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Introduction. The most familiar instance of an adiabatic invariant occurs in con-

nection with Lorentz's problem, i.e., the motion of a pendulum whose length changes

slowly. In that problem the angle 4>{t) which the pendulum makes with the downward

vertical satisfies the differential equation

L(t)4> + g<(> = 0,

the variable coefficient L(t) being the length, and g the constant acceleration due

to gravity. It is known that the energy is approximately proportional to the local

frequency

In \LJ
or, in other words, that

Ll/2</>2 + gL~ll2(j)2

is an adiabatic invariant; even though L is presumed to change slowly, it may,

nonetheless, undergo large changes over time intervals of large duration, and the

same is true of the energy.

A mechanical clock, whose pendulum expands or contracts with seasonal variations

of temperature, provides an example of what Lorentz had in mind and, accordingly, it

is tempting to speculate that, for a thermoelastic body immersed in an environment

whose temperature varies slowly, there may exist an adiabatic invariant which is

constructed from, among other things, the energy of the body and its volume or its

length.

My purpose is to point out that such an adiabatic invariant does exist for certain

nonlinear thermoelastic rods which are perfect conductors of heat.

The methods employed here are similar to those of my papers [1,2], in which

adiabatic invariants are constructed for some purely mechanical problems; the meth-

ods owe much in principle, if not in detail, to Littlewood's treatment of Lorentz's

problem [3,4].

Although thermodynamic concepts obtrude inevitably into the discussion, the ad-

jective "adiabatic" will be used only in conjunction with "invariant"; at no point does

it bear the meaning that is customary in thermodynamics proper.
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The problem. We consider a straight rod undergoing longitudinal motion; one end

of the rod is held fixed while the other is subjected to a constant compressional force

of amount p. In order to simplify matters, we suppose the rod to possess a reference

configuration in which its length and its mass density both take the value unity, and

with respect to which the material response is homogeneous. A particle of the rod

will be labelled by the point x, of the unit interval [0, 1], which it occupies when

the rod is placed in the reference configuration; thus, x is a material, or Lagrangian,

coordinate.

The displacement u(x, t) is required to be C2 in the half-strip [0,1] x [0, oo) of the

(x, ?)-plane, and to satisfy the inequality

1 + ux > 0,

in which ux = du/dx. The inequality ensures that, for each t > 0, the deformation

x —► x + u(x, t) preserves the strict order of particles on the line, i.e., x + u(x, t) <

y + u(y, t) whenever 0 < x < y < 1.

The mass density of the deformed rod is

p = 1/(1 + ux),

and its length is

L = 1 +w(l,0-

We note that

0 < x + u(x, t) < L(t),

a fact which will prove to be important.

The rod is immersed in an environment whose absolute temperature is 6{t). The

supposition that the rod is a perfect conductor of heat means that its temperature is

independent of x and coincides with 6(t) everywhere.

In the absence of body forces, the equation of motion is

Ox = Utt,

where the stress a is determined by the density and the temperature through a con-

stitutive relation

<r(x, t) = d(p(x, t), 9{t)).

The conditions at the ends of the rod are

«(0, o = o. <7(1.0 = —p.

At a later stage, p will be required to be sufficiently large and d(t) will be required

to be slowly-varying.

If we substitute for a and p in terms of u we see that u is a solution of the nonlinear

equation

-<5> = 0 +ux)2u„,

and satisfies the boundary equations

w(0,0 = 0, <7 (-.   r,0(O
\1 + «*(!. 0

The nonlinear partial differential equation is the counterpart, in the present context,

of the linear ordinary differential equation which arises in Lorentz's problem.
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Restrictions on material response. The construction of an adiabatic invariant de-

pends upon a severe restriction on the function d; it is supposed that a has the

form
Pa (M) = VW(

T(6)

or, equivalently,

where

a = -p2vp,

y>(p,e) = T(d)1S( r), t = p/T(6),

S'{t) being the derivative of S(x). The functions T and S are themselves restricted

by requiring T(6) to be C2 and strictly positive for 6 > 0, and requiring S(t) to be

C1 and to satisfy the inequalities

tS(t) > -a and t|5"(t)| < b for r > 0,

in which a and b are positive constants.

It is a crucial feature of these hypotheses that they imply the identity

The hypotheses are satisfied if

T(6) = (R6)l/2, S( r) = logT, a = exp(-l), b— 1,

where R is a positive constant. In this case

a = -Rp6, ty = R6\og{p/{Rdy/2)

and, hence, the rod behaves like a perfect gas under severe compression. This is not

as unrealistic an assumption as it might appear to be, for it entails no restriction

upon the behaviour of the rod under extension.

The following notation is adopted in what follows:

4>{t) = T(9(t)),

y/{x,t) = ij/(p(x,t), d(t)),

4*( t) = [ y/ dx,
Jo
i r i

K( 0 = - J u] dx,

E = y¥ + K + pL.

It will be shown that

m = EH + 3p I" Lipids (2)

is an adiabatic invariant in certain circumstances.

Although I is constructed from E, which is an energy, from the length L, the pres-

sure p, and the environmental temperature 6 (through 0), the situation is somewhat

different from Lorentz's problem in that the length is not prescribed at the outset.

A difficulty we shall have to bear in mind is that, whereas <f>, K, and L are always

positive, need not be so.
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Slowly-varying temperatures. In order that I be an adiabatic invariant, it is neces-

sary to suppose the environmental temperature 6(t) to be slowly-varying in the sense

that <j>{t) = T(6(t)) meets the hypotheses:

(i) 0(0 is C2;
(ii) as t —► oo, <fr(t) converges to a finite limit, <j>{oo) say, and 4>(t) -* 0;

(iii) there are positive constants e, M, m, C\, C2, C3 such that

0 < m < <p(t) < M, |0(O| < C\E,
rOO rOQ

/ m)\dt<C2, / \4>{t)\dt < C3e.
J 0 J 0

The constants M, m, Q, C2, C3 are to be thought of as being independent of e,

while e itself measures the slowness with which the temperature varies. The hypothe-

ses are satisfied, in particular, if <p(t) = where:

(iv) 0(s) is C2;

(v) as s —► 00,0(5) converges to a finite limit and 4>(j) -+ 0;

(vi) there are positive constants M, m, C\, Ci, C3 such that

0 < m < 0(5) < M, |0(5)| < C\,
r OO rOO

/ \4>{s)\ds < C2, / \<b(s)\ds<Ci.
J 0 Jo

In the statement of our result, and at various points in the proof, it is necessary to

introduce positive constants C, C4, and C5, which are independent of e and depend,

at most, upon the constants a, b, M, m, C\, C2, C3 and the initial value E{0).

An adiabatic invariant. Our task is to show that if p is sufficiently large then I is an

adiabatic invariant in the sense that, to within an error 0(e), I is constant throughout

the semi-infinite interval t > 0; this is accomplished by proving a little more.

Let 6(t) be slowly-varying, and let p > 2aM3. Then, as t —* 00, I(t) converges to a

finite limit /(oo); moreover, there is a positive constant C such that

|/(0-/(oo)| < Ce (t> 0).

In order to begin the proof we introduce the integral

1 fl
F(t) = x / {x + u)2dx

^ Jo

and proceed to derive the identities

/ ^ (3)

(4)

According to (3) and (4), E and I would be exactly constant if 6, and hence 4>, were

constant.
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To prove (3) we observe that

E = x¥ + K + pL

• l

= f (y/,+ ututt)dx + pL
Jo

= (ftgd + tj/pPt + OxUt)dx + pL
JO

ftedx + J dx + pL

= 6 / i//edx+ (auxt + axut) dx + pL
Jo Jo

= 6 [ \j/edx + [aut]o + pL,
Jo

and it follows with the aid of the boundary conditions that

E = 6 ( fig dx.
Jo

According to the identity (1),

-l

and, hence, (3) is correct.

To prove (4) we differentiate F twice with respect to t to find that

F = I ujdx+ (x + u)u„dx
Jo Jo

= 2K + [ (x + u)ax dx
Jo

- 2K + [a{x + m)]q - [ a{\ + ux)dx
Jo

= 2K - pL - f -dx
Jo P

or, on substituting E - *¥ - pL for K, that

F = 2E - 3pL - 2¥ - f' - dx.
Jo P

On combining this last equation with (3), we obtain

E = ^{2E -3pL-F).
<P

On the other hand, the definition (2) implies that

/_ E 2E j 3pL ;
4>2 03 ̂  + 03 ^
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and therefore (4) is correct.

Up to this point the hypothesis on p has played no part; it is needed now, though,

to ensure the validity of the estimates:

m < e, (5)
K + pL< 2E, (6)

|F| < 2E3,2/{aM3). (7)

According to (6), E must be strictly positive whenever p > 2aM3.

To prove (5) we start from the hypothesis tS(t) > -a, which tells us that

P \ >-a^^- = -aT(6)(l + ux)
T{0)

and, therefore,

f S dx > -aT(d)( 1 + u(l,t)) = -aT(d)L.

Hence,

- T{6)2 jl S dx > -aT(6)3L = -acj)}L,

and because 0 < (j) < M we have

¥ > -aM3L. (8)

Now (5) is certainly correct at any instant t at which *¥(t) > 0, for then

E(t) = T(0 + K(t) + pL(t) > «P(0 - mt)\.

On the other hand, if Y(7) < 0 and p > 2aM3 we can invoke (8) to deduce that

E(t) = *¥(t) + K(t) + pL(t)

>x¥(t) + K(t) + 2aM3L(t)

>x¥(t) + K(t)-2V(t)

= K{t) - V{t)

= K(t) + mt)\>mt)\
and so (5) is always correct.

Since

K + pL < K + pL + ¥ + |¥| = E + |¥| < 2E,

(6) is an immediate deduction from (5).

To prove (7) we start from the equation

F - / (x + u)u, dx,
Jo

and apply Schwarz's inequality to obtain the estimate

F2 < [ (x + u)2 dx f u2t dx — 2K f {x + u)2 dx.
Jo Jo Jo
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As has been remarked already, 0 < x + u < L and so

F2 < 2KL2 = 2K{pL)2/p2,

and on appealing to (6) we see that

F2 < 16E3/p2 < 4£3/(oM3)2,

which is (7).

The next step in the argument is to return to the identity (3) and use it to establish

that E(t) converges to a limit as t —* oo; this part of the proof depends upon the

hypothesis t|S'(t)| < b. We have

zr-pTmsim)'-T(efmsim)
and, therefore,

^ < bT{6)2 = b<t>2 < bM2.
p ~

When we combine this last estimate with (3) and (5) we see that

\E\ < M + |o' 1^1 dx^j < fi(2E + bM2).

Thus the integral
poo I ; 

dtfJo
log (E+{bM2)

must converge because it equals

Jo E+^bM2 -mj0 - m

The convergence of the integral ensures that \og{E(t) + \bM2) must converge to a

limit as t —► oo and, therefore, E(t) itself must converge to a limit.

In fact, we can say a little more, for

108 (IS! $£)
r oo I ; 

< / log[E{s) + \bM2)
Jo

ds<2-^
m

and, therefore,

E{t) < E(t) + {bM2 < {E(0) + \bM2) exp(2C2/m) = C4,

where C4 is independent of e.

Next, we observe that, as (6) tells us, 0 < pL < 2E < 2C4. Thus

pjf- s ̂
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and, because
r OO

I \<f>\dt < C2,

the integral

/•°° L(s)4>(s) dsfJo

must converge. On returning to the definition (2) and remembering that E(t) and <f)(t)

converge to limits as / —► oo, we see that the adiabatic invariant I(t) must converge

to a limit /(oo).

It remains to check that I = /(oo) + 0(e). To do so we integrate (4) by parts to

deduce that, for any t > 0 and any t\ > t,

'■ 4>(s)

3 m2
MS)*

According to (7), |^| < 2C^2/(aM3) = C5 and, therefore,

(9)

F(s) ds.

(f> 3<j>2

^3 ~ 1 1 ~ m3m m4

m m4

where, by hypothesis, 4> and are integrable on [0,00). Thus if we let t\ —* 00 in (9)

and remember that I(t\) —► /(oo), —+ 0, and |F(?i)| < C5, we see that

kt)F(t) r°° (4>(S) 3
/(00) 7(0 0(03 +J, ^(5)3 0(5)4 j^)ds,

the convergence of the integral being assured.

Finally, we estimate the right-hand side of (10) to find, as required, that

it/ \ t/4\\ ^ C\C$£ C^CsE , 3CiC2Cse
/(oo) - I{t)\ <  r 1 r 1 2  = Ce.

m3 m3 m4
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