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Abstract. Groups of gravity waves of permanent form in deep water are investi-

gated. The analysis provides a systematic procedure for determining the form of the

group to any order of approximation, and a calculation is carried to the third order

of the amplitude at least and, where it matters, to the fourth order. Closed formulas

for the phase velocity c of the basic waves and the group velocity cg are obtained.

Inspection of the analytic procedure reveals that these formulas remain intact for all

subsequent calculations to any order of approximation. These formulas are in terms

of the group wavenumber e which, to the attained order of approximation, is found

to be proportional to the amplitude a and the square of the basic wavenumber k,

but is, for any assigned k, a power series in a. It is found that c increases and cg

decreases with e, in such a way that 2ccg = g/k, where g is the gravitational ac-

celeration. The results are compared with the corresponding ones obtained by the

cubic-Schrodinger-equation (CBE) approach, and wherever comparison is possible

there is agreement. The CBE approach, however, does not give the variation of cg

with the amplitude.

The collision of wave groups with different group velocities is also investigated, and

it is found that after the faster group has overtaken the slower one, both groups retain

their original forms, without any phase shift for either group. The interaction terms

eventually die down everywhere. When a group is reflected by a vertical boundary

normal to its velocity, then the reflected group is, in time, just the continuation of

its mirror image across the boundary, without any phase shift.

1. Introduction. The famous works of Cauchy (1815, cited in Lamb [9], pp. 17,

384) and Poisson (1816, cited in Lamb [9], p. 384) showed already early in the last

century that gravity waves created by a concentrated impulse travel in groups with

velocities dependent on their wavelengths, although in these works the wave groups

are not separate, especially at the beginning. Later, isolated gravity-wave groups were

observed by Russell (1844, cited in Lamb [9], p. 380). The first derivation of the

group velocity of dispersive waves was given by Stokes (1876, cited in Lamb [9],

p. 381), although Stokes' treatment necessarily involves infinitely many wave groups

one after another.
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In an effort to construct a single wave group by a linear theory, Yih [11] obtained

such a group of gravity waves in deep water, but as the free-surface pressure was

eliminated by successive approximations, it was found that some residue of pressure

always remained, and that residue finally becomes a concentrated force of oscillatory

magnitude. It was then thought that perhaps nonlinearity could provide the elimina-

tion of free-surface pressure present in the linear theory, and the present work was

begun.

As the work progressed, I became aware of the seminal papers of Benney and

Newell [3], Zakharov [12], and Benney and Roskes [4] on the evolution of wave

packets, and of the substantial papers treating water waves by Hasimoto and Ono [8],

Djordjevic and Redekopp [6, 7], and Ablowitz and Segur [1,2]. When the superficial

differences of the results of these latter authors are reconciled, and my results are

compared with theirs, there is general agreement wherever comparison is possible.

Since all these authors use the cubic Schrodinger equation, and that equation is based

on a third-order approximation only, they have not produced a determination of the

group velocity cg as a function of the amplitude. Comparison of results for cg is

therefore impossible.

As will be shown in this paper, two closed formulas give the phase velocity c and

group velocity cg as functions of the group wavenumber e, which in turn depends

on the amplitude of the waves, though not in closed form. The two closed formulas

remain intact at any higher order of approximation, as an inspection of the analytical

procedure reveals. These formulas show that c increases and cg decreases with e

(which in turn increases with the amplitude), and are the main contributions of this

paper. Detailed comparison of the present work with previous results based on the

cubic-Schrodinger-equation (CBE) approach will be made later.

One restriction of the CBE is that it applies only to a specific basic wavenum-

ber. A single equation for studying the interaction of wave groups of different basic

wavenumbers is not available. The approach used in this paper allows conclusions to

be drawn on the persistence of nonlinear wave groups of different basic wavenumbers

after interaction. This is another contribution of the present work that is of some

significance.

2. Formation of the differential system. Consider two-dimensional gravity waves in

deep water with an envelope that approaches the undisturbed free surface at infinity,

which is at y = 0. The line y - 0 is the x-axis, and the waves and their envelope are

supposed to propagate in the positive x-di recti on.

Irrotationality is assumed, so that a potential 4> exists, which satisfies the Laplace

equation

<t>xx + 4>yy =0. (1)

where subscripts x and y indicate partial differentiation. At the free surface,

y = l(x, t), (2)

with rj approaching zero as x approaches infinity. The kinematic condition at the

free surface is

1t + <l>x11x = <l>y, (3)
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and the dynamic condition there is

d>\ + d>2
</>, + gri + = o, (4)

where g is the magnitude of the gravitational acceleration, acting in the direction of

decreasing y. All the derivatives of (j) in (3) and (4) are evaluated at y = rj, and the

zero on the right-hand side of (4) is a consequence of the fact that tj = 0 = <f> at

x — oo. The last boundary condition is

<t> —► 0 as y —* -oo. (5)

The differential system consists of (1), (3), (4), and (5), and is exact.

But since all the derivatives of <f> in (3) and (4) are evaluated at y = rj, further

development of these conditions is necessary before a systematic calculation can

begin. One needs a combined free-surface condition in terms of </> alone, in which

all quantities are evaluated at y = 0 instead of y = rj.

3. The combined free-surface condition. Let (4) be written as

-g*1 = L<j> = 4>t + \{4>2x + <fr2y). (6)

This can be written as

-gr\ = L(f> + (L<t>)yr] + (L<p)yyr]2/2 + ■■■ , (7)

in which, and henceforth, the derivatives of are evaluated at y = 0. Iteration of (7)

gives

—gtf = L(p+ {L(j))y -I/l0 + (L0),Y-±L^}

+ jiV)}
+ \{L4>)yy

V--, (8)

where the quantity in the brackets is t] carried to the second iteration only. To the

third order in (j), (8) becomes

1  V

1 1

gt] — L(f> L(f){L(j))y + 2 (4't(t>ty)y
g 2 g2

\2i i | / ±2
= -L<t>-^[{L<t>)% + —2{tict>ty)y. (9)

One now multiplies (3) by g and writes the result in terms of derivatives of <f>

evaluated at y = 0, by expansions about that point. When this is done to the third
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order in the magnitude of 0, one has, with all derivatives evaluated at y = 0,

g (py + <j)yy{^ ^ L(f) + ^ (ft, (f) (j, ̂ ^4*] 0yyy

= - (L</>), + i |<M^)y +

+ {<t>x + 4>xytl) + 2^(^?)yx|

if <t>\ + </>i 1 It
= - (L0), + - j | - ^S<P]4>ty)yt

+ </>jc | — (L<l))x + 2~($)yxj + ~(frxy(pxti (10)

in which one appearance of rj is allowed in an intermediate step to show the route of

calculation. The first three terms on the right-hand side of (10), up to and including

the term containing the factor 1/(2g2), is rj,, and the terms that follow it represent

<\>x r\x evaluated at y = t].

Equation (10) will be written in the form

where

/i+/2 + /3 = 0, (11)

h = g<t>y + 4>tt. (12)

'<t>\ + <t>2'

(13)

f 4>x + <t> v\ l
h — - 4>t<Pyy + ̂  2 J ~ ~(<Pt<t>ty)t + 4>x<Ptx

= (<f>t<Px)x + {^X 2 ~ ^(<Pt<l>iy)t'

1 2 2 1 1 2
/3 = — 2'^yyi&x $y) ~4>t<t'ty<l)yy +

- 2~ {<t>t(<t>l + Vy)}^ + 2p(^?^)j" + \M<t>l<l>2y)x

1 2 1
— 2~<t,x{4>t)yx ~ —tpttfixy&xt

= \ {M4>1 + 4>))}x + J^(tf<fiyy)y ~ jjj {M<fc + ^

+ 2j2(tit'y)#-Jj{tx(tf)x}y

= \ {<t>x{<l>2x [(tf4>x)x + {M<P2x + $)}J

+ 2^2 ($<i>ty)yt- (14)
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In (13) and (14), (1) has been used whenever it is advantageous to replace <f>yy by

~<t>xx- With the /'s so defined, (11) is the free-surface condition on 0. It is empha-

sized here once again that all the derivatives of <j> appearing in (11) are evaluated at

y = 0.

4. The solution of the differential system. Since 4> must satisfy the Laplace equa-

tion, it will be assumed to be the real part of an analytic function of the complex

variable

z = x + iy,

and it is convenient to use the X and Y defined as

X = e(z-cgt), Y = k(z-ct), (15)

in which k and c are the wavenumber and phase velocity of the basic waves and e

and cg are those of their envelope, or of the group. The value of c in the linear theory

is

co = {g/k)l/2. (16)

Given k, the task is to determine c, cg, and e for an isolated wave group as functions

of the amplitude of the waves, which can be represented by the amplitude of the

potential function <j>, which will be denoted by 2a for convenience. Let

£2 = a2(a\ + c*2tf2 + a^a4 + • • ■), (17)

c2 = c02(l + /M2 + &e4 + ■■■)• (18)

2ccg = cl(\ + yie2 + }'2£4 + •■•)• (19)

The expansion (19) is for 2ccg rather than for cj because it affords a certain conve-

nience, as later developments will show.

Esthetics would demand, perhaps, that all quantities be made dimensionless. Yet,

as the free-surface boundary condition (11) indicates, the calculation will be long and

involved, and the dimensionless form of (11) may be quite burdensome. Keeping

things in their dimensional forms also provides a certain check on the calculation, for

when a mistake is made so that an equation becomes nonhomogeneous in dimension,

that mistake will be detected. Thus one is prepared to pay the price that all the as,

/?'s, and y's are dimensional, and have different dimensions when their numerical

subscripts vary. Expansions (18) and (19) are in e rather than a for a good reason

that will appear later. Indeed, one will arrive at two closed formulas in terms of e

for c2 and ccg.

The expansion for <f> is

(p - acj)\ + a2(f>2 + a3 fa H . (20)

in which (j>\, fa, etc. may themselves be sums involving coefficients containing powers

of e/a. These sums will not be exhibited now. As the calculations proceed, one will

obtain the various terms in each of </>i, fa, etc.

One starts by taking

fa =Se'if+ S*e~ir, (21)
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where the asterisks indicate complex conjugates, and

S = sech X. (22)

It is immediately clear that S has singularities at X = ±i(2n + \)n/2. Those corre-

sponding to the + sign are outside of the liquid. The remaining singularities can be

removed, as explained in Yih [11], This removal has negligible effect on the free-

surface condition if k/e is large compared with 1, as is the case for the phenomenon

under study here. Higher singularities created at higher approximations can be sim-

ilarly removed (Yih, [11]). At y = 0, (21) reduces to

<t>\ — 2S cos 7, (23)

where

S - sechJif, X = e(x-cgt), Y = k(x-ct), (24)

Using (21), one obtains, at y = 0,

I\(a<j)\) = a[l(gk-k2c2+e2cj)S cos Y-2e(g-2kccg)ST sin Y-4e2g2S3 cos 7]. (25)

When evaluating I2 and 73, it is time-saving to remember that when no differentiation

with respect to y is involved, one can use (23) directly and there is no need to invoke

(21), and when differentiations with respect to y are involved, it is time-saving to

replace <j>yy by -<j)xx whenever possible, for then one can again use (23) instead

of (21). Since the calculation for /2 and It, is lengthy, it will be presented in two

subsections, to improve clarity.

4.1. Calculation for I2. The following results for the various components of h{4>\)

can be readily verified, with the understanding that all the derivatives of <j>\ are

evaluated at y = 0:

= 2kcS sin Y + 2ecgST cos Y, (26)

0ijf — 2kS sin Y 2cST cos Y, (27)

in which

T = tanh X.

For the ^-derivative of 4>i, one has to use (21), and the result is

4>iy = -2eST sinY + 2kS cos Y, (28)

which is again evaluated at y — 0. The calculation of can now proceed in a

straightforward manner. Detailed results for the various terms in I2 will be given

here for the convenience of anyone wishing to check the present calculations. First,

<t>u<t>\x = -2[k2cS2{ \ - cos 2Y) + ek(c + cg)S2T sin 27 + c2cg(S2 - 5'4)(1 + cos 27)],

so that

{4>u4>\x)x = -4k*cS2 sin 27 + 4ek2cS2T - 4ek2(2c + cg)S2Tcos 27 + Th, (29)

where Th denotes higher-order terms given by

Th =4e2k(c+2cg)S2sm2Y-2E2k(3c+5cg)SAsm2Y+4e3cg(S2T-2S4T)(l+cos2Y).
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For the next group of terms in /2 one has

<t>2lx + K = 4s2[k2 + e2(l-S2)], (30)

so that

+ y) =4eCg(k2 + e2_2e2S2)S2T (31)

From (26) and (28) one has

Muy = 2k3c2S2(l - cosY) + 2ek2c(c + 2cg)S2Tsin2Y + 0(e2), (32)

so that

(<i>u<i>uy)t = -4^4c35,2sin27 + 4ek3c2cgS2T - 4ek3c2(c + 3cg)S2Tcos2y + 0(e2).

(33)
From (29), (31), and (33) one obtains

72(<M = 4 ek2cS2T + 0(e2),

or

I2{a<t> 1) = 4ea2k2cS2T + 0(e2a2). (34)

4.2. Annihilation of h{a<t> 1). One now seeks a function W so that (at y = 0)

(# ^ = -4ea2k2cS2T, (35)

with the higher-order terms in (34) neglected. It can be readily verified that

a2k2c
W = --

2.£C^
i(S2 - S*2) + —i-(S2T + St2f*)

&
(36)

g

from which one obtains, for y — 0,

Wt = 0(s2a2), Wx - 0{e2a2), Wyt = 0(e2a2), Wy = _4ea2k2°S2T.
§

The contribution of W to /2 is, when W is added to <p\ given by (21),

I2(a<t>i,W) = MuWx + cj>XxWt)x + {<PlxWx + hyWy)t - UfaWy + <h,yW,)t]
o

Qc/Tf3j^-4x>2

= {<hyWy)t + 0{eiai) =   —S3rsinr + 0(eV) (37)
S

if /2( W), being of higher order in a, is neglected at this stage of approximation. The

amount given by (37) will be added to h{a(f>\) to be calculated below.

4.3. Calculation of Is(a<f>i). Since the calculation is lengthy, it will be divided into

several portions.

We have

I3(a<j>l) = a3I3(<l> 1),

(38)= \
/i_I(/21+/22) +-I/3

o o
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in which

J\ = {4>U<fiX+<fiyj)x. (39)

7>1 = (<t>U<t>lx)xy, J22 = {<t>u{<t>\x + 01 y)} . (40)

Jl = {<t>\t<t>Uy)yt- (41)

From (27) and (30), one obtains

<^u(^ijc + 0?y) — — 8/c3»S3 sin 7 - 8eA:1SiTcos 7 + 0(e2),

so that

7! = -8/c4S3cos7 + 32eyt3.S3rsiny + 0(e2). (42)

For 721; one writes first of all

Ji\ = (H + K)x, (43)

where

H = 2<l>u<t>Uy<l>\x, K = 4>\t(t)\yX. (44)

From (32) and (27) one has, with O now meaning "terms containing",

H = -l2k4c2S3 sin Y - 8ek3c(c + cg)S3Tcos Y + 0(e2,ecos37, sin3y), (45)

in which the terms containing cos3y or sin 37 do not contribute at this stage of

approximation. From (28) one has

<t>ixy = -2k2S sin Y - 4ekST cos Y + 0(e2), (46)

and from this and (26) one obtains, with O used as in (45),

K = —6k4c2S3 sin Y — 4ek3c(c + cg)SiT cos Y + 0(e2, e cos 37, sin 37). (47)

When H is added to K, and the result substituted into (43), one has

J21 = - l&k5c2S3 cos y + 6sk4c(\\c + 2cg)S3T sin 7 + 0(e2, ecos 37, sin 37). (48)

In calculating J22, one notes first of all that differentiation with respect to y is

more troublesome, since it requires the form for <j>\ in terms of the complex variable

z. Therefore one seeks to replace 4>\yy by -<p\yy whenever possible, and writes

J22 = (M + N)„ (49)

M = <Plty(<t>2\x + 4>]y)■ N = 2(t)u{<t>\x(t>ixy ~ <t>ly<i>\xx)- (50)

From (30) and (32) one has

M = 8k4cS} sin 7 + 8ek\c + cg)S3T cos 7 + 0(e2).

From (27), (28), and (46),

<t>\x<t>\xy - <t>\y<t>\xx = 4k3S2 + 0(e2),

and this gives, with (26),

N = 16k4cS3 sin 7 + l6ek3cgS3Tcos 7 + 0(e2).
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With M and N so determined, (49) gives

J22 = — 13k5c2S3 cos Y + 8ek4c(l2cg + c)S3T sin Y + 0(e2). (51)

Adding (51) to (48), one has

J21 + J22 = -42k5c2S3 cos Y + 2ek3c(37c + 54cg)S3Tsin Y + 0{e2). (52)

For Jfirst write (again to substitute <f>\xx for <piyy)

h = {P~Q)t, (53)

where

P = 2 (t>u<t>\ty, Q = <t>ufatxx- (54)

From (28) one has

0ity — 4*\yt — 2k2cS sin Y + 2ek(c + cg)ST cos Y + 0(e2),

which gives, together with (32),

P — sin Y + 4ek*c2(2c + 3cg)T cos Y + 0(e2,ecos 3Y, sin3F). (55)

From (27) one obtains

4>ixxx = ~2k3cS sin Y - 2ek2(2c + cg)ST cos 7 + 0(e2),

and this, together with (26), gives

Q = -6k5c3S3sinY-2ek4c2(2c + 3cg)S3TcosY + 0{s2,ecos3Y,sin3Y). (56)

Substituting (55) and (56) into (53), one has, upon neglecting terms that do not

contribute at this stage of approximation,

y3 = -18fc6c45'3 cos Y + \2ek5c3(c + 6cg)S3T sin Y. (57)

Finally, substituting (42), (52), and (57) into (38), one has,

h(<t>i) = j - 8+ - 18^-^JS'cosY

+ek3 r _ fa(74c + i08c8) + ijgMa! j s,Tsin y

upon neglecting terms that do not contribute at this stage of approximation.

Since, from (18) and (19),

c2 = Cq + 0(a2) and cg = Co/2 + 0(a2),

(58) can be written

h{cf>i) = 8A:4»S3cos Y - 4Sek3S3Tsin Y, (59)

upon neglecting terms of higher orders.

Equations (37) and (59) give the result

I2(a<t>\, W) + h{a<j>x) = &a3k4S3 cos Y - 56ea3k3S3T sin Y, (60)

with higher-order terms neglected.

(58)
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5. Treatment of the residue. The residue in the free-surface boundary condition,

given by the sum of (25) and (60), is to be removed, and in the removal the variations

of c, cg, and e with the amplitude (for the velocity potential) a are to be determined.

The equation (11) must be satisfied for various powers of S and T multiplied to

cos Y or sin 7. But now (11) reduces to

I\{a4n) + I2{a(t>\,W) + h(a4>i) = 0, (61)

since hiafii) has been annihilated by the introduction of W (which, as will be seen,

constitutes part of <j>2). The last term in (60), which appears in (61), needs to be

annihilated. For this purpose one notes that

{8^y + = A^e~i9 + ieB(-ST2 + S3)e~i? - 6e2c2S3Te~i?, (62)

in which

A = gk - k2c2 + ec2, B-g-2kccg. (63)

To annihilate the last term in (60), which appears in (61), one adds the following

term to <f>:

Z = ~ S*T*e'9'). (64)

From (64), (62), and the complex conjugate form of (62), one has, upon taking

y = 0 on the right-hand side of the equation,

(g-i~+^)z = 56ea3kiS3TsinY-^a3k}STsinY+^-a3k\-2S+4S3)cosY.
\ ay dtl) 3ec| 3c|

(65)
Thus, as the last term in (60) is annihilated, other terms are created. Recalling (25),

one has, from (61),

2A - j^a2k3B = 0, (66)

-2eB - Y~ja2k3A = 0, (67)
3 ecg

-4 e2cl + 8 a2k4 + P,a2k3B = 0. (68)
* 3 cl

Equations (66) and (67) give, since they are obviously not linearly dependent,

A - 0 = B, or

k2c2 = gk + s.2c2, 2 kccg = g, (69)

and (68) gives then

e2 - (70)
cg

With higher-order terms neglected, this gives

2 8a2k* 8a2k5
6 =  2 = n ' (71)cl s
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Equations (69) and (71) are the main results sought. It is important now to ex-

amine just to what order of a the calculation has been carried out. Note that the last

term in (60) is of 0(a4), and the concern arises that it is retained while other terms

of 0(a4) are neglected. But a close examination of the entire analytical procedure

reveals that fourth-order terms can only arise from two sources:

(i) Equations (3) and (4), not accounted for in (11),

(ii) Other fourth-order terms in (11).

From source (i) one cannot obtain terms of 0(a4) that contain sin Y or cos Y as a

factor. From (ii) one can obtain terms of 0{a4) by differentiation of S or T with

respect to y, or 5 or T with respect to x or t, and, of course, also terms of fourth

or higher orders by iteration. But the only term of fourth order obtained in this way

that contains the factor sin Y or cos Y is the last term in (60). Since that term is

important in establishing the second equation in (69), one can say that, in effect, the

calculation has been carried to the fourth order in a, as far as the determinations

of c and cg are concerned. Indeed, the arguments in the following paragraph will

establish that (69) stands intact at any order of approximation.

Denote the differential operator on the left-hand side of (65) by Lq. A simple

calculation shows that

L0{S3fe~i9) = (A + 8e2c2g)S3fe'i? - 20e2c2gS5Te~i? + ieB(-3S3 + 4S5)e~i?,

(72)

L0{S3e~i?) = (A + 8e2cl)S3e~i? - 3ieBc2gS3fe~i? - \2e2c2gS5e~i?. (73)

Suppose one has a term (C real)

2CS5T sin Y

to annihilate in (17). Since this is equal to

iC(S3fe~'^ - S*3f*e~'^')y=0,

one can use (72), and add a term of the form (Cj is another real constant)

iC\(S5fe'* - S*sT*e'^')

to <f> to accomplish the purpose. But then one creates terms containing the factors

{iS3f,S3,Ss) e'9

and their complex conjugates. The term containing S3, and its complex conjugate,

go toward a higher-order approximation for e2, as a continuation of (68). The term

containing iS3T, and its complex conjugate, are removed by the process already

illustrated by (62) to (69), and would only possibly contribute to the determination

of e2. The terms containing S5 and (S*)5 can be annihilated by using (73). In that

process terms containing S3 and S3T and their complex conjugates will be created,

as has been shown. But these will only contribute to the further determination of

e2. Throughout the process of residue annihilation, the arguments leading from (66)

and (67) to (69) are unaffected. Now that one has shown (69) is valid for all orders
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of approximation, it is worthwhile to obtain c2 and cj explicitly in terms of e from

(69). The results are

1/21
C = T l + {l +(e/k)2} (74)

cl = T   172 • (75)
g 2 1 + {1 + (e/k)2}l/2

From (74) the /?'s in (18) can be readily determined if needed. As to (19), the second

equation in (69) shows that all y's are zero. An expansion of cj in a power series in

e can be readily obtained from (75) if needed. That cg decreases as e increases (or as

the amplitude increases) may seem strange, but this is not the first instance of such

a situation. See Whitham ([10], p. 526, formula for the group velocity V).

6. Results for fa. With W and Z determined by (36) and (64), respectively, the

02 in (20) is determined, and is

02 = (W + Z)/a2. (76)

7. The shape of the group. The shape of the wave group is given by rj, which

can be evaluated from (6) or (8). To calculate rj to 0{a3), one has to include terms

containing sin 3 Y and cos3F. This can be done but is lengthy. Here rj will be given

to 0(a2) only. For this purpose one notes that on y = 0 (36) gives

W = 0(a2e) = 0(a3),

and (64) gives

Z = -—-%a}k}ST sin Y. (77)
3 scg

To 0{a2) then, (9) and (32) give, upon use of (20), (21), (30), (36), (76), and (77),

28/7 ̂  c
—gtj = lakcoS sin Y + 2aecgST cos Y + 2a2k2S2 cos 2 Y H  —j—ST cos Y.

3 ecg

When c and cg are replaced by c0 and Co/2 respectively, and (16) and (71) are used,

one has

-gr] = lakcoS sin Y + ^aec^ST cos Y + la2k2S2 cos 2Y, (78)

in which e is given by (71).

The leading item of is (Fig. 1)

r] = —aS sin Y,

where
2akc0 2 a

a = = — (79)
g c0

is the amplitude of the group to O(a), and is related to e by

e = y/2k2a. (80)

Thus the group is shorter for a larger amplitude and for a shorter basic wavelength.
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Fig. 1. Sketch of the gravity-wave group

8. Comparison with previous results. For the study of dispersive-wave groups and

their stability, many previous investigators have derived the cubic Schrodinger equa-

tion (CBE). These are cited in the introduction of this paper. Among these, Hasimoto

and Ono [8] derived it for gravity waves in a liquid of constant depth, and Djordjevic

and Redekopp [6] and Ablowitz and Segur ([2], henceforth referred to as AS) derived

it for capillary-gravity waves in water of constant depth. In a later paper, Djordjevic

and Redekopp ([7], henceforth referred to as DR) derived it for gravity-capillary

waves in water of slowly varying depth. From the results of these authors, among

others, a CBE for gravity waves in water of infinite depth can be readily obtained.

The coefficients of the CBE vary with the authors, and it is useful to reconcile the

differences before comparing the results presented in this paper with their results.

The CBE obtained by Hasimoto and Ono [8] and that in AS, when capillary effects

are neglected and the water depth is infinite and after a sign error in the definition of

r in (AS, 2.22) is corrected, are the same, except that the former is in dimensional

and the latter is in dimensionless terms. The latter is (AS, p. 702)

iAr + AAg = v\A\2A, (81)

in which A is no longer the A defined by (63), and

A=-i, v = 2. (82)

The form of CBE obtained by Djordjevic and Redekopp ([6], [7]) is dimensional,

and when reduced to the case of gravity waves in water of infinite depth, is

iA$ + AAtt = v\A\2A, (83)

where
1 4 A:4

k = —, v = . 84)
g g

Ablowitz and Segur's r and £ correspond to £, and r in (83). The differences in the

values of A and v are the result of differences in the scaling schemes. If the £ in DR

is doubled and the r in DR is halved, as a close examination of the scaling schemes

used in AS and DR would suggest, the new X and v for the DR form would be

j _ 1 - 2k* (**\
8 g' V g

which then agree with (82), apart from the appearance of k and g in (85) as the

consequence of the fact that (83) is in dimensional terms.
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We then need to use only (81) and (82) for any purpose of comparison, keeping

in mind that these are dimensionless. The solution of (81) given in AS is (AS, 3.4)

which, after correction of an error, is

A = a|2A/i/|l/2 sech {«(£ - 2Afrr)} exp jib£ + iX(a2 - b2)t j , (86)

where

r = e2(gk)l/2t, £ = ek{x-^-t). (87)

In (AS, 3.4), the 2bz should be 2Xbx, as in (86). The solution (86) is valid only for

X/v < 0, as is the case here, In regard to notation, the cg in AS has been changed to

co/2 in (87). The symbols x, t, g, and k mean the same things in AS as here, but a

and e mean different things, and X, v, b, t, and £ are not used in this paper. The A in

AS is the dimensionless form of the A in AS. My a therefore corresponds to their Ae,

and my e to their ae. My a in (79) corresponds to their 2(2A/i/)'/2ae, the factor 2

being there because 2Amaxe is the amplitude of the dominant term in their 0. From

(80),
- « (88)
e Vlk2 V '

The k2 in this equation arises because dimensional quantities are used here. The

corresponding ratio in AS, from (AS, 3.4), is

2^maxC =2\2X/v\1'2. (89)
ae

Since this is dimensionless, one equates this to 1/V2 in (88), and thereby obtains

v — 2,

since A = -1/8. This agrees with (82).
In AS, the authors did not say what their a is. To arrive at the dependence of

c with amplitude, it is necessary to determine their a. This can be done from the

definition of e in (AS, 2.13a), which is

e - ka, (90)

where a is the dimensional amplitude of the surface displacement. It was denoted

by a in (AS, 2.13a). But since a is used in (AS, 3.4) to denote something else, I have

supplied the symbol a to avoid confusion. This a is then given by

a=^max, (91)

where the right-hand side is in AS notation, except the subscript. Comparing (90)

with (91), one has
A ~l-
^max — 2*

But from (86)

A - Usi max —

2y/2
Therefore

a = V2. (92)
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As Ablowitz and Segur said in AS, one may take b in (86) equal to zero without

loss in generality. Doing so, and combining (86) with the exponential factor assumed

in AS for the basic waves, one has

(93)

(94)

sech

2Aexpik(x - c$t) = sech ad; exp jx - Co^l + j •

which immediately shows that

c = c0(l + ^).

where, one emphasizes, e is in AS notation. On the other hand, (69) and (71) give,

to the order 0(e2) and in my notation,

c=c°(1 + ^)=Co(1 + ^r)- (95)

Since my a2k3/g is the A2^axe2 or e2/4 in AS, this formula is in agreement with (94).

In this connection note that for Stokesian waves

c = c»(n-^)= £0(1 + ^5). (96)

There is no reason to expect agreement between (95) and (96).

If b is assumed different from zero, a straightforward calculation shows that the

right-hand side of (93) becomes

afc'e jx-(c?)^l - exp ik' jx - c^(l + ^-)r} (97)

if terms of 0(e2) are dropped from the exponent and terms of <9(e4) are dropped

from the argument of the sech function. In (97),

k' = (1 + be)k, Cq = (g/k1)1'2 = 2(cg)'0.

To arrive at (97), one needs only to use the formulas obtained from the Taylor

expansion (on going from k' to k),

kc0 = k'c'0(\ - y + + 0(6'), (98)

Co = 3c^l - y + + 0(e3). (99)

It must not be argued from (97) that

4 = i-nr).
for the term of 0(e3) in the argument of the sech function in (97) would contribute

terms of 0(e4) in the calculation, since the A given by (86) is to be multiplied by e in

the AS analysis, and that analysis has been carried only to terms of 0(e3). Throwing

away terms of 0(e3) in the argument of the sech function in (97), one recovers the

right-hand side of (93), with k replaced by k' and the c0 and (cA,)o replaced by c'Q
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and (cg)'0. Thus the CBE approach used in AS and indeed by all previous authors

does not and cannot determine the effect of amplitude on cg. For that determination

one has to carry out the calculation to 0{s4), and that is what has been done in this

paper.

In summary, the CBE approach does not provide a result for the variation of the

group velocity with amplitude, for comparison with the result on cg in this paper.

Wherever comparisons are possible, e.g., in regard to the form of the wave envelope or

the dependence of c (phase velocity of the basic waves) on the amplitude, agreement

is found between the results of this paper and previous results obtained by the CBE

approach.

The wave group found here may be considered the result of instability of Stokesian

waves, as suggested by Hasimoto and Ono [8], who cited the computations of Chu

and Mei [5] and of others to support that suggestion.

9. Interaction of wave groups. Let there be two wave groups, denoted by the sub-

scripts 1 and 2, respectively, and let (with /' = 1 or 2)

Xi = e,(x - cglt - £,), Y, = kj(x - c,t - x,),

Sj = sech X,, Tj = tanh X,,

Xt = Sj(x + iy - Cgit - £,•), Sj = sech.Y,, etc.,

and let

Cg 1 ^ Cg2-

The and x, are mere phase indicators. For the two groups,

<t> = a\4>\ + a2<t>2+a^<J)l\ +<*\CI-2<t)\2 + a2cl)22+a\(t)\\\ +a\a2(t>l 12 + #1^2 <^122 + #2^222 ^ •

The terms with only 1 for indices are for the first group and those with only indices

2 are for the second group. All other terms are interaction terms. From the analysis

presented in the preceding sections, it is evident that 4>\ contains £1 and §*, and

4>2 contains S2 and S}- Nonlinear interaction will give rise to second-order terms

containing S1S2, SiS$, and their complex conjugates, in what has been called the

residue. These will be multiplied to exponential functions containing, among others,

the factor exp(k\ + k2)y, with positive k\ and ^2. Because of the presence of the

operator

d d2

0 ~ 8 dy + dt2

in 11 defined by (12), annihilation of these terms in the residue will call forth second-

order terms containing the same ^-factors to constitute <f> 12, and the process continues

as indicated in the analysis presented in the foregoing sections. When finally (11) is

satisfied at any order of approximation, one is left with three sets of terms: those

purely for the first group, those purely for the second group, and hybrid terms, for

4> or for the displacement tj. The hybrid terms contain both 5i (or its complex

conjugate), and S2 (or its complex conjugate), and possibly t\, T2 and their complex

conjugates as well. Thus in time they must vanish everywhere, because cg\ / cg2,

and where S\ is of order 1 the factor S2 will vanish as time increases, and vice versa.
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The conclusion is then that the two groups will interact and emerge intact, with not

even a shift of phase for either group after interaction, and that the interaction terms

eventually vanish everywhere. Recall that in the present analysis cg varies with both k

and e. Whatever k and e are, it is always the group with the greater cg that overtakes

the slower group. That is for overtaking. For head-on collision cgi can be equal to

Cg2-

I am aware that researchers using the CBE have asserted that collision of wave

groups leaves the group shapes intact but with "possible" phase shifts after collision.

But since the CBE applies only to wave groups with the same basic wavenumber k,

and the solution of the CBE for any wave group for a given k gives the same linear

group velocity for that k, there can be no overtaking in the first place. As to head-on

collision, the foregoing analysis seems to rule out any phase shifts of wave groups

after collision. Note that the arguments for no phase shifts given in this paper do not

apply to ordinary solitary waves, which definitely suffer phase shifts after collision.

Since normal reflection can be considered as equivalent in all physical aspects to

the head-on collision of two identical wave groups propagating in opposite directions,

one concludes that a gravity-wave group is reflected by a vertical boundary normal to

its path with no change of shape, no shift in phase, and no change of group velocity

when it is considered as a continuation of its mirror image after collision.

10. Conclusions. From the foregoing analysis one reaches the following conclu-

sions:

1. A procedure has been devised by which the permanent shape of a group of

gravity waves in deep water and the attending irrotational flow can be systematically

determined to any order of approximation.

2. The phase velocity c of the individual waves in any group and the group

velocity cg are determined by two closed formulas, (74) and (75), in terms of the

group wavenumber e. These formulas remain intact for all orders of approximation,

although e2 varies as a power series in a2 (starting with that power), where a is

proportional to the amplitude of the waves.

3. The phase velocity c increases with e and the group velocity cg decreases with e

in such a way that their product is constant. The increase of c with e is in agreement

with the corresponding result from the cubic-Schrodinger-equation approach. But

since that approach, being an analysis to the third order of the amplitude only, is

incapable of determining the dependence of the group velocity cg on the amplitude,

no comparison can be made with the CBE approach in regard to cg.

4. The group wavenumber e, given by (80), is proportional to the amplitude of

the surface displacement and to k2, k being the wavenumber of the basic waves.

5. Collision of groups of gravity waves leaves the groups intact, with not even any

phase shifts. In particular, a group approaching a vertical boundary normal to its

velocity of advance will be, after the transients have died out, just the continuation

of its mirror image across the boundary.
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