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Abstract. This article is concerned with the linear stability of cylindrical flames in

a velocity field generated by a line source of fuel of constant strength 2 uk per unit

length. The mathematical model involves the equations of mass and heat transfer

in the regions on either side of the flame sheet and a set of jump conditions across

the flame sheet. It admits a basic solution representing a stationary flame front in

the shape of a circular cylinder at a radial distance k from the line source. The

circular front loses stability if either (i) the Lewis number of the reaction-limiting

component is less than some critical value less than 1 and k is greater than a critical

value, or (ii) the Lewis number is greater than a critical value greater than 1. In the

former case the circular front evolves into a steady cellular front, in the latter into a

pulsating front, which may also be cellular. The WKB method is employed to derive

approximations for the pulsating and cellular branches of the neutral stability curve.

1. Introduction. Experiments with laminar flames in gaseous combustible mixtures

show that for certain mixtures a stationary smooth flame front may lose stability and

break up into cells or evolve into a pulsating flame front with or without spatial

structure; see, for example, [1], [2], [3], and [4], This process is thought to be the

first stage in the transition from laminar to turbulent flame propagation. Among

the parameters that determine whether the process will occur and how it will evolve

is the Lewis number, which measures the ratio of the thermal conductivity of the

combustible mixture to the diffusivity of the reaction limiting component in the

mixture. Cellular flames appear when the Lewis number is less than a critical value,

which is less than 1; pulsating flames appear when the Lewis number is greater than

a critical value, which is greater than 1.

The linear stability of a uniformly propagating plane flame front was studied by

Sivashinsky [5]. Subsequently. Matkowsky, Putnick, and Sivashinsky [6] presented a
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nonlinear theory describing the evolution of stationary cellular flames from pertur-

bations of a cylindrical flame front. In the present article we pursue a linear theory

that describes the onset of pulsating as well as stationary cellular flames. We derive

approximations for the pulsating and celluar branches of the neutral stability curve,

which separates the region where a stationary cylindrical flame is stable from the re-

gions where it is unstable. The results of this theory provide critical information for

a nonlinear computational study of cylindrical flames, which is currently in progress.

The model employed here is the same as in [6]. It was derived in [7] as an ap-

propriate limit of the general equations governing flame propagation. The general

equations are the nonlinear equations for conservation of mass and energy with first-

order one-stage irreversible Arrhenius kinetics, and the equations of motion for the

underlying gas flow of the combustible mixture. The limit assumed large activation

energies, weak thermal expansion, and nearly comparable coefficients of heat and

mass diffusion. In the limit, the fluid dynamics are decoupled from the chemistry

and the transport processes, and the velocity field obtained from the fluid dynamic

equations is a known coefficient in the equations of heat and mass transfer. The

reaction zone is reduced to a moving free surface, termed tht flame front, on which

there is a heat source whose strength depends on the enthalpy perturbation at the

front.

In this investigation we assume that the underlying flow field is generated by a line

source of constant strength 2nx per unit length. The resulting problem is therefore

two-dimensional. The dependent variables measure the reduced temperature and

enthalpy perturbation of the fuel mixture. The Lewis number L enters as a parameter

into the problem. As stated above, the derivation of the model implies that L is close

to 1; in fact, the difference L - 1 is 0{M~l), where M is the large parameter used

in the large-activation-energy asymptotics. (More precisely, M = N( 1 - er), where

N is the nondimensional activation energy of the chemical reaction and 1 - a is

the relative temperature increase from the fresh mixture far upstream to the region

behind the flame; 1 - a is a measure of the thermal expansion of the gas in which

the combustion process takes place.) We put

*• = ' + ]*. (')

and use A as a parameter in our investigations. The mathematical model is given in

Sec. 2.

The model admits a nontrivial solution representing a stationary flame front in

the shape of a circular cylinder at a radial distance k from the line source. This

solution, which we refer to as the basic solution, is introduced in Sec. 3. In the same

section, we present the linear equations and the associated continuity, jump, and

boundary conditions that govern the evolution of infinitesimal perturbations of the

basic solution.

In Sec. 4, we show that the basic solution is linearly stable as long as -2 < A < 0. If

k < -2, there exists a critical vlue kc, such that the basic solution is linearly stable for

any k < kc. As k passes through kc, the basic solution loses stability and a transition

to a cellular flame front occurs. These results agree with those in [6].
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Section 5 contains the new results. Here we analyze the linear stability of the basic

solution for positive values of X, assuming that k is large. Using a WKB analysis, we

derive approximations for the neutral stability curve and show that the cylindrical

front evolves into a pulsating cellular flame when A exceeds a critical value kc. We

first treat the case where the angular wave number n is O(l) as k —> oo (Sec. 5.1).

Then we treat the case where n = O(k) as k —» oo (Sec. 5.2) and show that the

approximation for the pulsating branch thus obtained contains the approximation

obtained earlier for the case n - 0(1) as a limiting case (Sec. 5.3). In other words,

the approximation obtained in Sec. 5.2 is uniformly valid over the entire range of the

wave number n, at least up to and including terms of the order 0(k~2) as k —> oo.

In Sec. 5.4 we show that the approximation for the neutral stability curve reduces to

the (exact) expression for the cellular branch as the pulsation frequency vanishes. In

the final Sec. 5.5 we present the graphs of the neutral stability curve for k — 10 and

k = 20. These graphs were computed from the uniform approximation established

in Sec. 5.2.

2. Mathematical model. The mathematical model used in this investigation is the

same as in [6], The dependent variables U and V measure the reduced temperature

and enthalpy perturbation, respectively. They are functions of the radial variable r,

the angular variable d, and time t\ U and V are 27r-periodic in 0.

The velocity field of the underlying fluid flow is generated by a line source of

constant strength 2uk per unit length. Thus, the velocity field is radial; its magnitude

is u = K/r.

The flame front is a surface of discontinuity for the derivatives of U and V. Its

position is assumed to be of the form r = F(d,t), where the function F is to be

determined. The fresh mixture occupies the region 0 < r < F(d,t), the reaction

products the region r > F(6,t).

The governing equations are

U, + -Ur = A U, V, + - Vr = AV + aAU, (2)
r r

where A is the Laplacian in cylindrical coordinates, A = (1 /r)(d/dr)r(d/dr) +

(i/r2){d2/ae2).
The equations (2) are satisfied for 0 < r < F(6,t) and for r > F(0,t). At the

flame front (r = F(6,t)), U and V are continuous, but their gradients have jump

discontinuities. Using the notation [•] to denote the difference between the limiting

values as r -* F{6,t) from above and below, we have

[U] = 0, [V] = 0, (3)

[n ■ grad U] + ev^2\r=F^J) — 0, [n ■ grad V] - Xe^2\r=F(gj) = 0. (4)

Here n is the unit vector normal to the front in the direction of increasing r,

grad(r- F(9,t)) {1 ,-Fe/F}

r=Fm (l + CVW2'| grad(r - F(8, /))|

Since grad U — {Ur, (1 /r)Ug}, it follows that

[Ur] - (F„/F2)[U0]
[n ■ grad U] =

(i + (F0/F)2y2
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A similar expression holds for [11 • grad V], In addition, U and V satisfy the limiting

conditions

U —> 0, V —> 0 as r —► 0, (5)

U= 1 for all r > F(8, t), V bounded as r —> oo. (6)

3. Basic solution and linearized equations. The system of nonlinear equations (2),

(3), (4), (5), and (6) admits the solution

F = k, (7)

I, = t/(r) = ( (£)"• °<r<K- (8)

11, r > k;

0<r<K•
V=V(r) = t \k / \kJ (9)

10, r > K.

We refer to this solution as the basic solution. It represents a stationary flame front

in the shape of a circular cylinder at a radial distance r = k from the line source. At

the front we have [Ur]r=K = -1, [Vr]r=K = A, [Urr]r=K = -{k - 1 )/k, and [Vrr]r=K =

A(2k - 1 )/k.

Upon linearization of (2), (3), (4), (5), and (6) around the basic solution, we obtain

the following system of equations:

K K
ut H—ur = An, v, H—vr = Av + AAu, (10)

r r

for 0 < r < k and r > k\

[«U-/ = 0, [v]r=K+lf= 0, (11)
t is  i I 2/c  1

[Ur]r=K + ~V(K) /= 0, [VV]r=/v ~ xAf(k) + A / = 0; (12)
A K A K

and

u —► 0, »-»0 asr^O, (13)

w = 0 for all r > /c, ^ bounded as r —► oo. (14)

Here, /, w, and v are the perturbations of F, U, and V, respectively, about the corre-

sponding quantities in the basic solution; in (12), the quantity v(k) is an abbreviation

for limtlo v(k + £, 9, t).

The system of equations (10) through (14) will be the object of investigation in

the following sections.

4. Cellular flames.

The linearized system of equations (10), (11), 12), (13), and (14) admits nontrivial

stationary solutions that are 2^-periodic in 6 if

X = -K (2n2 + k + (k2 + 4«2)'/2), « = 1,2,.... (15)
Yl K
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If we interpret n as a continuous variable, then (15) defines a branch of the neutral

stability curve in the (/i,A)-plane for any fixed value of k. Of course, n is an integer,

so solutions are realized only at discrete points on the curve. The basic solution

evolves into a steady cellular flame front as one crosses the neutral stability curve in

the direction of decreasing A. For this reason we refer to this branch of the neutral

stability curve as the cellular branch; it is in the lower half of the («,A)-plane, where

the Lewis number is less than 1.

The equation (15) can also be recovered from [6, Eqs. (2.4), (2.5), and (2.6)].

The cellular branch of the neutral stability curve has a vertical asymptote at n — 0.

It ascends monotonically to a maximum at some point («c(k), Ac(k)), where Ac(k) <

-2 for all k, and descends monotonically to negative infinity as n increases; nc(ic) ~

k3/4 and Af(/c) ~ -2(1 + 4k~1/2) as k —> oo. Graphs of the cellular branch are

included in the figures in Sec. 5.

It follows that the basic solution is stable to infinitesimal perturbations for -2 <

A < 0, for any value of the (positive) parameter k. If A < -2, then there exists a

critical value kc such that the basic solution is stable to infinitesimal perturbations

for any k < kc, but as k passes through kc, the basic solution loses stability and a

transition to a cellular flame front occurs.

If k tends to infinity while n — mK, m = 0(1), we have the exact expression

^ = -2(1 + 4m2) (l + 2^(1 + (1 + 4m2)1'2)^ . (16)

We will see in Sec. 5.4 that this expression can be recovered from the approximation

for the pulsating branch of the neutral stability curve if the pulsation frequency

vanishes.

5. Pulsating flames. Next, we look for nonstationary solutions of (10) through (14)

that are 27r-periodic in 6. In particular, we look for periodically oscillating solutions,

whose temporal behavior is described by a factor exp(icot), where w is a nonzero

constant, which may be complex. Such solutions describe, among others, traveling

and standing waves on the flame front.

With only the r-dependence left, we use a prime to indicate differentiation with

respect to r. Thus, (10) reduces to

—{fu1)' — ~u' — ̂ ico + ~~2^j u — 0, (17)

i(r,,T _ V - (;o>+ £) v = (!(«')' - , (18)

for 0 < r < k and r > k. The conditions (11), (12), (13), and (14) remain unchanged.

We introduce new independent and dependent variables, in order to transform the

equations into a form that is amenable to a WKB analysis [8]. Let x be defined in

terms of r,

x = ——r, (19)
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and let y and z be the following functions of x :

/y\l/2 / v- \ 1/2

yw = {-^) M(r)' = w VW- (20)

Then y and z satisfy the equations

^ + W-f< + 4^) + (s-"2);^jv = <>. (21)

and

z" + k2 <! - f i + —^ + (\ - n2
4x2/ \4 J k2x2

= -A \ y" + ̂ y> + ̂ U-±- + l-fl---n2))y
(22)

Here, a prime denotes differentiation with respect to x. These equations are in such

a form that we can apply a WKB analysis for large values of k. We pursue this idea

in two cases, depending on the order of magnitude of n.

5.1. Case 1: n = 0(1) as k —► oo. In this subsection we consider the case where

n = 0( 1) as k —♦ oo.

We first solve for y (i.e., u). Two linearly independent solutions of (21) are y+ (-,k)

and y-(-,K),

y±{-,K) = exp{KX±(-,K)), (23)

where

^±(-,/c)~±^o(-) + k-|/i(-)±k-2^2(-) + ^"3^3(-)±-" , oo; (24)

with

Xo(*) = \ {(1 + 4/x2)'/2 - log 1 + (\+x*)* ) ' |, (25)

^) = -ilog<I±^, (26)

. 2 1 + (1 +4/X2)'/2 1 5 ....

Xl[X) n °8 2x/'/2 + 4(1+4/x2)'/2 12(1 + 4/x2)3/2' ( ^

i - n2 3 5

*3(x) = 1 +4/x2 ~ 2(1 + 4/x2)2 + 4(1 + 4/x2)3' (28)

The limiting conditions at infinity eliminate any contribution from _y_. The contri-

bution from y+ follows upon application of the conditions (11) and (13). Thus we

find
,wr).,) 0<r<K_

u(r) = } \K/ y+(col/2,K) (29)

[ 0, r > k.

The solution v is found by considering first the region r > k, where the equation (22)

is homogeneous and the contribution from y+ is zero, and then the region 0 < r < k,

where the solution is a linear combination of y+ and a particular solution of the
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inhomogeneous equation. For the particular solution, it suffices to consider only the

first few terms in the asymptotic expansion for large values of k. Thus we find

(£)' '' l^K){V{K)+Xf[1 + ~ «)}]},

0 < r <k,v{r) =

. \k/ y_(«y1/2 if)y-(a>l/2,K)

where v(k) = lim^o v(k + e) is given by

+ —( ^ -  +     )+ ■ ■ \f.
k2 \(1 + 4ia>)1/2 (1+4/w)3/2 2(1+4ia>)5/2 /

r > k\

(30)

(31)

The function g has an asymptotic expansion,

go{-) + K-lgl{-) + K~2g2{-) + -- - , K > 00. (32)

At this point, the derivatives of the coefficients are known,

*i(*) = ^ {^" + 4,^)l/2 + ' + 2(1 + 4^2)1/2 } • <33>

«i(*» " (ITSW- 1341

g'(X> "!{x(l+4«2)i« (1 + 4;'.v:)3/2 }

ix 4 ix 25 ix .

+ 2(1 +4ix2)3'2 + (1 + 4/x2)5/2 ~ 2(1 + 4/x2)7/2' ( }

These expressions can be integrated, but the integrals are not needed, as only the

derivatives of the coefficients gi, i = 0,1,2, enter into the expression for X. Finally,

by applying (12), we obtain an asymptotic form of the dispersion relation,

, ^<t>o{w) + K~{(t>](a)) + K-2ct)2{u>) +■■■
/ ~ 2  —  j ; r , ; r , (36)

Vo((d) + K~ Vi(w) + K~-y/i(co) H 

where

0o(&>) = (1 + 4/a>)3/'2 - 1 - 4/a;,

0i (ct>) = 2 + 4 ito,

1 f\ ^
4>2((d) = (4«2 - 1)(1 + 4i(jn){l2 - 2n2 + - +

2 (1+4/oj)1/2 1+4 ia>

+
(1 + 4/co)3/2 2( 1 + 4/a>)2
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and

Voico) = 1 + 2ico - (1 + 4/a»)1/2,

4 ico
Wi (co) =

(1 +4 ico)3/2'

_ , (4«2+l)/(w 8/a> 25/a>
^2(w) = —2« + ——-— +

1 + 4i(o (1+4/co)2 (1+4/w)3*

Notice that the wave number n enters only in the second-order coefficients.

The equation for the neutral stability curve is found by setting Imw = 0. If

Rea> / 0, the basic solution evolves into a periodically pulsating cellular flame front

as one crosses the neutral stability curve in the direction of increasing k. This part

of the neutral stability curve is therefore referred to as the pulsating branch. Its

equation is obtained by eliminating Reco from (36). (Recall that the expression in

the right member of (36) is complex, so the real and imaginary parts yield two distinct

equations.)

The elimination process can be carried out asymptotically. Taking co to be real,

we assume that it is given by an expansion of the form

CO ~ COq + OJ\K~l + Cl>2K~2 + • ■ • , (37)

and expand the coefficients 0, and i = 0, 1,2, in powers of k~1. Then we look

for a real k that has an asymptotic expansion of the form

X~lo{n) + h(n)K-1 + k2(n)K~2 + ■ ■ ■ . (38)

To lowest order, we have the complex equation

A-oWo(mo) — 20o(<yo)- (39)

Separating the real and imaginary parts, we eliminate co0 and solve for ko. Since n

does not enter at this order, we find that ko is independent of n,

k0{n) = kQ = 4(1 + >/3) = 10.9282... . (40)

Once ko is known, we find the value of coq by substitution, <y0 = |(3 + 2%/3)1/2 =

0.635615... .

In the next order, we have the complex equation

^l^o(wo) +AoVo(wo)wi +-Wi(o>o) = 2[^o(wo)co| +<M^o)]. (41)

Again, separating the real and imaginary parts, we eliminate oo\ and solve for k\.

Since n still does not enter at this order, we find that k\ is also independent of n,

kx{n) =kx = 13.2376... . (42)

The numerical value of coi is found to be co\ = 0.764368 

The next coefficient in (38) is found from the complex equation

h Vo(wo) + Ai^o(w0)wi +^\V i(«o)

1
+ ^0 2 Vo(wo)0JJ + Vo(wo)^2 + v[(ojo)o)\ + Vi{(Oo)

^0o(wO)W| +<t> 2(Wo)Ct>2 + 0'|(Wo)Wl +02(Wo)

(43)
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Note that the wave number n enters at this order. We find

X2(n) = 30.1350... - Sn2. (44)

Thus we see that the pulsating branch of the neutral stability curve is parabolic and

curving downward near n = 0.

We observe that the expansion (38) breaks down when n is of the same order as k,

because of the term n2 in the coefficient («). This observation leads us to consider

the case where n = 0(k) as k —> oo.

5.2. Case 2. n = O(k) as k —► oo. We consider the case where

n = mK, m = 0( 1), k —> oo. (45)

We use the abbreviations

l+4m2' ^m (l+4m2)'/2'

The differential equations (21) and (22) assume the form

^ + )c3(_(;+ ' ) + _i_7U = 0, (47,

and
1 \ 1

z" + k2 i - I / + —t 1 +
4„,x2 J 4k2x2 \

, ... K . K2 f \ 2 1 1 \
= -i\y +~xy*~x2 (-4+ 4^)y

(48)

Again, a prime denotes differentiation with respect to x.

The approach is very similar to the one followed in the previous subsection. In

fact, we shall use the same symbols to denote corresponding quantities. We first solve

for y (i.e., u). Two linearly independent solutions of (21) are >>+(•, jc) and y~{-, k),

y±(-,K) = exp(K*± (■,*)), (49)

where

X±(',k)~±*o(-) + k-1Xi(-)±k-2X2(-) + k"3*3(-)±--- , K-^oo; (50)

with

, 2 f ■ 2\W i 1 + (1 + 4mix2)1/21
= 4^ U1 + 4mtx ) ' — log ——2 j, (51)

/ \ (!+4 mix2)1'2
*,(*) =--log y-T72 ' (52)

! ^   2 ,n 5 • 2m / c ~3 \
X2{x) ~ 8(1 +4m/x2)'/2 " 24( 1 + 4,„/x2)3/2' 1 j

As in the previous subsection we find

D/2 y+(x(r),K)
(-) ( 1,2 J> 0 <r<K>
\kJ v^Ioj I ,k)u(r) = { \kJ y+(col/2,K) ' ' (54)

0, r > k\
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and

(k)' ^ ^(w1/2' 1] M*) + + x{g{x{r),k) - g(wlft,*)}]},

v{r) = 0 < r < k,

/ r\(K~1)/2 y_(x(r),K)

V ac / v_(a)'/2,K)y-{a>V2,K)

where v(k) = limE^0 v{k + e) is given by

r > k\

(55)

v(k) ~ jl - ^-(1+4mica)1'2 - ^ (l + ! )
I 2W K \ 1 4" 4mico J

+^l( 1 1 + 5 ) + ...]/
2k2 \2( 1 + 4m/fc))'/2 (1 +4mia)W 2(1 +4mi(o)S/2J J 7'

(56)
The function g has an asymptotic expansion,

g( ■ ,K)~ go{-) + K~[gi{-) + K~2g2i) + --- , K-> 00. (57)

At this point, the derivatives of the coefficients are known,

1
^) = i{i(1+4m/x2)1/2+1 + (58)

2(1 + 4„,/x2)'/2

«iw = 4"'(i-'"0(TrBw <59)

,, , 2m f 1 6 5)
16x \(1+ 4m/x2)'/2 (1 + 4,„/x2p/2 + (1 + 4mix2)5/2 J

. (\ 2^ 2,„ f 13 38 25
+ 4m T - m1

,4 y 16x 1(1 + 4,,,/x2)3/2 (1 + 4,„/x2)5/2 (1+4m/x2)7/2 j'

(60)
These expressions can be integrated, but, as before, the integrals are not needed.

Application of the jump condition( 12) results in the following asymptotic expression

for the dispersion relation:

^ 2Mu)+K~><P\(M) + K~2<f>2{M) + --- (61)

Voico) + K~ + K~2(//2(W) H '

where

M^>) = T"(l + 4mito)3'2 ~ ^-(1 + 4m/w),
An

2 2
01 (w) = T-(1 + 4,«/C0) + y—,

•W77

^2(w) = -(1+4/Co)'/2 + ^+ 6 3'2"
4 (1+4,,,/w)'/2 2( 1 + 4mia>)

5 5 • 2„

(l+4m/w)3/2 4( 1 + 4,,,/w)2'
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and

¥0(0*) = ^rO + 2/<w) - (1 + 4mioj)l/2,

4m . t 2\ 4 m ico
¥x{co) = -21(1-40

(1 +4m/co)3/2'

. 2„, 2m(13 ■ 4,„(1 - 4m2) - 24) 2m(38 ■ 4m(l - 4m2) - 20)
^2(<W) = "o" + —

+

32(1 + 4 mi(o) 32(1+4 m/G>)2

2m • 25 • 4,„( 1 - 4m2)

32(1 + 4 mico)3 '

Notice that the reduced wave number m is already present in the lowest-order coef-

ficients.

The equation for the neutral stability curve is found from (61) by setting lmw = 0

and eliminating Re co, as in the previous subsection. However, this time the compu-

tations are considerably more involved, because of the fact that m enters already in

the 6>(l)-terms. In fact, with A of the form

X ~ Ao(m) + A2(m)K~2 + • • • , (62)

we can find the leading term in the expansion,

1 -1- R W1 ̂
Ao("0 - 41 + 12^2(1 + (3 + 24m2)1/2). (63)

The higher-order terms can be computed numerically, using the same algorithm as

in the previous subsection. Graphs of the pulsating branch of the neutral stability

curve computed from (61) are included in the figures to be presented in Sec. 5.5.

5.3. Uniform expansion. We now compare the expressions (36) and (61) for the

dispersion relation. In order to make the comparison, we set m = n/x in (61) and

let k tend to infinity, while keeping n = 0(1).

In the limit when k = oo, 4,„ = 4 and 2m = 2, so in (61) coincides with

(j>o{oi) in (36), and the same is true for i//q. Thus, to leading order, the two expressions

are identical. This conclusion is confirmed by the fact that the expression for the

leading coefficient Ao(m) in the expansion (62) tends to the constant value 4(1 + \/3),

which is precisely the value of the leading coefficient Ao in (38).

Next, by substituting an asymptotic expansion for co in powers of k~1 , with coef-

ficients that depend on n, we can compare the coefficients </>,• and if/,, i = 0,1,2, in

(61) and (36), at least to 0(rc~2). The computations are tedious, although straight-

forward, and confirm that the coefficients indeed agree. Hence, the expression (61)

for the dispersion relation, and therefore the resulting expansion (62) for the pulsat-

ing branch of the neutral stability curve, are uniformly valid over the entire range

of wave numbers, at least to 0(k~2). In other words, (62) may be considered as a

uniform expansion (within the limits of the current approximation) for the pulsating

branch of the neutral stability curve.
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5.4. Cellular flames—revisited. The expression for the pulsating branch of the

neutral stability curve was found from (61) by requiring that Imco = 0 and assuming

that Re co ̂  0. If, in addition, we require that Rew = 0, so that in effect co — 0, we

should recover the expression for the cellular branch of the neutral stability curve.

This gives an additional check on the correctness of the formulae presented in this

section.

The exact expression for the cellular branch is given in terms of m in (16),

X = -2(1 + 4m2) ^1 + 2^(1 + (* +4m2)1/2)^j . (64)

On the other hand, if we set co = 0 in (61), we obtain

A = ^2(l+W)( ■-,-(1+4m2),/;-|. (65,

The two expressions are identical, as they should be.

6.0

wave number, n

Fig. 1. Neutral stability curves for k = 10. The dotted curves rep-

resent the leading term in the approximation (k = oo), the dashed

curve includes the 0(k~ 1)-correction terms, and the solid curves in-

clude the 0(k~ 1)-correction terms.
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wave number, n

Fig. 2. Neutral stability curves for k = 20. The dotted curves rep-

resent the leading term in the approximation (k = oo), the dashed

curve includes the 0(k~' )-correction terms, and the solid curves in-

clude the 0(k~-)-correction terms.

5.5. Numerical results. We illustrate our results in two cases, k = 10 and k =

20. Figures 1 and 2 give the graphs of the neutral stability curve. The horizontal

coordinate is the wave number n (n = mK), the vertical coordinate is X. The cellular

branch is in the lower part, the pulsating branch in the upper part of each figure.

The cellular branches (solid curves) were computed from the exact formula (15),

the pulsating branches from the uniform approximation (62). We also give the graphs

in the limiting case k — oo (dotted curves). Notice that in this limit the cellular branch

intersects the vertical axis at X = -2; when k is finite, the vertical axis is an asymptote

for the cellular branch. To illustrate the effect of finite k, we computed both the

0(k~^-approximation (dashed curves) and the <9(K~2)-approximation (solid curves)

to the pulsating branches. Clearly, the approximation becomes better as k increases.
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