* can be obtained in

terms of S, H, L, S(0), H(0), 1(6).

Let x* be related to Xi by

Xj = £ljj(8o)Xj,

cos do sin #o 0"

&ij(9 0) = -sin 0O cos 0o 0

0 0 1.

Thus x* is obtained by rotating the x, coordinate system through an angle 9o about

the x3-axis. The fourth order tensor C*ks referred to the x* coordinate system is

^ijks = Qip(@o)Qjq{9o)Qkr{9o)Qst{8o)Cpi]rt.

The 3x3 matrix Q*(9*) referred to the x* coordinate system is

Q*k(e*) = qjksrij{d*)ns(9*),

Noticing that

Qjq(9o)nj(9*) = nq(8o + 9*),

we have

Q*(6r) = n(0o)Q(0o + 0*)«r(0o).

Similar equations are obtained for R*(0*) and T*(0*). It follows from the definition

of Nj(9) in (1.4) that

N*(r) = a(0o)NI(0o + 0,)«r(0o).

Integration of both sides with respect to 6* leads to

S*(6*) = £l(90)[S(90 + 9*) - S(0o)]"r(0o), '

H*(0*) = 12(0o)[H(0o + 9*) - H(0o)]«r(0o), (6.1)

L*(0*) = ft(0o)[L(0o + d*) - L(0o)]«r(0o). .

In particular, when 9* = n we obtain from (5.1) and (6.1),

S* = ft(0o)Sfir(0o), '

H* = ft(0o)Hnr(0o), (6.2)

L* = Sl{90)LSlT(90). .
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Equations (6.1) and (6.2) allow us to find S, H, L, and S(0), H(0), L(0) for or-

thotropic materials for which only the X3 = 0 plane coincides with a plane of material

symmetry.

7. Explicit expressions for S(v), H(w), L(i>). For a steady wave motion in the

X\-direction with a constant subsonic speed v, it can be shown [7] that an alternate

representation of (1.7) is given by (2.5) provided that we replace (2.2) 1 by

Qik = Cjiki- pv2Sik,

before evaluating the matrix A and B. Therefore, pa, A and B depend on the real

wave speed v. The calculations of S(v), H(v), L(v) parallel those of S, H, L in Sec.

3 and 4. The algebraic calculations are rather lengthy, but the final expressions can

be substantially simplified [16, 18]. If we introduce the notations

C'j = Cjj - pv2djj,

Cij = (C-jCjj)'/2, i,j not summed,

in which StJ is the Kronecker delta and Cu has the property

CikCjs = Ciscjk,

the nonzero components of S(v), H(i>), L(v) can be written as follows.

L}3(v) = C5 4, Hi3{v) = Crl
54 '

-1
—CieSuiv) = C62S2\{v) = (C12Q6 _ C\2C(,(,)W

C16L22(w) = C62Lu(v) = [(C,22 - C,22)C66 + (C626 - Cl)CnW~\

C\(,H\\(y) = C62H22(v) = (Cl2 + C66)W-1,

M/ = [(C12 + C66)2-(C,2 + C66)2]1/2.

(7.1;

When v = 0, we have C66 = C66, W7 = (7+ d-)>/2, and the above expressions reduce

to those of (4.1)

8. Concluding remarks. We have presented in this paper explicit expressions of

S, H, L, S(0), H(0), L(0), and S(?;), H(u), L(v) directly in terms of the elastic

constants of orthotropic materials. The coordinate planes are assumed to coincide

with the planes of material symmetry. If the material is referred to a coordinate

system x* which is obtained by rotating the x, coordinate system an angle about the

x3-axis, a simple relation exists between S*, H*, L*, S*(0*), H*(0*), L*(0*) and S,

H, L, S(0), H(0), L(0). No such relations exist between S*(v), H*(w), L*(u) and

S(v), H(u), L(«).

For S, H, L given in (4.1), we see the relations

*S*2 J H22 -^11 tt r — 1 I Q 1 \

=rr2- h» = l»- <8i>

Equation (2.7), provides the additional relation

H\\L\\ - S\2S2\ = 1, (8.2)
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which can be shown to be satisfied by S, H, L given in (4.1). The components of

S(v), H(u), L(w) obtained in (7.1) also satisfy (8.1) and (8.2). Thus there are only

four independent nonzero parameters for S, H, L or S{v), H(v), L(i>).

One does not have to find the explicit expressions of S, H, L, or S(v), H(t>), L(v)

to realize that the number of independent parameters for orthotropic materials is

four. It is shown in [23] that the number of independent parameters for monoclinic

materials is five if the X3 = 0 plane is the plane of symmetry and six if the x\ = 0

or X2 — 0 plane is the plane of symmetry. The number increases to nine for general

anisotropic materials.

Acknowledgments. The expressions for S2\(v), Lu{v), and //22(f) in (7.1) were

(in slightly different notations) presented to us by Professor P. Chadwick, FRS. Our

original expressions for these quantities were much more complicated.

The work presented here is supported by the U.S. Army Research Office through

grant DAAL 03-88-K-0079.

References

[ 1 ] D. M. Barnett and J. Lothe, Synthesis of the sextic and the integral formalism for dislocations, Green's

function and surface waves in anisotropic elastic solids, Phys. Norv. 7, 13-19 (1973)

[2] A. N. Stroh. Dislocations and cracks in anisotropic elasticity, Phil Mag. 3, 625-646 (1958)

[3] R. J. Asaro, J. P. Hirth, D. M. Barnett, and J. Lothe, A further synthesis of sextic and integral theories

for dislocations and line forces in anisotropic media, Phys. Status Solidi B 60, 261-271 (1973)

[4] D. M. Barnett and J. Lothe, Consideration of the existence of surface wave (Rayleigh wave) solutions

in anisotropic elastic crystals, J. Phys. F. 4, 671-686 (1974)

[5] D. M. Barnett and J. Lothe, An image force theorem for dislocations in anisotropic bicrystals, J. Phys.

F. 4, 1618-1635 (1974)

[6] D. M Barnett and J. Lothe, Line force loadings on anisotropic half-spaces and wedges, Phys. Norv. 8,

13-22 (1975)

[7] P. Chadwick and G. D. Smith, Foundations of the theory of surface waves in anisotropic elastic

materials, Adv. in Appl. Mech. 17, 303-376 (1977)

[8] P. Chadwick and G. D. Smith, Surface waves in cubic elastic materials, Mechanics of Solids, The

Rodney Hill 60th Anniversary Volume, edited by H. G. Hopkins and M. J. Sewell, Pergamon, Oxford,

47-100 (1982)

[9] P. Chadwick and D. A. Jarvis, Surface waves in a pre-stressed elastic body, Proc. Roy Soc. London

A 366, 517-536 (1979)

[10] T. C. T. Ting, Line forces and dislocations in anisotropic elastic composite wedges and spaces, Phys.

Status Solidi, B 146. 81-90 (1988)

[11] T. C. T. Ting. Explicit solution and invariance of the singularities at an interface crack in anisotropic

composites. Int. J. Solids Structures 22, 965-983 (1986)

[12] T. C. T. Ting The critical angle of the anisotropic elastic wedge subject to uniform tractions, J. Elasticity

20,113-130 (1988)

[13] Qianqian Li and T. C. T. Ting, Line inclusions in anisotropic elastic solids, J. Appl. Mech., in press

(1989)
[ 14] Chyanbin Hwu and T. C. T. Ting, Two-dimensional problems of the anisotropic elastic solids with an

elliptic inclusion. Quart. J. Mech. Appl. Math., in press (1989)

[15] H. O. K. Kirchner and J. Lothe, Displacements and tractions along interfaces, Phil. Mag. A 56,

583-594 (1987)

[16] P. Chadwick and N. J. Wilson, Surface waves in orthotropic and cubic elastic materials, to appear,

(1989)
[17] P. Chadwick, Wave propagation in transversely isotropic elastic media. I Homogeneous plane waves.

II Surface waves. Ill The special case as = 0 and the inextensible limit, Proc. Roy. Soc. London A
422, 23-121 (1989)



734 C. DONGYE and T. C. T. TING

[18] P. Chadwick, private communications

[19] J. D. Eshelby, W. T. Read, and W. Shockley, Anisotropic elasticity with applications to dislocation

theory, Acta Metallurgica 1, 251-259 (1953)

[20] T. C. T. Ting and Chyanbin Hwu, Sextic formalism in anisotropic elasticity for almost non-semisimple

matrix N, Internat. J. Solids Structures 24, 65-76 (1988)

[21] H. O. K. Kirchner and J. Lothe, On the redundancy of the N matrix of anisotropic elasticity, Phil.

Mag. A 53, L7-L10 (1986)
[22] P. Chadwick and T. C. T. Ting, On the structure and invariance of the Barnett-Lothe tensors, Quart.

Appl. Math. 45, 419-427 (1987)

[23] T. C. T. Ting, The eigenvectors of S matrix and their relations with line dislocations and forces

in anisotropic elastic solids, Micromechanics and Inhomogeneity, The Toshio Mura Anniversary

Volume, edited by G. J. Weng, M. Taya, and H. Abe, Springer-Verlag, New York, 1989, pp. 449-467


