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1. Introduction. The displacement equation of equilibrium without body force in

the linear theory of homogeneous and isotropic elasticity in a region D is written as

V2u + y~I~2t<"V(V ■ u) = 0 (1)

where u is the displacement field and v denotes Poisson's ratio.

Papkovich [1] and Neuber [2] independently gave the general solution to (1) as

u = aB — V(x • B + <E>), (2)

where a denotes 4(1 - v) and B and <I> are harmonic, i.e.,

V2B = 0, V2<D = 0. (3)

The solution has been proved to be complete by Mindlin [3] and then by Gurtin [4]

for an infinite region with suitable decay behavior of u at infinity. A summary of the

development can be found in the book by Gurtin [5].

It was observed and unconvincingly proved by both Papkovich and Neuber that

any one of the above four harmonic functions can be omitted in the above equation

(2) without affecting its generality. The removal of some of the four harmonic func-

tions of (2) as such is known as the completeness problem of the Papkovich-Neuber

solution. This removal is of practical importance in the computation of the solutions

to particular problems as well as of theoretical interest. Eubanks and Sternberg [6]

gave the first correct proof that the function B3 can be omitted when the region'/) un-

der consideration is x3-convex, i.e., every line segment parallel to x3 joining any two

points of D lies totally in D. The proof for the omission of <1> was built up gradually

from the conjectural work of Slobodyansky [7] through SokolnikofFs [8] and finally to

the correct proof of Eubanks and Sternberg [6]. The completed version of the proof

by Eubanks and Sternberg showed that the function O can be omitted when a is a

noninteger and D is star-shaped with respect to the origin O, i.e., every line segment

joining any point of D to the origin O lies totally in D and the representation with-

out O is incomplete in this region D when a is an integer. Stippes [9] re-examined

the completeness problems using the boundary value theory of harmonic functions,

among those problems is the omission of <J> when the region D is interior to, exterior
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to, or between smooth, star-shaped surfaces (a surface is defined to be star-shaped

when its normal vector is never at a right angle to the radial vector). Stippes's work

on the omission of is based on the theory of Fredholm equations as given by the

book of Mikhlin [10]. Tran-Cong and Steven [11] gave a simplified proof to the same

completeness problem without O in regions star-shaped with respect to the origin or

infinity, using line integrals and the solution to a partial differential equation on a

spherical surface. For an interesting review of older literature, the readers are refered

to the introduction of the paper by Eubanks and Sternberg mentioned above.

It will be shown here that the Papkovich-Neuber solution is complete in terms

of three harmonic functions B\, Bi, and <J> in a region D which is x3-convex with

respect to a surface 5 where S can intersect more than once a line drawn parallel

to the x3-axis. (This is more general than Eubanks's and Sternberg's result which

requires that the region D can only be x3-convex.) For example, the region D can

be the space occupied by a helical spring. The results are obtained simply by the use

of curvilinear coordinates. The solution without is shown to be incomplete when

the region D is not x3-convex. It will also be shown, using the same technique, that

when a is a noninteger, the Papkovich-Neuber solution is complete in terms of three

harmonic functions Bu B2, and B^ in a region D which is radially convex with respect

to a surface 5". This is an extension of the technique used in [11]. The surface dD

of D here needs not be regular as in Stippes's method and some finite parts of it can

even be tangential to the radial lines while the surface 5 can intersect more than once

a radial line drawn from the origin. The new method is presented along an argument

parallel to that given for the omission of B3. For the case where 5 is a closed surface,

corresponding to the boundary of a star-shaped region, it gives a simpler route to

obtain Stippes's result for the case of a region bounded by two star-shaped surfaces

and the result for a region external to a star-shaped surface. For the case where 5

is not a closed surface, it gives a new result not considered previously. In this case,

the method inevitablly leads to an application of the Fredholm theorems. The result

is applicable to a number of geometries which are not star-shaped. For example, D

can be the region occupied by an elastic foil of finite size, oriented parallel to the

x3-axis having its cross section in the x'x2-plane being a logarithmic spiral based on

the origin O. The exceptional case with an integer value of a is also considered for a

region radially convex with respect to a surface S. The solution without O is shown to

be incomplete when the region D is not radially convex. Finally, a concise version of

Stippes's boundary value method using Fredholm's equations (such as given in [10]),

is represented for both cases of completeness without and without <J>, respectively,

and the method is re-examined. An inconsistency is found between the results of this

method and those of its preceding sections.

2. Completeness in terms of B\, B2, and <t>. The common notation of tensor calcu-

lus is adopted here as it allows us to change from one coordinate system to another

without having to redefine various quantities. The cartesian coordinates of the Eu-

clidean space are denoted by (x',x2,x3). A bar on top of a quantity denotes that
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same quantity as a function of the coordinate system (x',x2,x3), i.e.,

<y(x',x2,x3) =

The summation convention is used so that repeated indices in the same term denote

a sum over all allowed values of indices. Superscripts and subscripts are used for

contravariant and covariant variables, respectively. For example, x' is the component

of the contravariant vector x.

A region D is called x3-convex with respect to a surface S in it if every point of

D can be continuously projected along a line segment L in the x3 -direction to one,

and no more than one, point on S such that L lies totally in D.

We rewrite the solution (2) in indicial form as

wi=a£/-/-(5,x<+0) (4)
ax'

where B, is the zth component of the covariant vector B.

The necessary and sufficient condition for the omission of the harmonic function

#3 (Eubanks and Sternberg [6]) is that we have a solution if/ to the equations

= i?3 and V"V = 0. (5a, b)

The function 53 is to be replaced by the scalar function di/z/dx3 to give the same

displacement.

Here we generalise the result such that the surface S can intersect more than once

a line drawn parallel to the x3 axis. This is done by using a general curvilinear

coordinate system (x',x2,x3). We can form a coordinate system (x',x2,x3) such

that any point of D can be joined by a line of constant (x',x2) to the surface S. The

variable x3 is chosen to be x3 = x3, and the variables x1 and x2 are chosen such that

the metric tensor is given by

£11 §12

8=\li\ 822 ?23 I = I 0 m(x',xz) 0 1. (6)

.#31 8 32

The surface S comprises points of the form {x\xl,xi — /(3c1,x2)). The single

valued function /(x',x2) is of class C2+/?, /? > 0 in S, that is, its second derivatives

satisfy the Holder condition of order /? in the projection A of S onto the surface

x'x2.

We choose the function y7 to be

rJi
ty/(x',x2,x3) = Bidx3 + x{x\x2) (7)

Jf(x',x2)

where the twice differentiate function /(x',x2) is the function describing the surface

S in the coordinates (x',x2,x3) as mentioned above. Its Laplacian is given in the

curvilinear coordinate system (x',x2,x3) as

\,n ~~~ ((dets)1!2g'j~—~V
(detg)1/2 dx' \ dx>

d2W 1 ( d2 d2 \ _

(dx3)2 m(x',x2) Wax1)2 (dx2)2
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which gives

A V2(W - x) = V2-^3 (F ~x) = V253 - 0.
dx dx

Hence

d2 1 ( d2 d ~
H 7—\ TT I   TTT +

(dx3)2 m(x\x2) \(dx')2 (dx2)2

where h can be directly calculated to be

V2(^-*)

d2 1 f d2

(V-X) = h(x\x2) (8)

-f,f(x\x2) (idx3)2 m(xl,x2) I (dx1)2 (dx1)2 ) \ " \ dx3 J j3=J(x\x2)

; 2j4M?+2a/gj|+53
m(x ,x ) y <9x <9x <9x" <9x

\dx )xi=f m \ dx dx dx dx r ^'v ri J V-f

= -h(x\x2). (9)

For the function y7 to be harmonic, we need only to make x a solution to the

equation

1 ( d2 d2
,Ti , H 1— ■£(■* ,X' ) = h(x ,x ). (10)

m(x',x2) ^(dx1)2 (dx2)2) V ; V '

The function h(x\x2) satisfies the Holder condition of order /? due to our assump-

tion on the behavior of f(x\x2). The solution x is given by classical potential theory

for finite S as

X(y\y2) = I J J ln((x' - y' )2 + (x2 - y2)2)m(x',x2)h(x',x2) dx' dx2, (11)

and the completeness is proved.

By choosing x1 = (^) ln((jc 1 )2 + (x2)2), x2 = arctan(x'/x2), and / = /(x2), we

can form a helical surface S. The result is that the Papkovich-Neuber solution in

terms of B\, B2, 0 is complete for the region D occupied by an elastic helical coil

spring with its axis oriented along the X3 direction. This tricky geometry is one of

many others not covered by the results by Eubanks and Sternberg. (Their work also

did not pay attention to the requirement that the lower limit of the integral to define

their function H, which is equivalent to here, needs to be of class C2+/1.)

3. Incompleteness in terms of B\, Bi, and in regions not x3-convex. Consider a

region D inside the sphere centered on the origin O and of radius R > 3. This sphere

has a small spherical cut of radius e, centered on the point (x1 = 0, x2 = 0, x3 = 1).

Let the Papkovich-Neuber solution take the form

.. _*3 1 9 1
W| O.O. , f \ ~) , /..1 nivl/l a I X

((x1)2 + (x2)2 + (x3 - l)2)1/2 dx' \ ((x1 )2 + (x2)2 + (x3 - 1 )2)'/2

(12)



COMPLETENESS OF THE PAPK.OVICH-NEUBER SOLUTION 649

where Sf is the Kronecker delta function, then this solution cannot be represented in

terms of three harmonic functions B\, B2, and O.

We have a solution to (5) given as

Kx',x2,x3) ^ ((X1)2 + (X2)2 + (X3_ ^2y/2dx3+x(x\x2) (13)

which is harmonic for every point of distance less than unity from the plane xlx2.

This function y/ tends to infinity close to the semi-infinite straight line (x1 =0,

x2 = 0, x3 > 1).

Suppose that there is another harmonic function t] which is defined in D and

satisfies Eq. (5). This harmonic function r/ is bounded on the disc ((x1)2 + (x2)2 < 1,

x3 = 2). Equation (5) then gives

^(r,-v) = 0. (14)

This leads to the following equality inside the unit sphere centered on O

f/(x',x2,x3) = ^(x',x2,x3) + C(x',x2) (15)

where £ is defined and harmonic with respect to x1 and x2, in the circular disc

(x1)2 + (x2)2 < R2. Since the harmonic function on the right-hand side of Eq. (15)

is equal to the harmonic function r] inside the unit sphere centered on O, it must be

equal to this harmonic function rj in all of D, by continuation theorem (Kellog [12,

p. 259]). Therefore, the function t] is unbounded close to the semi-infinite straight

line (x1 = 0, x2 = 0, x3 > 1). This is contrary to our initial assumption on rj. The

incompleteness of the Papkovich-Neuber solution in a nonconvex region has been

proved.

4. Completeness in terms of B\, B2, and 53. A region D is called radially convex

with respect to a surface S in it if every point of D can be continuously projected

along a line segment L in the radial direction to one, and no more than one, point

on S such that L lies totally in D.

In this case we can form a coordinate system (x',x2,x3) from (x',x2,x3) such

that any point of D can be joined by a line of constant (x',x2) to the surface S

and x3 is chosen to be x3 = ((x1)2 + (x2)2 + (x3)2)1/2. Similar to the case of Sec.

2, the surface 5 comprises points of the form (x',x2,x3 = /(x',x2)) where the

single-valued function /(x',x2) is of class C2+^, /? > 0 in S.

Equation (4) can also be written in the coordinates (x',x2,x3) as

r\

Ui = aB, - — (53x3 + <J>) (16)
ox,

which simplifies our subsequent calculations.

The necessary and sufficient condition for the omission of the harmonic function

<1> when 0 ^ a ^ 2 is that [11] we have a solution if/ to the equations

af-x'^r = 4> and V2y/= 0. (17a,b)
ox'
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The vector function B to replace the scalar function V<t> to give the same displacement

is Vy/.

In the coordinate system (x',x2,x3), Eq. (17a) is written as

ay/ - J3— $ and V2^ = 0. (18a,b)
dx

By putting x' = x1, x2 - x2, and x3 = ln(x3) we have a simplified equation to

determine y/ as below
d — =3 =3=

— (yje-"x ) = -ae~nx <D

dx

which gives the solution y/ as

^3\— a   _ / /T^\ — 1 — - TT/-rrl -r?2 \y7(x )~" = —a _ (x )— Od~x 4- (x , x ) (19)
J f(x\x2)

where ^(x1,:*2) is an arbitrary function of only x1 and x2.

We have thus found a function y/ satisfying Eq. (18a). It remains only to prove

that we can select the function ^(x',x2) such that y/ is harmonic in the region D.

For the special case where /(x',x2) is equal to a constant c, i.e., 5 is on a spherical

surface, direct calculations [11] give

VV= -aV2 (x3)n^(x3r'- '<f>dx- + vi[(x3yz(*1,*2)]

= c*3)<
«—2) -a |(a + l)c "<J>(x',x2,c) + c "+l (

+ (a + 1 )ax + Vlx , (20)

which enables c to be set at convenient values to make y/ harmonic. For the general

case where /(x',x2) is not a constant, we note that

0 = V2<J> = V2 ( ay/ - x'g) = VV
dx

which gives, similarly to the previous calculations,

-^(v2^-'"3) = 0
dx

or

vv=-(i3rv,i2) (2i)
where /?(x',x2) is a function of x1 and x2. The function /?(x',x2) can also be directly

calculated as in Sec. 2 but it suffices to say that h(xl, x2) satisfies the Holder condition

of order /? due to our assumption on the property of /(x',x2). It is clear that y/ is

harmonic if we can make /(x',x2) a solution to the equation

V:x + a(a+\)x{x\x2) = h(x\x2) (22)
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where V2 denotes

V2 = ,2V2_ d f28

dr \ dr /

There are at least two methods of solving for the solution x of Eq. (22) which are

applicable to two different cases, as in the following.

4.1 Solution when S is the boundary of a star-shaped region. In this case, we

choose the contravariant variables x1 and x2 to be x1 = 8 = (x2/|x2|) x

Arccos(x'/((*')2 + {x2)2)yl2) and x2 = y = Arcsin(x3/((x')2 + (x2)2 4- (x3)2)1/2).

As S is a star-shaped boundary of a star-shaped region E, we have the function /

being single-valued for every given value of (x',x2). We limit this study to only the

case of a noninteger value of a. The following proof is valid only for a > -1, which

corresponds to v < f.

We define the following functions P„{x,y)

P_i(x,y) = 0 Po(x,y) = rj

and

ft(x,y) = ± t ±(-1 >vy ■ • ygx,,S-ax^ (23)
'1 = 1 '2=1 '-1=1

and construct the function £(x) by

/n r2n roo / i ["~ 1 \

Jo L vl*--y| ~ ? \y\~a~lh(9>y)COfiyd\y\dddy (24)

where [a-] denotes the largest signed integer number still less than a. We note that

the quantity inside the large parentheses of Eq. (24) is of order 0(|y|[a_]) as |y| tends

to infinity and is of order <9(|x|~["~l~2) as |x| tends to infinity. Therefore, we have

£(x) defined for all |x| ^ 0. The function £(x) is continuous at every point outside

the sphere except at infinity and satisfies

/7Z r2n rOO i
/ / t -\y\~"~[h(d,y)cosyd\y\d6 dy = {x3)~"'2h(d,y), (25)

-nJo Ji lx _ y|

and we also have

£(x) = (9(|x|-[™~'~2) as |x| —► oo. (26)

By virtue of Eq. (26), we can define a function /(x',x2) by

X{xl,x2) — lim
R—*oo In

l—J*t(xl,x2,x3)(x3rdx' (27)

which satisfies

V lx(xl, x2) + a(a + l)*(x',x2)

= h(xl,x2) - lim
R—*oo

1 ,^n+2dZ
(x3)a+2—+ a(a + l)(x3)a+l<^

In/? \ ' dx3
x'=\

(28)
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From Eq. (26), it is easy to see that the last term of Eq. (28) vanishes as R tends to

infinity, and x becomes a solution to Eq. (22). As a matter of interest, we can also

put a* = -a to prove that the proof also holds for a < - 1.

This result corresponds with Stippes's results regarding the region between two

star-shaped surfaces.

4.2 Solution using Fredholm's equation. If the function f(xl, x2) does not describe

the boundary of a star-shaped region E then the technique of the previous subsec-

tion does not work. This is caused by the use of the intermediate function £,(6,y).

Therefore, we need to use a technique employing only x1 and for the general case.

We introduce the variable r] - In |[l+tan(y/2)]/[l —tan(y/2)]| so that the Laplacian

operator becomes

(r2—) + (HL + ii") ,29)
r-dry dr] 4 rV" \d02 S-r, j

and Eq. (22) becomes

4e2'' - 4e2'' _ I d2 d2 \ _
(,e2r, + l) = + l\e2n + n) + ^^2 + (30)

As the surface S is finite in the plane (0, ri), we can define

W,n] = j js\me-t)2 + (rj-y2)2m\y2)dtdy2 (31)

to have Eq. (30) transformed into

f(x) + A J j^K{x,y)l{y)dyx dy2 = F{x) (32)

where

A = a(a+ 1) K(x,y) = —^—— !n((x' - y1)2 + (x2 - y2)2)

and

(e2x~ + 1 )2

A 2T2

F{x) =  A (x), (33)
(e2*2+\)2

which is an integral equation with a weak singularity and has the Fredholm theo-

rems applicable. For noncharacteristic values of A, it is solvable and the solution

is unique. But it is still a problem to determine the countable set of characteristic

values (with its only possible accumulation point at infinity). We will determine this

set of characteristic values by an indirect method.

We note that if S is only part of a closed star-shaped surface we can extend it to

have a closed star-shaped surface of the kind considered in the previous section and

then prove that (22) has a solution to whatever h(xl ,x2) e /? > 0 on S when a is

a noninteger. (Alternatively, we can also arrive at the same result by applying exactly

the method of the previous subsection to only the solid angle Q < 4n sustained

by S.) Therefore, a noninteger cannot be a characteristic value of the Fredholm

equation (32). On the other hand when a is an integer, the surface spherical harmonic

functions readily give the nontrivial solutions to the homogeneous equation (22).
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Therefore, when S is only part of a closed star-shaped surface, the set of characteristic

values of Eq. (32) are all values of the form X — (a + l)a where a is an integer.

When 51 is more than part of a closed star-shaped surface, it is obvious that the set

of characteristic values to Eq. (32) still contains the set of values X = (a+ 1 )a where a

is an integer. We will prove that it contains nothing else: Let a be a noninteger giving

a characteristic value of Eq. (32). The homogeneous equation (22) must then have

a nontrivial solution <*. There must be a surface Si in S which can be considered

part of a closed star-shaped surface on which £ is nontrivial. Therefore S\ has a

characteristic value X = (a + 1 )a where a is a noninteger. This is contrary to the

preceding result. Therefore we conclude that the equation (32) on a star-shaped

surface has all its characteristic values given by X = (a + 1 )a where a is an integer.

When the surface S intersects the x3-axis, Eq. (32) cannot be used to prove that

Eq. (22) is equivalent to a Fredholm equation since Eq. (30) ceases to apply to this

case. However, we still can prove that Eq. (22) with zero on the right-hand side has

a nontrivial solution when a is an integer, and Eq. (22) has a unique solution for an

arbitrarily given function h e on the right-hand side: We note that the spherical

surface harmonic of degree a is a solution to the homogeneous equation (22) when a

is an integer. When a has a noninteger value, we divide S into smaller parts s each

of which is in a quadrant limited by the three axes x1, x2, x3, does not intersect an

appropriately chosen straight line through the origin, and therefore corresponds to a

Fredholm equation which has a unique solution to any function h e CK It remains

only to prove that the solutions on each part of Sn are a continuation of the solution

on adjacent surfaces. Let two adjacent surfaces Sk and Sm have the solutions £k

and to a given function h e . We choose a part of S overlapping both Sk

and Sm. This surface SM also does not intersect an appropriately chosen straight line

through the origin, therefore has the equation (22) on it corresponding to a Fredholm

equation. Since £,k, £m, ^ are unique solutions on the three overlapping surfaces Sk,

Sm, SM, respectively, for a noninteger a, they are the continuation of each other.

Consequently, the Papkovich-Neuber solution in terms of three harmonic func-

tions Bi, B2, Bt> is complete when a is a noninteger and the region D is radially

convex with respect to a surface S described by /(x1 ,x2).

The result of this section is applicable to tricky geometries such as the case of an

elastic foil coiled into a logarithmic spiral shape given by (x1)2 + (x2)2 = exp(20)

where 6 is the angle from the x1 axis to the radial line, i.e., 8 = arctan(x2/x'). This

is covered by neither the results by Eubanks and Sternberg nor by those by Stippes.

4.3 Solution to (18) when a is an integer. When a is an integer and the region

D is star-shaped, the solution has been shown by Eubanks and Sternberg [6] to be

incomplete. (It is easy to see that the representation remains complete if <I> is only

limited to be a harmonic function of degree a.) Their conclusion was reconfirmed

by later studies ([9] and [11]).

When D is star-shaped with respect to infinity, i.e., every semi-infinite radial line

drawn from a point of D lies totally in D, and O is of order 0(|x|~') as x tends to

infinity then O can be omitted. This was proved in [11] by letting c of Eq. (20) tend
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to infinity and x be identically zero. To prove that the term

f d®\
dx} j _3

V JX~C

is of order 0(|x|~2) as x tends to infinity, we note that can be turned into the

Newtonian potential of a distribution in the star-shaped region. Therefore its radial

derivative has the required order of vanishing at infinity. Hence the Papkovich-

Neuber solution without C> is complete in a region D complement to a finite star-

shaped region, for integer as well as noninteger values of a. This is more general

than Stippes's result for a region external to a smooth star-shaped surface.

Finally, we consider the completeness for the finite, regular region D being the

region between two disjointed, closed star-shaped surfaces So and Si. The surface So

encloses Si which, in turn, encloses the origin O. As any potential inside D can be

turned into the Newtonian potential of the distribution of charges on So and Si, it can

be written as the sum of a potential Oo, due to the distribution on So, and <E>|, due to

that on Si. The harmonic functions <t>o and <J>| are defined on the star-shaped region

inside So and on the star-shaped region outside Si, respectively. Therefore we can

apply the preceding results for the omission of O to these two terms individually.

The requirement that So and Si are disjointed can also be relaxed to give a more

general result: The Papkovich-Neuber solution in a finite region D bounded by two

star-shaped surfaces is still complete when <t> is limited to be a harmonic function of

degree a. Again, the result is more general than Stippes's result for a region between

two smooth star-shaped surfaces.

5. Incompleteness in terms of B\, B2, and B3 in regions not radially-convex. We

use the same region D of Sec. 3, which is inside the sphere centered on the origin O

and of radius R > 3. This sphere has a small spherical cut of radius e, centered on

the point (x1 = 0, x2 = 0, x3 = 1). The Papkovich-Neuber solution of the form

U = "V (((X1)2 + (A'2)2 + (X3 - l)2)'/2) ' (34)

cannot be represented in terms of three harmonic functions B\, B2, and B}.

To prove the incompleteness, we form a solution to (16) as

rX} _

3\-ft _ / (rrrJ73 , "J/yly/(x ) " =-a (x ) 1 "<J>dx +x{x >x ) (35)
J 0

which is harmonic for every point of distance less than unity from the origin. This

function (// tends to infinity close to the semi-infinite straight line (x1 = 0, x2 =

0, x3 > 1). An analogous argument to that used in Sec. 3 then proves that the

representation is incomplete in terms of only three harmonic functions B\. Bi, and

j?3. (This incompleteness has been considered previously by this author in his Ph.D.

thesis, 1979.)

6. Completeness by boundary value method. With the preceding sections giving

an adequate insight into the nature of the completeness problem, we now examine
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a sophisticated but fairly general boundary method as pioneered by Stippes. The

results from this method are compared against those of the preceding sections.

We note that when y is a harmonic function satisfying

VV = 0 in D (36)

the following two functions

dy
-—=- and auz-x-Vw
a Xs

are also harmonic in D. Since the given function 53 and <J> of Sees. 2 and 4 are

harmonic, we only need to have

= Bt, on dD or ay/- x ■ Vi//= <t> on dD (37a,b)

respectively. The result is that

The Papkovich-Neuber solution is complete without 53 or <1> according to whether

or not we can find a harmonic function (//in D satisfying (36) and either (37a) or

(37b), respectively.

Following Stippes, we note that (37a,b) gives the potential y/ in D of a single layer

of charge density a on the surface dD, i.e.,

Wx)=/ (38)

The equations for the surface charge a are derived from Eqs. (37a) and (37b) as

27rer(x)e3 • n(x) + / I a(y) dS(y) = B3(x) (39a)
J Jod ix - yi

and

2^cr(x)x ■ n(x) + J J _ ]^3y|) CT(y) dS(y) = (39b)

respectively. They are singular Fredholm equations on two-dimensional surfaces,

according to Stippes (based on [10]), when e3 -n ^ 0 on all dD for (39a) and x-n(x) ^ 0

on all dD for (39b).

An elegant way to see whether Eqs. (39a,b) can have a solution for any arbitrarily

given harmonic function in the right-hand side is to examine their suitably cho-

sen conjugate equations. We first divide Eqs. (39a) and (39b) by (e3 n(x))1/2 and

(x n(x))1/2, respectively, and take their conjugates. The resulting equations are then

multiplied back by one of the above respective factors. The final equations are

27TT(x)e3 • n(x) + [ [ ^ r(y) dS(y) = 0 (40a)
J Jod ix ~ yi

and

2ttt(x)x ■ n(x) + J ypy] - T(y) dS(y) = °- (40b)

A moment of reflection shows that Eqs. (40a,b) are the equations at DD on the side

of C(D), where C(D) denotes the complement of D in the three-dimensional space,
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for the surface distribution t(x). For convenience, we shall call a surface which is

never tangential to the x3 direction of an x3 -facing surface.

The potential £ of this charge distribution r(x) on dD is continuous in the whole

space and satisfies

£(x) = f f r^KdS(y) and V2£ = 0 in C(dD),
J Jod ix - yi

(41)

where C(dD) denotes the complement of dD in the three-dimensional space, and

also one of the following equations

-^3=0 in C(D) or (a + 1 )£ + x • V£ = 0 in C{D) (42a,b)

respectively. These equations allow us to determine whether Eqs. (37a,b) are solvable.

To extend the theory to regular surfaces (defined by [12, p. 112]), which are ei-

ther x3-facing or star-shaped, we note firstly that the results of potential theories for

surface distributions of single charge layers are applicable when the distribution sat-

isfies the Holder condition of some order y on S, y > 0, and S is a regular surface

element. Therefore Eqs. (37) and (42) are applicable to regular surfaces except at the

edges. Secondly, we note that the theory of singular equations on a surface allows

the surface to be a regular surface, and this surface may be made up of unconnected

surfaces. Therefore Eqs. (39) and (40) are also applicable on regular surfaces. (The

discontinuity of the kernels only makes the distributions tr(x) and r(x) discontinuous

across the edges.) Neither of the above problems with the edges affects our appli-

cation of the method to the general case of a region D bounded by regular surfaces

which are either all x3-facing or all star-shaped.

We can now apply the method to the two situations examined previously.

6.1 Completeness without B3. Consider a finite, nonperiphractic region D, bounded

by a regular x3 -facing surface So- Its boundary dD = So is finite and the potential

£ must vanish at infinity. Putting £ = d^/dx3, we have f harmonic in C(D) and £

vanishes on dD and at infinity. Therefore, we must have £ identically zero in C{D),

giving

£(x) =p(xl,x2) in C(D),

where p is a function of only x1 and x2. Since £ vanishes as x3 tends to infinity, this

function p must be identically zero, i.e.,

£(x) = 0 in C(D).

As £(x) is continuous in the whole space, we have £(x) = 0 on both sides of dD. The

harmonicity of in D then gives

£(x) - 0 in D.

For this function £, we must have r(x) identically zero on dD. Hence, the Papkovich-

Neuber solution without Bi, is complete in this case.

Consider now the other case where D is the finite but periphractic region bounded

by two closed, x3-facing surfaces So and S\. The surfaces So and Si are the external

and internal boundaries of D. respectively. In this case, we have £ identically zero
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on the part of C(D) outside So but £ can be nontrivial inside So- Indeed, Si can

be the surface of an inner conductor with a distribution of charge t(x) while So can

be the inner surface of an infinite outer conductor with opposite total charge to give

a nontrivial solution t(x) to (40a). The Papkovich-Neuber solution without £3 is

incomplete in this case. This appears to be similar to the situation considered in Sec.

3.
6.2 Completeness without <I>. We consider here only the case of a finite regular

region D being the region between two disjointed closed, star-shaped, regular surfaces

So and Si. The surface So encloses the surface S, which, in turn, encloses the origin.

We further limit the study to the case of only noninteger values of a.

Since dD is finite, £ vanishes in the part of C(D) at infinity. By the argument

of Sec. 4 with a replaced by -(a + 1), £ must have the form y). To be

harmonic, £ must be identically zero outside a large sphere for noninteger values of

a. The analytic continuation theorem then extends the value of g to the boundary

dD of C{D).

Also by the argument of Sec. 4, £ must have the form r~(a+1)^(0, y). Therefore

£ must be identically zero on the part of C(D) inside Si. Since £ is zero on both

boundaries of D, £ must be identically zero in D. Therefore the solution t(x) to Eq.

(40b) must be trivial. This is Stippes's result.

6.3 Inconsistency with previous results. We note that the result here for the case of

incompleteness without By is different from that of Sec. 3. By the removal of only a

cylinder of radius e having as its centerline the line segment joining the two points

(x1 = 0, x2 = 0, x3 = 1) and (x1 = 3, x2 = 0, x3 = 1), from the region D of Sec. 3,

we have a nonperipractic region D\ which is not x3-convex. According to the results

here, the representation in D\ in terms of three harmonic functions is complete while

it should not be complete according to the result of Sec. 3: An inconsistency has been

arrived at!

This seems surprising as Fredholm's equations have been successfully used in solv-

ing the first (Dirichlet's) and second (Neumann's) boundary value problems of har-

monic functions. However, a comparison between Eqs. (39) and those of the first and

second boundary value problems shows that the kernels here have weak singularities

of order 2 while those of the first and second boundary value problems are of order

1 (due to the finite curvature of the boundary dD and also the orientation in the

normal direction of the derivative of the harmonic functions there). A study from

S. G. Mikhlin's book reveals that the proof for Fredholm's theorems in the book

is only applicable to singular equations whose kernels have singularities only of or-

der less than 2, when the integrals are over two-dimensional surfaces. Therefore,

Mikhlin's theory of Fredholm's equations is not, strictly speaking, applicable to the

reasoning past Eqs. (39).

7. Conclusions. The Papkovich-Neuber solution has been shown to be complete

in terms of three harmonic functions using the line integral methods as in Sec. 2

and 4. It is shown to be incomplete in Sec. 3 and 5. The convexity requirement in

this problem is with respect to a surface rather than with respect to a point. This

requirement on the convexity in the x3-direction and the radial direction is also an
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intrinsic property of the problem and not an artificial limitation caused by the use

of a particular method. The application of the boundary value method, as pioneered

by Stippes, to these completeness problems requires more than Mikhlin's version of

Fredholm's theorems. The main results of this work are summarized as

(1) The Papkovich-Neuber solution in terms of three harmonic functions B\, Bi,

and O is complete when the region D under consideration is x3-convex with respect

to a surface S described by (x',x2,x3 = x3 = /(x',x2)) where /(x',x2) e C2+/?,

/? > 0 in S, i.e., the second derivatives of /(x',x2) satisfy the Holder condition of

order /? at every point of S. S is assumed to be finite with respect to (x',x2).

(2) The solution in terms of three harmonic functions B\, B2, and is incomplete

when the region D under consideration is not x3-convex with respect to any surface

S described above.

(3) The equation

1 / d2 Of d
—=     4- cos V  COS V 

cos'? \ar-+ C0S7aV ))x + a(Q + ?) =

on a finite surface S with h{8, y) e C&, ft > 0 on S, has a unique solution when a

is a noninteger. When a is an integer, its homogeneous equation has a nontrivial

solution. When the surface S described by (x1 = 6, x2 = y, x3 = /(x',x2)) does

not intersect an appropriately chosen straight line through the origin of the space

(x',x2,x3) having (x1 = 6, x2 = y, x3 = ((x1)2 + (x2)2 + (x3)2)1/2) as its spherical

coordinates, this equation corresponds to a Fredholm equation.

(4) The solution in terms of three harmonic functions B\, Bi, and B3 is complete

when a is a noninteger and the region D under consideration is radially convex with

respect to a surface 5 described by (x',x2,x3 = /(x',x2)) where /(x',x2) € C2+/?

on 5 and (x',x2,x3) denotes the spherical coordinates.

(5) The solution in terms of three harmonic functions B,, Bt, and B3 is incomplete

when the region D under consideration is not radially convex with respect to any

surface S described above.

(6) When the region D under consideration is the exterior of a finite star-shaped

region, the solution in terms of B\, B2, and Bt, is complete whether a is an integer

or a noninteger.

(7) When the region D under consideration is finite and is either a region star-

shaped with respect to the origin or a region bounded by two star-shaped surfaces,

the solution remains complete when O is limited to being only a harmonic function

of degree a.
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