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I. Introduction. In a fixed rectangular coordinate system x, (i = 1,2,3), let the

stress-strain laws of the anisotropic elastic material be written as

0/i ~ Cijks(0)Uk,s• (1)

in which cr,; is the stress, uthe displacement, a comma stands for differentiation,

repeated indices imply summation, and C,^ are the elastic stiffnesses which depend

on the angle 8 in the cylindrical coordinates:

Xi = rcosd, X2 = rsind, x$ = z. (2)

As in the homogeneous materials, Cijks are assumed to have the symmetry property

Cijks ~ Cjjks = Cjjsk = Cfajj. (3)

We will consider two-dimensional deformations in which w, (i = 1,2, 3) and hence

aij are independent of x^. Two problems are studied here. In the first problem,

the infinite space is subject to a concentrated force and a straight line dislocation

at the origin r — 0. In the second problem, a wedge of wedge angle a occupying

the region 0 < 0 < a is subject to a concentrated force at the wedge apex r — 0

while the sides of the wedge are traction free. Both problems have been studied for

homogeneous anisotropic elastic materials (see [1-8], for example). In the case of

homogeneous materials, Stroh's complex formalism is invariably employed and the

final solutions can be expressed in real form for the displacement gradient u^ s. The

stress, however, is determined indirectly from (1). For the inhomogeneous material

considered here, Stroh's formalism does not apply. We will see in this paper that one

can derive the solutions in real form without introducing complex variables. The

derivations of course remain valid for homogeneous materials. The solutions for

displacement as well as for stress are all explicit and are surprisingly simple. We will

also see that differentiations of C;jfcs(0) with respect to 6 are not called for in the

derivations and therefore C;;fcs(0) need not be continuous in 6. This means that the

results obtained here apply to composite spaces which may consist of two half-spaces
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of different homogeneous anisotropic materials [9, 10] or, more generally, a finite

number of homogeneous anisotropic elastic wedges of different wedge angles [11],

In fact, the approach employed here was inspired by the form of solutions obtained

for composite spaces in [11]. Unlike the derivations in [11] which employ Stroh's

sophisticated complex formalism and several sum rules involving Stroh's eigenvalues

and eigenvectors, the derivations presented here are elementary and require no sum

rules.

Finally, it should be mentioned that the associated problem of angularly inhomo-

geneous isotropic elastic wedges has been investigated recently in [12].

2. Basic solutions. The equations of equilibrium are

dj.j = 0. (4)

For the problem under consideration, dimensional analyses show that the stress must

be proportional to r~l in order to balance the applied concentrated force. Let

dj = (5)

where r,7 depends on 6 only. Substituting into (4) and noticing that

rtj = rij, d,j = r~1 m,, mj:g = -njt (6)

where the vectors n and m are

n = (cos#, sin 6,0), m = (-sin 9, cos 0,0), (7)

we obtain

(tijmj)^ = 0. (8a)

Hence

tijirij = -8i> (8b)

where g is a constant vector.

The surface traction vector te on a radial plane 6 = constant is

(tg)i = Oijtrij = r~>TlJmJ = ~g,, (9a)

i.e.,

te = (9b)

Thus the surface traction tg is independent of 6, an interesting fact which was first

observed in [11].

For the displacement u, we assume that

u = --(lnr)h + (10)
71

where h is a constant and y depends on 8 only. With (10), (1) leads to

on - r~l |~^Cijksnshk + Cijksmsy/k, (11)
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which provides the expression for r,7 in (5). Substituting t,; in (8b) we obtain the

differential equation for y/(9),

~Cijksmjnshk + Cijksmjmsi//kie = ^git

or, in matrix notation,

-±RTh + iy.0 = ig. (12)
n 7i

The superscript T denotes the transpose and

Tjk(0) — Cij^mjms, |

Rik(d) = Cijksnjms, j> (13)

Qik(@) ~ CjjkstljM-s- J

The matrix Q did not appear in (12) but will be needed below. It should be pointed

out that T and Q are symmetric and, subject to positiveness of strain energy, positive

definite. We rewrite (12) as

r.« = ^{N2(0)g-N1(0)h}, (14)

in which , _
Nj(0) = —T-'RT, ]

N2(0) = T-'=NJ(0), \ (15)
N3(0) = RT-'RT - Q = Nj(0). J

We see that N2 and N3 are symmetric and N2 is positive definite. Again N3 did not

appear in (14) but will be needed later on. If we define

1 f0
S(0) = - / N^w)^,

nJ 0

H(0) = — / N2{o))dco,
nj 0

1 fe
L(0) = — / -N i(co)d(o,

n J 0

(16)

integration of (14) provides the function y/\

y/(0) — H(0)g — S(0)h + u0, (17)

where uo is an arbitrary constant. Noticing that uo represents a rigid body motion,

we may ignore u0 and the displacement given by (10) has the expression

o = --(lnr)h-S(0)h + H(0)g. (18)
Tt

which contains two arbitrary constants g and h.

The stress is best expressed in its cylindrical components. Since m, n, and (0,0,1)

are, respectively, the unit normal vector and the two unit tangential vectors to the

radial plane 0 = constant, we have by (9b),

1 1 1 /,<»aee = — m • g, % = -n-g, oei = —:&■ (19)
7ir nr Ttr

On the other hand, the surface traction tr on the surface r = constant is

(tr)j = Oijflj,
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which is, making use of (11), (13), (14), and (15),

tr = ^{N3(0)h-Nj(0)g}. (20a)

The stresses on the surface r = constant are given by

arr = ntr, ar0 = m-tr, crr3 = (tr)3. (20b)

It can be shown that ar0 obtained from (20a) and (206)2 is identical to aer obtained

from (19)2 if we use the identities [13]

N3(0)m(0) = O, Ni(0)m(0) = -n(0). (21)

Although identities (21) are proved in [13] for homogeneous materials, it is not

difficult to see from (15) and (13) that the identities hold here also.

We have thus obtained basic solutions for displacement and stress given by (18),

(19), and (20). The solutions are in real form and contain arbitrary constants g and

h which will be determined by the boundary conditions.

3. Infinite space subject to a force and a dislocation. Consider the infinite space

which is subject to a concentrated force f and a line dislocation with the Burgers

vector b at the origin. To balance the force f, we must have

f2 n

rtr(9) dd — f, (22)Io
or, using (20a) and (16)1,3,

ST(27r)g + L(27r)h = f. (23)

The difference in the displacements at 0 = 0 and 2n must be equal to the Burgers

vector b and we have from (18),

H(27T)g - S(27r)h = b. (24)

Elimination of h or g between (23) and (24) leads to

g = U~'{S(27r)L~1(27i)f+ b}, (25)

h = V-1{f-ST(27t)H-'(2^)b}, (26)

where
U = H(27r) + S(27r)L-'(27r)ST(27r), \

V = -L{2n) + Sr(2n)H-\2n)S(2n). J [ '

It is clear that H(0) defined in (16)2 is positive definite because the integrand

N2(<y) is the inverse of T according to (15)2 which is positive definite. Hence H_1

exists. As to L(0) of (16)3, we consider

yTL(0)y = ~ f yT{-N3(ft;)}yda, (28)
x Jo

where y is a 3 x 1 constant matrix. Following the proof in [14], it can be shown

that -N3(<y) is positive semi-definite and that the integrand in (28) is positive and

nonzero except possibly at two values of co for which the integrand vanishes. Hence

L(0) is positive definite and its inverse exists. With H(0) and L(0) being positive

definite, it is clear from (27) that U and V are positive definite. Consequently, U-1

and V-1 exist.
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4. Wedge subject to a concentrated force. We now consider the case of a wedge

of wedge angle a which occupies the region 0 < 0 < a. The wedge is subject to a

concentrated force f at the wedge apex r = 0 while the sides 6 = 0, a are traction

free. From (9b) we see that

g = 0, (29)

and use of (20a) with g = 0 in the following balance equation

leads to

or,

- I" rtr{d)dd = f,
Jo

L(a)h = f,

(30)

h = L"'(a)f. (31)

We see that surface traction te vanishes not only at 6 = 0, a, but on any radial plane

(see also [7, 11]).

5. Concluding remarks. With the constants g and h given by (25), (26) for the

infinite space and by (29), (31) for the wedge, (18) provides the solution for dis-

placement and (19), (20) the solution for stress. In the case of composite spaces

or wedges, T, R, Q defined in (13) are piecewise continuous in 6 and so are N,

(/' = 1,2, 3) of (15). This presents no problems in the integrals in (16) and the results

recover that obtained in [11].

The only stress component not presented here is 033 which can be determined from

(1) as

(T33 = CwijUij. (32)

To find the displacement gradient ultJ we obtain from (18), (6), and (16),

Uij = -^{hifij + (N\)ikhkmj - (N2)ikgkmj}• (33)

Letting GtJ = C'33^, we have

CT33 = _-i{nTGh + mTG[N1h-N2g]}. (34)

Addendum. Since the acceptance of this paper we have seen a note by Kirchner

[15] who studied the same problem presented here. As it should be the case, many

results obtained here agree with that in [15]. In particular, Eq. (9b) which shows

that the surface traction tg on any radial plane 6 = constant is independent of 6

was also observed by Kirchner. It should be pointed out however that the approach

used in [15] is quite different from that employed here. Specifically, Eq. (9b) derived

here made no use of the constitutive laws of the materials. Therefore, as long as at]

is proportional to r~\ te is independent of 6 regardless of whether the material is

isotropic or anisotropic, homogeneous or heterogeneous, elastic or inelastic, linear

or nonlinear. A similar phenomenon was observed for elastic wedges subject to a

concentrated couple [14].
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