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Resume. Nous etudions une membrane vibrante avec une distribution de densite

dependant d'un petit parametre e, qui converge, lorsque e \ 0, vers une densite

uniforme plus une masse ponctuelle a l'origine. Nous mettons en evidence l'existence

de vibrations locales, au voisinage de l'origine, et globales de la membrane. L'etude

asymptotique lorsque e \ 0 est effectuee a 1'aide de la methode des developpements

asymptotiques raccordes.

Abstract. We study a vibrating membrane with a distribution of density depending

on e, which converges, as e \ 0, to a uniform density, plus a point mass at the origin.

We establish local vibrations at the vicinity of the origin and global vibrations of the

membrane. The asymptotic study for e \ 0 is performed using the method of

matched asymptotic expansions.

1. Introduction. We consider vibrating systems containing a small region, of diam-

eter O(e), including the origin, where the density is very much higher than elsewhere.

Quite different cases arise depending on the space dimension N and the order of

magnitude of the ratio e~m of densities. Many studies are devoted to this problem of

concentrated masses: E. Sanchez-Palencia [1], E. Sanchez-Palencia and H. Tchatat

[2], H. Tchatat [3], O. A. Oleinik [4],

In this paper we study the case N = 2 (i.e., the vibrating membrane) with m >2.

Using the method of matched asymptotic expansions (see for instance [5] and [6]),

we derive the structure of the eigenfunctions, which is not given by other methods.

It appears that there are two kinds of eigenvibration:

The local vibrations for which the corresponding eigenfunctions are of order 0(1)

only in a region near the concentrated mass (i.e., for |x| = 0(e)) while elsewhere (i.e.,

for |jc| = 0(1), x / 0) they are very small, of order 0(1/ Loge). The corresponding

eigenvalues are small, of order sm~2 for m > 2, and of order 0(1) for m - 2;

The global vibrations for which the corresponding eigenfunctions are of order 0( 1)

for x = 0(1), x ± 0, and become very small, of order 0( 1/Loge), in the vicinity
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of the inclusion (i.e., for |x| = 0(e)). It may be said that these vibrations leave the

concentrated mass almost at rest. The corresponding eigenvalues are 0(1).

We establish in Section 5 the existence of eigenvalues of order em~2 (corresponding

to the local vibration) in the case m > 2.

2. Statement of the problem and first considerations about local vibrations. Let Q

be a bounded open domain of R2 with coordinates x\, *2. Denoting by e the small

positive parameter, let D be a bounded connected domain, with boundary T, of the

auxiliary space R2 with coordinates y\, y2. In the Xj, X2 space, we then consider the

domain eD, homothetic of D with ratio e. We suppose that both Q and D contain

the origin as shown in Figure 1.

Fig. 1

We consider in £2 the eigenvalue problem:

-Axue = Xep£{x)ue inQ, (2.1)

«£ = 0 on d£i, (2.2)

where

e/ \ fe m for x € eD,

"M={| for xen\eD. ^

for some m > 2.

We note that the local concentrated mass is asymptotically very large with respect

to the total mass of the membrane.
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It will prove useful to write down the problem separately in each one of two

regions:

-Axue = Ase~mue in eD, (2.4)

-A xu£ = Xeu* inO\£ D, (2.5)

llwl = 0,
due

= 0 on ef, (2.6)

M = 0, = 0 on T, (2.11)

dn

ue - 0 on dQ, (2.7)

where the transmission conditions (2.6) are associated with the Laplacian and the

brackets denote the jump of the enclosed quantities.

Applying in (2.4)-(2.7) the dilatation y = x\e and defining the new spectral pa-

rameter
He = 62_mA£, (2.8)

we obtain:

-Ayue = fiEuE in D, (2.9)

-Ayue = nesnue in e-'QYD, (2.10)

T duc

dn

u£ = 0 on 9(r'ii). (2.12)

Now, if we formally pass to the limit £ \ 0, we obtain a limiting problem of the

form:

-Ayu = nu in D, (2.13)

-Ayu — 0 in R2\Z), (2.14)

du'

dn

to which we shall append the condition at infinity (2.18), in order to get a well-posed

problem.

In writing this limiting system, we suppose that jue tends to a limit of order 0(1);

for the time being, we assume this, postponing the proof until later (Sec. 5).

We first solve our problem in R2\D. Let <p be a given function in Hl/2(Y). It is

well known [7] that the problem

—AyU = 0 in R2\D, (2.16)

u - (p on T (2.17)

is well-posed upon appending the additional condition,

u —+ c for |y| —► +oo, (2.18)

where c is some constant.

Let u? be the solution of (2.16)—(2.18). As in [5] Section IV.8, we define the

operator

t rj)

I«J = o, = 0 on T, (2.15)
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by
dut

(2.19)

The eigenvalue problem (2.13)—(2.15) is equivalent to the eigenvalue problem:

Find 1 e R, « 6 H\D), u ± 0 such that

a(u,w) = fi[ uw dy VweH'(D), (2.20)
Jd

where the bilinear form a is defined by

a(u'w) = IDW,W,dy'{Tulr-wlr)' <2'2"

We emphasize that the solution of (2.13)—(2.15) and (2.18) is the solution of (2.21)

extended by w"/r to R2\Z>.

The form a is continuous on Hl(D) and symmetric. Moreover, a{u,u) > 0,

Vw e Hl(D). Indeed,

a{u,u)= / \Vu\2dx+ / \Vu"^\2dx.
Jd Jr2\d

We note that /i = 0 is an eigenvalue and the corresponding eigenfunction is con-

stant. We are in the standard situation in which the eigenvalues of the limiting

problem are

0 = $ < H2 < ■ ■ ■ —<► +oo.

This suggests that, for e nonzero and small, there exist eigenvalues /zf such that

and thus the corresponding eigenvalues AJ are of order em~2. The corresponding

eigenfunctions are approximately those of a(u, w) = fi(u, w) for fixed y, extended in

a convenient way to |x| = 0(1). We claim that they are local vibrations in the sense

that the corresponding eigenfunctions are small outside of |y| = 0(1). We shall show

this later. In addition, global vibrations must exist.

3. Study of the global vibrations. The eigenvibration of the membrane is affected by

the presence of the concentrated mass. As shown in [5], Sec. VII. 12, the eigenvalues

and eigenfunctions converge, as e \ 0, towards those of the problem without the

concentrated mass. This convergence is very weak and ignores the behaviour of the

eigenfunctions in a neighbourhood |x| = 0(e) of the inclusion. We use the method

of matched asymptotic expansions to describe this behaviour in a precise manner.

We search, for A£ and u£, with asymptotic expansions of the form:

A£ = A° + *(1), (3.1)

ue = u° + *{ 1). (3.2)

By substituting (3.1) and (3.2) into (2.4)-(2.7), we obtain:

f-AxU0 = A°u° infl\{0}, ....
I "V = o. (3J)



A MEMBRANE WITH A CONCENTRATED MASS 97

In the spirit of the method of matched asymptotic expansions, we perform the

dilatation y = jt|e in order to study the solution in a vicinity of the origin. In this

region we search, for uc, through an asymptotic expansion of the form

ue = t](e)v°(y) + --- . (3.4)

By substituting (3.4) into (2.9)—(2.12), we obtain, on account of ne = e2~mA°H—,

for m > 2,

v° = 0 in D, (3.5)

—AyV® = 0 in R2\D, (3.6)

[v0] = 0 on T, (3.7)

inn. lim. u°(x) = out. lim. rj(e)v°(y). (3.8)

We recall that inner (resp., outer) limit means limit as e \ 0, for fixed y (resp.,

fixed x).

The second transmission condition = 0 on T may be disregarded. Indeed,

by considering (2.13), on account of ne = e2_mA° + •••, we see that the vibration

in D is of high frequency. Consequently, the wave length of the oscillations in D is

short and on T does not make sense. This is analogous to the situation in the

three-dimensional case ([5], Sec. VII. 10).

Let us take, following the considerations at the beginning of this section, as solution

of (3.3) the eigenvibration of Q without singularity at the origin. After normalization,

u°(x) is uniquely defined and

inn. lim. u°(x) = lim u°(x) - «°(0)
x—>0

is already known and in general it is different from zero. Consequently, the problem

(3.5)—(3.8) has no solution without singularity as |y| —> oo. We thus look for the

weakest singular solution of

-Ayv° = 0 in R2\D,

i>°|r = 0,

lim ri(e)v°(y) = u°( 0),
e^O, fixed x

with known w°(0). We know [8] that the weakest singularity at infinity is logarithmic

and, consequently, the solution has the following behaviour:

v0(y) - -^(Log|y| + w(y))

at infinity, where w(y) is a nonsingular function as |y| —+ +oc. For e \ 0, fixed x,

t](e)v°(y) ~ -^(e) Lo8 M as M 00

from which

lim [-^-^(e)(Log|x| - Loge)| = w°(0)
e\,0, fixed x L Z71 J
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and

c = 2nu°(0), t](s) = ^
Loge

7]{e)v°(y) = -^^(Log\y\ + w{y))

where w(y) is the solution of

- Ayw = 0 in R2\D,

w\T = — Log|^| |r,

w —► const, for |y| —► +oo.

This last problem is well-posed and, in particular, the constant at infinity is deter-

mined.

4. Asymptotic study of the local vibration.

The local vibration (i.e., the vibration of the inclusion itself) may only be studied

after a dilatation of the domain eD that it occupies. Consequently, it is determined

by the system (2.9)-(2.12). We shall see in Sec. 5 that the equivalent variational

formulation of this problem is of the form

a(E,/i, u, v) — n(u,v) VveHl(D).

We thus have a problem with implicit eigenvalues. We shall show that the eigen-

values n£ depend continuously on e and converge as e \ 0 towards the eigenvalues

fij(0) = ^ of the problem:

-Ayv° = n°v° in D, (4.1)

~di>0~

*y

r,~,0

-Ayv° = 0 in R2\D, (4.2)

= 0,
dn

= 0 onf, (4.3)

v° —> c for \y\ —* -foo, (4.4)

as obtained by inserting asymptotic expansions of the form:

(4.5)
( ue - v° + 1),

\ne = n° + *(l),

for uE and /ue in the vicinity of eD.

We recognize here the limit problem considered in Sec. 2, the solution of which

must be matched with the solution of the outer problem.

In the outer region, we look for an expansion of the form

ue = t](£)u°{x) + • • • (4.6)

which gives, by substituting into (2.4)-(2.7),

-Axu° - sm~2n°u0 = 0 inQ\{0},

u° = 0 on <9Q,

out. lim. ?)0(y) = inn. lim. rf(e)u°(x).
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For m > 2 we thus have

-Axm° = 0 in £2\{0}.

The only regular solution of this problem vanishes identically, so we take for u°(x)

the weakest singular solution of the inner Dirichlet problem, i.e.,

"°W = -^[Log(M+ /(*))],

where /(x) is regular at x - 0. Then, from

x n11?1, ^7(e)M°(ey) = -x-7/(e)[Log|y| + Loge + f(ey)]
e\0, fixed y ATI

= lim t>°(>>) = c
|y|—+oo

we obtain

A = -2nc, t](e) = 1/Loge,

from which

l(e)*0(x) = ^[L°g W + /(*)]• (4-8)

Here f{x) is the solution of the problem

-Axf — 0 in £2,

f{x)\aa = — Log |jc| |en,

which is well-posed.

5. Rigorous study of the eigenvalues of the local vibration.

We establish the existence of the eigenvalues AE of the form Xe = em~2fie and the

convergence of n] to the eigenvalues Hi{0) of the limiting problem. A result in this

direction was announced in [4]. As in [5], we write the eigenvalue problem (2.9)-

(2.12) by taking £ e C as a spectral parameter:

-Ayu = Cu in D, (5.1)

-Ayu = Cemu in e~lCl\D, (5.2)

~du

dn

u — 0 on (5.4)

The limiting problem, obtained by letting e \ 0, reads:

-Ayu — C« in D, (5.5)

-Am = 0 in R2\D, (5.6)

~du~

M = 0, - 0 on T, (5.3)

M = 0, dn

where condition (5.4) must be replaced by

u —► c for |j/| —► +oo, c = const

for well-posedness in R2\Z).

We have

- 0 on T, (5.7)
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Theorem. The eigenvalues //,(e) of the problem (5.1)—(5.4) with m > 2 depend

continuously on e and converge as e \ 0 to the eigenvalues //, (0) of the limit problem

(5-5)—(5.8).
Proof. Up to slight modifications, the proof is the same as that of Proposition

VII. 11.4 in [5], The reader is referred to that work for details. We only present here

an outline.

The limit problem (5.5)—(5.8) was transformed, in Sec. 2, into another problem

on D. We make an analogous transformation for the problem (5.1)—(5.4). To this

end, we solve

-Ayuet- = in eQ~[\D,

11^ = 0 onde~{Q, (5.9)

- (p on T.

This problem may be uniquely solved for m and £ e A, where A is some bounded

domain of C. Indeed, (em is not an eigenvalue of this problem because the Poincare

constant is of the form e_1C(fi).

Then, we may define T(e, Q as in (2.19). It is an operator in '^(T), H~^2(T)).

We now define the form a by:

a(e, C; u, v) = dy + (T(e, C)«|r- v\r).

The eigenvalue problem (5.1) is equivalent to the implicit eigenvalue problem

a(e,C-u,v) = C(u,v)L2{D) in Hl{D).

In analogy to the limiting problem (2.20), the corresponding operator and form

will be denoted by T(0) and a{Q\u,v). The assertion of the theorem then follows

from [5] (Proposition V.10.6 and Remark V. 10.7). Indeed the hypotheses of this

proposition are satisfied by virtue of the following lemma. ■

Lemma. If, as j —* +oo,

(pJ —> <p* in H^2(T) weakly,

£j —► 0,

Cj -C'eA,

then

T(£j, Cj)<pJ T(0)<p* in weakly.

Proof. We define W as the completion of S>{e~lO\D) under the Dirichlet norm.

By [9], in the two-dimensional case, W contains functions which take nonzero value

in a neighbourhood of infinity. Bearing this in mind, the proof is the same as in [5],

Lemma VII. 11.3. ■
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6. Study of the case N = 2, m = 2. In the case m — 2, the concentrated mass

is of the same order as the total mass of the membrane. This case exhibits features

analogous to the previous case m > 2 but the two sequences of eigenvalues X® (resp.,

/z°) associated with the global (resp., local) vibration are of the same order 0(1).

This entails some new difficulties. We only study the eigenvalues of each sequence

which are simple and different from those of the other sequence.

The limiting problem in the x-variables reads

(-Axu° = A°u° inQ\{0},

I "° Ian = 0-

and in the y-variables reads

-Ayv° = n°v° in D,

-Ayv° = 0 in R2\D,

KB = 0,

(6.1)

dv°
= 0 on r,

(6.2)

_ dn

v°-+c for |y| —» +oo.

Let us study the local vibration. We saw in Sec. 2 that the eigenvalue problem

(6.2) is a standard one with eigenvalues

0 = fi°{ < Hi < ■ ■ ■ —^> +oo

and associated eigenfunctions u®, v®,  After normalization, the corresponding

constants c, are determined.

We search for the corresponding outer limit in the form ij(e)u°(x) satisfying

-A xu° = n°u° inn\{0}, (6.3)

w°lan = 0, (6.4)

rj(e)u°(x) -* c for e \ 0, fixed y. (6.5)

The singularity at the origin is logarithmic as in Sec. 4. Indeed, the fundamental

solution is expressed by Bessel functions which have logarithmic singularity at the

origin.

We look for u°(x) in the form:

M°W = -^LogW+/(x) (6.6)

where /(x) is regular everywhere in Q.

From the matching condition (6.5) we obtain rj(e) = -2nc/ Loge.

From (6.3) and (6.4) f(x) is the solution of

- Axf = n° -^L°g|x| + f(x) in fi,

/Ian = ^Log|x||a£i.

(6.7)

This is a well-posed problem since pi0 is not an eigenvalue of (6.1).
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Let us now consider the global vibration. We take as eigenvalues and eigenfunctions

of (6.1) those of the eigenvibration of the membrane without inclusion. Then the

eigenvalues of this problem, which are assumed known, satisfy

0 ± A? < X°2 < ► +oo.

After normalization, the w°(x) are well-determined.

We search for the corresponding inner expansion of the form ti(e)v°(y) satisfying

-Ayv° = AV in D, (6.3)

-Ayv° = 0 in R2\Z), (6.4)

M = 0, dn
0 on T, (6.5)

lim ti(e)v°(y) = «°(0), (6.6)
e\,0, fixed x

where A0 and w°(0) are known.

We seek v° with the weakest singularity at infinity, of the form

where w(y) —* const, for |j>| —> +00.

The system (6.3)-(6.6) then becomes

- Ayv - in D,

- Ayw = 0 in R2\D,
dw

v|r = Log|y||r + ^|r, ^ = Log |y | |r + dn

(6.8)

r

lim r,(e)v°(y) = u°( 0). (6.9)
e\0. fixed x

Setting (p = v |r we have

- Ayw — 0 in R2\Z>,

w\r = <p - Log|j;| |r, (6.10)
w —► c (unknown constant) for |y| —► oo.

Denoting by w the solution of this problem and computing |(i« + Log |y|) on T,

the problem in D becomes

{Find v € Hl(D) satisfying

a(v,x)-l°{v,x) = ^r(Log|y||r) +j^LogMIr, *1^. (6'H)

where T was defined in Sec. 2 and where

a(v,x)= [ VvVxdx + {Tv\r,x\r)-
Jd

Since A0 is not an eigenvalue of the corresponding homogeneous problem, the

problem (6.11) has a unique solution v, and then w|r is well-defined and so is w.

It only remains to perform the matching:

. lim 7/(e)(Log|}>| + ui(y)) = w°(0),
e\0, fixed x

which gives, as before, rj(e) - -u°{0)/Loge.
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Remark. On account of the definition of T one may think that T{lx>g\y \ |r) +

J^Log|y||r vanishes. But this is false. Indeed, the solution of the outer problem

tends to a constant at infinity. The solution with given Log|y||r is not Log |y| but a

function the normal derivative of which is, by definition, r(Log|y||r). ■
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