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1. Introduction. The theory of plasticity oldest and best known to mathematicians

is the traditional rate-independent theory developed in the early part of this century

to model post-yield behavior of metals. Experimentalists, even in the early years of

the subject, did not regard this as a very precise model even for metals (cf. the dis-

cussion by Bell [1]). In order to introduce experimentally observed rate-dependent

behaviors, various models which include dissipative effects, among other corrections

to the traditional model, have been proposed (cf. Cristescu and Suliciu [2]). Cor-

respondingly, in order to make the analysis of rate-independent plasticity problems

more tractable, analysts have introduced viscosities into the balance equations in

various ways, in order to obtain solutions for the original equations by limiting argu-

ments (cf., for example, Duvaut and Lions [3]). Since the models of viscoplasticity

are experimentally more precise than rate-independent theories, and the resulting

balance equations are much more tractable mathematically than those correspond-

ing to the rate-independent theories it seems appropriate to utilize them in solving

boundary-value problems of plasticity. In particular, any argument regarding the

merits of viscoplastic versus rate-independent plastic models would be mollified by

the observation that, in the limit of vanishing "viscosity", not only do the consti-

tutive equations of viscoplasticity approach those of rate-independent theories (cf.,

e.g., Gurtin, Williams, and Suliciu [4]), but also the solutions of the correspond-

ing equations approach solutions of the equations for the rate-independent model.

In this paper we show, in the simplest possible geometry, that this is true for a

reasonably general model of viscoplasticity. In particular, we choose a viscoplas-

tic model in which a Maxwell-type viscosity forces return to the yield envelope,

while within this envelope a linear elastic law governs. The model also includes

work-hardening in a rather general form. We establish existence and uniqueness

for the initial-value problem for both the viscoplastic model and the corresponding

rate-independent model and demonstrate that the viscoplastic solutions approach
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(uniformly) the rate-independent solution. We believe that these results are all new

for materials with work-hardening.1

2. The elastic-plastic oscillator. We consider the case of a uniform bar with one

end fixed and a mass attached to the other end. This end is subject to a longitudi-

nal force f(t) at time t e [0, oo). We presume the mass of the bar to be negligible

so that it is reasonable that at each time t the stress a(t) and the strain e(t) are

uniform throughout the bar. Thus we have a situation which may be described as

"zero-dimensional", enabling us to study the response of the material by ordinary dif-

ferential equations. Such problems have been described in the literature as "dangling

spider problems" (eg., [6], [7]). The equation of motion for the mass in normalized

form is

v = f-t7, (1)

where v(t) is the velocity at time t. The equation

e = v (2)

then is dictated by kinematics. To complete the system of equations we need only

constitutive equations relating a and e. However, in order to include the effect of

work-hardening, we introduce another quantity, the hardening parameter k((). In our

model, the relation between stress and strain is linear in the elastic zone L(k, e) c R,

a = Ee for a e X(/c, e). (3)

Here E is a positive constant. We take the elastic zone X to be described as follows:

X(/c,e) = {o\ - Y(k) + E0e < a < Y(k) + E0e}. (4)

Here Y is a positive isotone function and E0 a positive constant. This model of the

elastic zone incorporates both isotropic work-hardening (increasing the yield value via

Y(k) as k increases) and kinematic work-hardening (the term linear in e introduces

an idealized Bauschinger effect). The behavior of the work-hardening parameter is

dictated by the requirement that k represent a non-recoverable energy, as we will

make precise below.

The behavior of a on the rest of the domain will depend upon whether the material

is taken to be rate-independent or not. For the classical rate-independent case, the

only further requirements upon a are that it stay in the closure of the elastic zone at

all times and follow an elastic curve when possible: whenever a = ±Y + E^e,

g = ±Y'{k)k + Eq£. if (a - E0e)e > 0,

a - Ee. if (<r - E0e)e < 0.2 ^

1 In fact, Owen's result in [5] of uniqueness for a rate-independent model applies as well to a model with

our slightly more general version of work-hardening, as we show in Sec. 5. Owen points out that the proof

of existence for a non-work-hardening rate-independent model by Buhite and Owen in [6] can be applied

to his model; the same is true for our rate-independent model. Although one obtains a slightly stronger

result by that method, the present method of approximation by viscoplastic solutions seems preferable to

us, as it is more elementary.

2In fact, it is clear that in general if (Ke) < 0 then either a is not defined or is zero. The existence

of transition points of this sort is one of the factors which makes analysis of rate-independent plasticity

awkward.
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If, on the other hand, the material is rate-dependent, specifically, viscoplastic,

then the stress a is allowed to travel outside the region cl(X) but is penalized by a

viscous restoring effect when it does. We suppose that the viscous term is linear in

the distance from a to <9£. Thus, if we define t to be

if a e I,
Y + E0e if a $ I, v '

we require

a = Ee - n[o - t], (7)

where n is a positive constant, the (Maxwell) viscosity. In (6) we have made use of

the function Y defined in the exterior of I by

f_( +Y(k) if a > 7(k) + E0e

\-y(/c) if cr < - Y(k) + E0e. [ >

We assume that the dynamic elastic modulus E is larger than the static elastic

modulus Eq:

Eq < E.

We also suppose that Y is of class C1 and so

Y' > 0.

Our definition of r ensures that it must obey the equations

t = Ee when a e I

( t = Y'(k)k + EqE if eY > 0 , ,v
{ ■ f-i . c -Cr ^ n when a €
( z = Ee if eY < 0

It is important to notice that the models are very closely related: formally, Equation

(7) reduces to Equation (5)2 whenever the viscosity n becomes infinite, for then the

equation ensures that a - r. We could subsume both models in one by adding to

the equations for the viscoplastic model the equation governing r: then we would

describe the rate-independent model by replacing the equation for a by the equation

a = x.

Finally, we introduce the equation for k. First, note that we may define the plastic

strain a(t) at time t to be the value of strain to which the current stress-strain point

would relax along an elastic curve (see Fig. I)3:

a =:E(e-a). (9)

Looking at Fig. 1, we observe, following Zyczkowski [8, Ch. I, §§8.7, 8.8], that the

unshaded area represents unrecoverable work; the (e, cr)-(e, 0)-(a, 0) triangle repre-

sents an elastic contribution corresponding to the modulus E; likewise, the shaded

triangle with side (0,0)-(a, 0) represents an elastic energy corresponding to the mod-

ulus E0. Note that the shaded area can be written as

, EqE 22 E 2{E-E0)a

3 In fact, even in the rate-independent case, a may not be accessible by a continuation of the process.
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<7

Fig. 1

since the stress value at the intersection of the two lower lines is E0Ea/{E - E0).

Now, we may use the definition of a to write the local rate of working as

1
<76 = O

E

d_
dt

a2
+ a a.

_2E

Returning to Fig. 1, we see that a can be expressed as

cr = E(e - a) = (cr - r) + Y + EqE,

so that

(E - Eo)e = (cr - r) + Y + Ea,

and finally we obtain

Hence we find

d
ae — ~r

dt
a2 EE0a2

+ E^E^-^ + Ehfji'-12E 21E - Ra)\

observing that whenever cr / t, Ea = n(a - r). Thus, having isolated a viscous

dissipation term, we generalize the corresponding computation of Zyczkowski to

rate-dependent plasticity by defining the work-hardening rate to be:

(10)
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for both the rate-independent and the viscoplastic models. Finally,

d
<76 — —r-

dt
a2 ^ EEoa2

^ {a-T )2 + k. (11)
E-E0

^ ^ J\p. — (jj I / J7   J?-\ A+V»fliniMt>a (12)

2 E 2(E-E0).

Thus we have introduced the final variable, k. The equation governing its evolution

is
if a G X

a] Y/(E - E0) otherwise.

Note that (11) suggests the identification of the function ^ defined by

<7 2 EEoa2
v{„,e.K) = - + w-m+K

as a free-energy for the system, since it satisfies

ot-xj/ = E^E^a ~ T)2 ̂  °-

Remarks. The constitutive equation which we introduce specializes to classical

forms as follows.

a) When Eq = 0 and Y{k) = Yq for all k, the viscoplastic model is the model of

Sokolovsky, and the rate-independent model is the classical elastic-perfectly plastic

model.

b) When E0 - 0 and Y'(k) > 0, the model is that of isotropic work-hardening; cf.

[5],
c) When 0 < E0 < E and Y(k) = Y0 for all k, the model represents a model with

kinematic work-hardening or an "idealized Bauschinger effect".

For a more detailed discussion of these models, see [2] for the viscoplastic case

and [8] for the rate-independent case.

3. The systems of differential equations. Let / e Li[0, oo) be given. We consider

systems of equations for the functions

V, O, E, K,

which shall represent the solutions for the viscoplastic case, and for

^oo > <?oo' ®°°' '

which represent the solutions for the rate-independent case. The equations intro-

duced in the previous section can be put into standard form by removing all rate

terms from the right-hand sides. For the rate-independent case we obtain

^OO — f ~ &oo <

£(X> = ^oo >

<7<x> Ev oo, 1

*oc = 0, J
whenever e Z,

while
E0(E - E0) + EYY'

®oo - E - E + YY' ^°°' 00 0^oo)^oo ^ o,

= Ev oo» if (CToo E0e oo)Voo —
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and

(E - En)Y
^OO = J} ' W/ ^°°' (®oo EqE00)V00 > 0,

£,—£,0+11'

Kqq — 0, if {(Too EqCoo^Voo ~

whenever Ooo e dl,.

For the viscoplastic case, we have

v = f - a,
t = v,

a = Ev, 1
k — 0, > whenever a e X,

r = (7, J
and

d = Ee - /z[cr - t],

K = e^1" ~ z)~ whenever a £ X.

t = Y + E0e,

To simplify the notation in these equations we introduce the following function:

E if a € X or (<r - £'oe)i> < 0,

Eo otherwise.

Using this, we present the equations in final form. First, for the rate-independent

case,
Vqo = f ~ CToo >

E°( ^ Ja,e,K,v) = I

Coo = v,oo — ^oo>

E°(E-Eo) + EYY'^
CT°° ~ E - E0 + YY' V°

... _ (E-E°)Y
Vqc

a.e„ (13)

E-Eo + YY'
with the initial conditions

foo(0) = Vo,

£oo(0) = £()>

CToo(0) = (70.

Koo(0) = /C0,

which obey

(To e cll(£0,/c0), (14)

constitute the initial-value problem RIP.

For the viscoplastic case, the equations compress in a similar fashion if we note

that cr = r in X:
v = f - a,

e = v,

-[a - Ee] = -[a -x\,

-k = Y[o - t]/{E - Eo)

a.e. (15)
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These, with the same initial conditions, constitute the initial-value problem VPP.

Our objective is to demonstrate the existence and uniqueness of solutions to both

problems and to show that solutions to VPP converge to solutions of RIP.

4. Energy identity and a priori estimates. We call the combination

v2 a2 EEoa2
e~T + 2E + 2(E° -E0)+K ( *

the total energy of the system for either RIP or VPP; here, as throughout this section,

we drop the sub-oo notation for solutions of the former.

Lemma 4.1. Every solution of RIP or VPP satisfies

e = fv - n(cr - t)2/(E - Eq) a.e. in [0, oo).

Proof. From the equations for v and e we have

1 . EEoaa
e = vv + —oo + -—— + k

b — £j 0

. 1 EEoaa
= fv-eo + -oo + E £r + k,

and the computations leading to the definition of k reduce this to

e = fv - n{o - x)2/(E - E0),

as stated. □

Next, the energy can be used to establish some estimates for the magnitude of the

solutions to either system.

Lemma 4.2. For any solution of RIP or VPP, for all t e [0, oo),

VW)<\fm + -^j\f\-

Proof From the previous lemma we have

e <fv < |/| M = \f\Vv2 < \f\V2e-

Thus,

m < -Li/,
and the result follows. □

This implies that solutions of either system are bounded. First, each of o, v, and

a is bounded by a constant times the root of the energy e, while k is bounded by

e. Of course, since the bound is expressible in terms of the initial values and the

constants, fi excepted, of the problem, the bound is the same for both problems and

is uniform in t and in /1. Since e = a + o/E, e is bounded; since Y is smooth, Y(k)

is bounded, and thus so is t.

The evolution equations allow us to make estimates now for the derivatives of the

various quantities. Since e = v and |d| < E\v\, both of these are bounded. For RIP
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we observe that it follows, since YY' is positive, that k is bounded. For VPP, we

need further estimates. First, we find an estimate for a - r. Note that

i = YY'n\a - t|/(£ - £0) + E°e,

using the definition of Y, and

a = Ee - n{o - t)

so that

{a - r)' = (E - E°)e - £YY (a - r) - fi{a - r).
b — £,0

Then we find

|<7 - t|" <{E- - n\o - t|,

which leads, by the usual calculation, to

\o - t|(0 < ^-{E - £'o)(sup |e|)(l - e~^). (17)

Now applying this to (15) shows that

k <Y sup(|f |),

and

\a - t|" < (E - Eq) sup(|v|).

Of course, unless / is bounded, we do not have a corresponding estimate for v.

We summarize the principal bounds in

Proposition 4.3. Given any solutions of RIP and VPP, all of

V, (J, 6, K, T, (7,£, t, K, Vqq , Oqq , fioo > ̂ oo» ^oo > &oo > ̂ oo

are bounded on [0, oo), uniformly with respect to t and ju. If, in addition, / is

bounded, then v and Voo are bounded uniformly in t and fi.

To verify the role of r as a rate-independent version of a we can easily see from

(17) that as n —» oo the two coincide.

Proposition 4.4. For solutions of VPP

lim (ct — t) = 0
oo

uniformly in t.

5. Uniqueness of solutions to RIP. We note that there exist unique solutions to

problem VPP; this is easy to show based on the smoothness of the right-hand side of

the corresponding equations and the energy estimates. The problem for RIP is more

difficult: in the next section we shall establish existence for this problem by examining

the limiting case of the viscoplastic problem, but first we establish uniqueness for

RIP. A simple calculation shows that this problem is not easily amenable to energy

arguments; in fact, the energy does decrease, but one must have recourse to careful

interval-by-interval examination of the energy change (cf. [5] for details). In [5]

Owen has established such a result for a version of RIP with Eq — 0; we now show
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that his argument may be applied in our case. Owen proceeds by showing that the

problem can be re-expressed as a problem in which the elastic zone is expressed as

S~ (a) < a < £+(0:)

with S± having certain properties. Let us identify the function S+ for our situation:

since
. EY(k) .
K ~ T7 r a>

E -E0

so long as a > 0 we may solve for a as a function of k. The relation is invertible and

we obtain

K = K(a).

Then since e - a + a/E, when a edl,

a - Y + E0(a + a/E)

and

This means that

and

S+(a) :~[y(A:(a)) + £o4

s+ = irhrE - En

E YY' + E0

E-E0

S-TE^Y[Y'1 + Yr,)-

A similar computation applies to the alternative a = S~(a) and we can now apply

the result of Owen. For convenience in describing the geometry of the situation, let

us divide cl I into "positive" and "negative" parts:

-^^a<o <S+{a),
b — Jb o

rr

a € m o S.(a) < a < -—|ra.
E - E0

The linear bound represents the straight line through the origin and of slope E0 in

the (a, e)-plane, and replaces the bound of 0 in Owen's model, in which Eq = 0.

Proposition 5.1. Suppose that Ya + YY" < 0. Any solution of problem RIP during

each part of the motion in which a e ^ also solves the equations:

v = / -a,
' (n,\

-v if(T = 5,+ (a) and v > 0
ES'+{a)

a = l E + S'+{a)
I Ev otherwise, (18)

E
-v if a = S+(a) and v > 0

E + S'+(a)
0 otherwise.
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The first derivative of S+ is positive-valued, while its second derivative is negative-

valued. During each part of the motion in which a 6 91 the solutions of RIP also

solve

v = / - a,

ESL(a)

a = { E + S'_(a)
Ev otherwise,

E

v if a = S- (a) and v < 0

otherwise,

v ifa = 5'_(Q) and v < 0
a = { E + S'_{a)

0 otherwise.

The first and second derivatives of £_ are positive-valued.

It now is easy to see that the computations in [5] apply to this variation of the

problem; the only difference between the two formulations lies in the description of

the sets and 91 and in the fact that our S+ is not always positive nor S- always

negative. However, it is easy to see that the arguments of [5] are unchanged by these

differences. To correspond with Owen's nomenclature let us note that it suffices to

consider only the solution in and describe the set of equations (18) together with

the conditions

a(0) = (T0. v(0) = v0, a(0) = q0

(Ko = K(ao)) as the auxiliary problem.

Theorem 5.2 (Owen). For each (v0,<7o.Ko) which satisfy (14) and each solution of

RIP on a given interval [0, T] there exists Ta e (0, T] such that the restriction of the

functions v and a to [0, Ta] together with the function a: [0, Ta] —► R defined by

a(t) := <*o + [ (v - a/E) W € [0, Ta]
Jo

form a solution of the auxiliary problem. Moreover, distinct solutions of RIP yield

distinct solutions of the auxiliary problem. Solutions of the auxiliary problem are

unique and hence solutions of RIP are unique.

6. Existence, approach of VPP solutions to RIP solutions. Because the right-hand

sides of the equations VPP are all locally Lipschitzian functions of their arguments,

and because of our energy estimate, this system can easily be shown to have a unique

solution. We collect our assumptions and formalize the result in the following.

Proposition 6.1. Let Y be C1, Y' > 0, E > E0 > 0, and suppose that / € L'[0, oo).

Then for each /i € [0, oo) there exists a unique solution in AC[0, oo) to VPP.

For the following discussion, we will also require that / is bounded. For each value

of fi the set of solutions to VPP are Lipschitzian uniformly in /*. It follows that for

any choice of T e (0, oo) we can select a sequence of solutions {{a„, e„, vn, Kn)\n € N)

with viscosity —► oo which converge uniformly on [0, T] to a set (a, x, e, v, k)

of absolutely continuous functions. Moreover, since the derivatives are uniformly

bounded, it follows that (&n,in,e„,vn,kn) (a,x,e,v,k), i.e., that the derivatives
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approach the derivatives of the limiting functions weakly in L'[0, T). Of course,

since e„ = vn, the convergence of en to e is uniform and hence

e = v.

Finally, note that we have established in Proposition 4.4 that

lim \a„ - t„\ = 0

(uniformly) and hence it is true that xn -* a and z„ -- a.

Now we wish to establish that the limiting functions are solutions to RIP. First,

since a is the limit of t„, it is clear that

\a-Eoe\ < Y(k).

Now, since

Vn ~ Vm = On — Om,

it is clear that vn approaches v in L'[0, T] and hence pointwise a.e. so that

v = f - a, a.e.

Now we define the elastic zone I for [a, z, e, v, k) as usual and consider a time to

at which a € X. Since

|a(/0) — £be('o)l < |y(f('o))|.

it follows that for all sufficiently large n the same equation holds for an, en, and k„.

Thus we have for all t in some neighborhood of to,

&„{t) = Ee„(t),

K„(t) = 0.

Then it is clear that

cr(t0) = Ee(t0),

fc(t0) = 0.

Finally, let us define

l = {r|<r(0 = W0) + ̂ be(0}-

This set is closed. Since the collection of isolated points of the set is of measure zero,

we need not be concerned with the derivatives of a and k there. On the other hand,

at an accumulation point t of T, there is by definition a sequence of points of T which

approach t. At each value tm in the sequence we have a{tm) = Eoe(tm) + Y(K(tm))

and hence

<7(0 = E0e{t) + Y'(K(t))k{t).

Finally we consider that since Kn —> k uniformly and kn k,

Y(k„)

E-E0

while the former also has weak limit

Y(k)

(.Ee„ - cr„) — k,

E-E^Ei-")-
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so we can conclude that almost everywhere

which means, of course, that k satisfies the required equations.

Thus we have a set of solutions on [0, T] to the problem RIP, obtained as a limit

of a sequence of solutions of the viscoplastic problem. However, it follows from the

uniqueness for RIP that in fact

lim (<r„, e„, Vu, Ku) - (a.e.v.K).
//—► OO

We summarize in

Theorem 6.2. Suppose that Y is of class C2, that Y' > 0, Y'2 + YY" < 0, that

/ € Li[0, oo) is bounded, and that E > Eq. Then there exists a unique solution to

the problem RIP, and it is the uniform limit on any bounded interval of the solution

to VPP as n goes to infinity.
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Note added in proof. K. Wang of Carnegie Mellon has pointed out to us that

the assumption made in Sec. 6 and reiterated in Theorem 6.2, that / is bounded,

is not necessary. A straightforward argument based on the integrability of /, the

convergence properties of (a„) and the balance equations shows that v exists as a

uniform limit of (v„); since vn —* v (strongly), of course vn — v.
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