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In a previous paper [4], Yih's formulas [3] were used to obtain patterns of gravity

waves, or of capillary waves in a thin fluid sheet, created by a moving disturbance. In

this paper the effects of surface tension are taken into account in finding the patterns

of capillary-gravity waves in deep water with a free surface created by a moving

disturbance, and much more extensive results than those of Rayleigh [2] have been

obtained. The most important feature of the waves is that there are capillary waves

behind the disturbance, which have very short wavelengths at high values of the speed

U of the disturbance and which are confined to a wedge of an angle that decreases

as U increases. Of interest too is the existence of two cusps in the phase lines on

either side of the centerline at high values of U (relative to a minimum wave velocity

defined in the paper) for those waves which are entirely behind the disturbance.

1. Introduction. Explicit formulas for phase lines of any kind of dispersive waves

created by a point disturbance moving in a fluid with a free surface were given by Yih

[3], These formulas are in terms of the parameter k, which is the local wavenumber.

The point disturbance is an idealized representation of a ship, for instance, so that

the formulas are useful for determining the pattern of waves far enough away from

the ship. Yih's formulas were used by Yih and Zhu [4] to obtain patterns of ship

waves in deep water (Kelvin waves), in water of finite depth, in a stratified ocean,

and in the wake of a ship, as well as patterns of waves in a thin sheet caused by a

moving point disturbance. But capillary-gravity waves were not treated in [4], It will

be treated in this paper, and many patterns of capillary-gravity waves caused by a

moving disturbance will be presented.

The main reason for giving capillary-gravity waves a closer examination is that

the treatment by Rayleigh [2], as quoted in Lamb ([1], pp. 469-471), is very sketchy

and calls for a new calculation after more than a century, especially in view of the

relevance of the problem to remote sensing. As will be seen, one important feature

of capillary-gravity waves caused by a moving disturbance is that there are (predom-

inantly) capillary waves behind the disturbance. This point has not been stressed in
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Lamb's book, but explains the presence of short waves within a narrow wedge which

are often found in photographs obtained by remote sensing in the wake of a ship.

2. Analysis. Let the point disturbance move with speed U in the horizontal direc-

tion of decreasing x. The y-axis is also horizontal, and is normal to the x-axis. As

in [4], p denotes the density of the fluid, g denotes the gravitational acceleration, T

denotes surface tension, and we shall continue to use U2/g as the length scale, so

that the local wavenumber k will continue to be measured in units of g/U2. The x

and y components of the wavenumber vector k will again be denoted by £ and tj, so

that

e+t]2^k2. (i)

With this in mind, the requirement that the local wave velocity must be equal to

the component of the velocity of the disturbance normal to the wave front (or the

phase line) is

£ = F{k) = k(l/k + ak)1'2, (2)

which is Eq. (6) in [4] for the present problem. The a in (2) is

Tg 1 //-_2_x4
a = -i(W- <3>

pU4

where cmm = 2{Tg/p)^2 is the minimum value of the wave velocity c calculated from

the dimensional dispersion equation, given by

c2 = f + (4)
k P

in which k denotes the dimensional local wavenumber. The k for cmin is

kCT = {pg/T)1'2. (5)

If k > kCT, or

k > (1/ct)1/2,

the waves are predominantly capillary waves. If

k < (1/cx)1''2,

the waves are predominantly gravity waves. The word "predominantly" may from

time to time be omitted in the rest of this paper for brevity.

Yih's formulas for phase lines are (see Eqs. (19) and (20) in [1])

aUc-Fn
k(F-kF')' [ '

where a is a constant of integration. The k in (1) will be treated as positive. Since y

is real, (6) demands that

k2 - F2 > 0, (8)

or

ok2 - k + 1 < 0. (9)
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That means

^rnin ^ k ^ ^max> (10)

where

l-Q-4 „)*■
^min — 2a ' \11 /

l + (l-4»)'/2
^max — 2a \L^J

Equations (11) and (12) show that there are no waves if a > This condition can

be written as U/cmin < 1, by virtue of (3).

Equation (7) contains the factor

h(k) = k - FF' = -\ak2 - k - 5. (13)

This can be written as

where

h{k) = -\a{k-k\){k-k2), (14)

*i = ^[l-(l-3a),/2]. (15)

k2 = ±[\ + {\-lo)xl1]. (16)

Thus
h(k) >0 if k\ < k < k2,

h(k) < 0 if k<kiork>k2.

The sign of h(k) affects the sign of x through (7).

Another quantity of which the sign is important is

= = (1-°*2)- (17)

It is evident that
q{k)> 0 if k<ki = a~lt2,

q{k) < 0 if k>ki = a~l/2.

The sign of q{k) affects the sign of y through (6), and the sign of x through (7).

It can be shown (the demonstration is omitted here), that

ki < kmin < k3 < k2 < kmax. (18)

Hence k\ has no significance, since a k less than /cmin results in no waves.

Finally, the /:-values for the cusps, denoted by kc\ and kc2, are determined from

5p = 0' (,9)

d kdk/dt-Z
dt(k2-z2y/2

With (1), this becomes, after a brief calculation,

d 2h{k)£

= 0.

d?(l + 3ak2)(k2-Z2y'2 °' (20)

This can only be solved numerically once a is given, and we shall list the values of

kc 1 and kc2 in Table 1 for various values of a.
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JL k ■
^-min

Table 1. Important values of k and values of y and 4>.

Waves of Sets 2 and 3

a = 1 a = 2 a — 3 a = 4 a — 5

10

1.8

1.5

1.1

kst 1.000025

kc\ 1.500253

kc2 78.41496

196.3524 192.7049 189.6653 186.0177 182.3702

kst 1.000193

VI

VI

1.501962

kd 28.06051

ken 10.02212 67.82574 65.84847 63.65150 61.23482

~k^t 1.000978

1.510122

'<c2 12.30653

30.71992 29.34138 27.96284 26.38736 24.71341

kn 1.016133

kci 1.808496

kc2 2.535961

7.590197 7.180394 6.715951 6.224187 5.623143

K 1.025022
ken 6.152701 5.798128 5.416279 4.979881 4.461658

kst 1.054960
4.276073 4.304920 3.759316 3.466488 3.087534

ksl 1.279578

ken 2.248937 2.089277 1.941023 1.809875 1.695823
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Waves of Set

T~ k'
Lmin a = 1 a = 2 a = 3 a = 4 a = 5

fcs, 39999

10
kc i

kc2

ken 4816.684 7045.430 8716.984 10070.15 11104.93

/cs, 5183

kc2

ke n 613.7659 899.9819 1114.644 1278.196 1421.304

&st 1023

kc2

ken 127.1359 182.6319 224.2538 255.9658 283.7139

62.98387

fcci

kc 2

ken 1 1.07910 13.27845 15.37935 16.57748 17.89709

1.
ksx 40.96538

ken 8.962947 10.68722 11.99766 13.10193 14.06678

1.5
ksi 19.19504

ken 6.057674 7.027547 7.732909 8.291320 8.732171

1.1
ksl 4.576822

A^n 2.588232 2.752151 2.907442 3.054106 3.187829

6000

750

150

10

10

10

5.71°

9.59°

14.47°

29.98°

3. Procedure of Computation. There are three sets of waves created by the moving

disturbance:

1. Set 1. Capillary waves ahead of the disturbance.

2. Set 2. Largely gravity waves behind the disturbance.

3. Set 3. Capillary waves behind (!) the disturbance.

The first set is the well-known fish-line waves. The starting A:-value for this set,

denoted by kst in Table 1, is just kmax. There are no cusps in the phase lines for this

set, and for each phase line the -values decrease from A:max, at which y = 0 and x

is negative, to ki, at which x = 0, and then to at which x is positive and both x

and y are infinite. In plotting the phase lines, one cannot reach /c3, of course, and

we have stopped at an ending k, denoted by ken, and given numerically for all values

of cmin/U and for Sets 1 and 3.

Set 2 corresponds to Kelvin waves, except the effect of surface tension has been

taken into account. For this set one starts with a ^t equal to /cmin, at the centerline

y = 0 and a value of x given by (7), once a is given. One then proceeds along

a transverse phase line to the first cusp on either side of the centerline, where k

is kc i. Then one increases k toward kc2, in the process tracing out the phase line

corresponding to the divergent part of the Kelvin waves, except that one does not
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reach the origin (where the disturbance is) but reaches the second cusp instead, at

which k is kc2.

Then one traces another divergent wave, of Set 3, as one increases k from kc 2

to ki, in the process tracing out the phase line that is almost straight, and diverges

from the second cusp toward infinity (with positive x), asymptotically making an

angle (j> with the centerline. The angle <fi is recorded in Table 1 for all cases, and is,

incidentally, the same for Set 1 and Set 3. That is, the asymptotes of phase lines

for Set 1 at infinity also make the same angle cf> with the centerline. The angle <p is

determined analytically by putting k = k3 = a'1'2 in

-£ = tan<l> = -{k^F2y^' (21)

with F defined by (2). Equation (21) is equation (6) of [4], It is immediately clear

that, as a decreases to zero, /c3 approaches infinity and <f> approaches zero—a result

of great significance to remote sensing.

It is clear from the foregoing description that

k^ < k < kmax

for Set 1,

^min 5: k < kc 2

for Set 2, and

kci < k < ki

for Set 3. For Set 2 (Kelvin waves with surface tension taken into account)

^min ^ k < kc i

for transverse waves, and

kc\ <k < kc2

for divergent waves.

4. Results. The results for various values of a, represented by U/cmin, are given

in Table 1 and the figures. In Table 1, the results for Sets 2 and 3 are presented

together, and those for Set 1 are presented separately. For U/cmjn equal to or less

than 1, there are no waves, as mentioned in Sec. 2.

The various /:-values given and the angle 0 in Table 1 have been explained in Sec.

3. Since the wavelength for Set 2 at the centerline is enormously greater than the

wavelength for Set 1 at the centerline, it is inconvenient to present the entire wave

pattern in a single figure with the same length scale. For this reason, for all cases

except U/cm[n = 1.1 (see Figure 1), the phase lines for Set 1 are presented separately

from those for Sets 2 and 3. The ratio of the length scale for Sets 2 and 3 to that

for Set 1 is denoted by y, and given in Table 1. In reading the figures, then, one

must, for all cases except U/cmin =1.1, imagine the parts b to be magnified y times

in one's mind. It is also helpful to keep in mind that along the centerline (y = 0)

consecutive phase lines for Set 1 and Set 2 are spaced at one wavelength apart, and
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Fig. 1. Pattern of gravity-capillary waves at f//cm;n = 1.1.

that the wavelength for Set 1 (predominantly capillary waves) is very much smaller

than that for Set 2 (predominantly gravity waves).

From Table 1, one sees that for transverse waves of Set 2 the -values are of order

1. These are predominantly gravity waves. For divergent waves of Set 2, k increases

from kci to kc2, and kc2 may be considerably greater than kcX if U/cmm is greater than

4. Hence the divergent waves of Set 2, which have their counterpart in Kelvin waves

(for which only gravity is taken into account), become more and more capillary waves

as kc2 is approached for U/cmm greater than 4 (which is not a sharp boundary, and

is cited here only because it is one value of U/cm;n chosen in Table 1 which seems to

divide large values of kc2/kc\ from modest ones of order 1).

Fig. 2. Pattern of gravity-capillary waves at U/cm;n = 1.5.

(a) Set 1, (b) Sets 2 and 3 merged.
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For U/cmjn > 4, the waves of Set 3 are predominantly capillary waves. For smaller

values of £//cmin (see, e.g., Figure 2), one can only say that as the phase lines depart

more and more from the center (where y - 0), the waves they represent become

more and more capillary waves.

As noted before, the waves of Set 1 are predominantly capillary waves, and it is

emphasized again that as the phase lines approach y = ±oo, they become increasingly

straight lines that make the same angle 0 with the centerline as the asymptotes of the

phase lines of Set 3, as k3 is approached (or as y approaches ±oo).

The most important part of the results is that there are capillary waves with wave

fronts making a smaller and smaller angle </!> with the centerline as U/cmis increased.

This has been observed in photographs obtained by remote sensing, and has been a

point of keen interest in naval circles.

From Table 1, one sees for the case U/cmin = 2 that kc2 is not equal to kc\.

Therefore the phase lines for Sets 2 and 3 in Fig. 4b should show a loop as in Fig. 5b.

The loop is too small to be seen, and Fig. 4b instead shows a discontinuity in slope

at a point near where the loop should be. This loop disappears when U/cmin = 1.8

(which may be taken as the limiting value of U/cm;n below which there is no loop),

which may be compared with the tentative value 2 of Lamb ([1], p. 471, footnote 1).

When the loop disappears, the slope at the juncture of the transverse waves of Set 2

and the divergent waves of Set 3 should be continuous. Figure 3b (for U/cmjn =1.8)

shows a slight but detectable discontinuity at that juncture. That discontinuity should

not be there, and is a consequence of the finite-difference calculation when Ak, the

increment of k, is not small enough for the neighborhood of the juncture.

Fig. 3. Pattern of gravity-capillary waves at U/cmm = 1.8.

(a) Set 1, (b) Sets 2 and 3 merged.

Finally, we note that the square roots in (2) and (6) involve ambiguities in sign.

The square root in (6) can be positive or negative, so that both positive and negative

^-values are allowable. The sign of the square root in (2), which has a consequence
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on the sign of x given by (7), is chosen so that waves of Set 1 start in front of the

disturbance before they wrap around it to positive values of x, and that waves of Sets

2 and 3 are behind the disturbance, so that x is always positive for waves of these

sets.
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Fig. 4. Pattern of gravity-capillary waves at U/cmjn = 2.

(a) Set 1, (b) Sets 2 and 3 (loop with cusps invisible).

Fig. 5. Pattern of gravity-capillary waves at U/cmin = 4.

(a) Set 1, (b) Sets 2 and 3.
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Fig. 6. Pattern of gravity-capillary waves at U/cmj„ = 6.

(a) Set 1, (b) Sets 2 and 3.

(b)

->

Fig. 7. Pattern of gravity-capillary waves at U/cm;n = 10.

(a) Set 1, (b) Sets 2 and 3.
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