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Abstract. Patterns of water waves created by a moving disturbance representing a

moving body, floating or submerged, can be found by applying (1) the principle of

stationary phase, (2) the principle that the phase lines are normal to the wave-number

vector, and (3) the perception that the local phase velocity of the waves must be equal

to the component of the velocity of the disturbance normal to the phase line. The

three equations thus obtained are solved, and formulas for the phase lines are derived,

which depend explicitly on the dispersion equation, and on that equation only. These

formulas are applied to deep-water surface waves, surface waves in water of finite

depth, internal waves, and capillary waves in thin sheets to obtain the wave patterns

sufficiently far from the moving disturbance.

Finally, the patterns of the surface waves in deep water created by a moving body

are determined, with the nonuniformity of the mean velocity of the fluid in the

wake taken into account. The vorticity in the direction along the phase lines is

shown to be small, so that the wave motion can still be assumed irrotational in a first

approximation. The wave patterns differ from the Kelvin-wave pattern, as a result

of the nonuniformity of fluid velocity in the wake.

1. Introduction. The pattern of gravity waves created by a moving disturbance in

deep water was determined by Lord Kelvin (Sir W. Thomson, 1887) fully a century

ago, by applying his principle of stationary phase to the well-known Cauchy-Poisson

solution (see Lamb, 1945, pp. 429-434) for an instantaneous concentrated force (a

concentrated impulse). But Kelvin's application of his own principle of stationary

phase did not result in explicit formulas giving the wave pattern created by a moving

disturbance, once the dispersion equation expressing the wave velocity in terms of

the wave number is known, whatever the kind of wave—gravity wave in deep water

or water of finite waves, internal waves, or capillary-gravity waves. These explicit

formulas were given by Yih (1985). In this paper Yih's formulas will be presented

and applied to gravity waves created by a moving disturbance, which can be regarded

as representing a ship, floating or submerged. Results for gravity waves in deep

water or water of finite depth and for internal waves will be presented graphically.

Finally, the effects of nonuniformity of fluid velocity in the wake of the ship will be

*Received July 6, 1987.

©1989 Brown University

17



18 CHIA-SHUN YIH AND SONGPING ZHU

considered, and gravity-wave patterns will be shown, with the principal effect of this

nonuniformity taken into account.

2. Formulas for phase lines in a ship-wave pattern. For simplicity, we can regard the

moving disturbance to be a moving pressure distribution on the free surface, although

this particularity does not affect the establishment of the formulas for determining

the phase lines. This fact indicates that whatever the details of the disturbance may

be, the wave pattern obtained will be the same, if the region under consideration is

sufficiently far from the disturbance.

Let U be the speed of the disturbance, moving horizontally to the left. The di-

rection opposite to the velocity of the disturbance is taken to be the direction of

increasing x. The y-axis is normal to this direction but is also horizontal. The z-

axis is directed vertically upward. The wave-number components in the directions

of increasing x and y will be denoted by £ and t] respectively, and

k2 = e + n2. (1)

For our purpose it is not necessary to give the formulas for the velocity distribu-

tion in the wave motion (or the velocity potential when it exists), or for the displace-

ment of the free surface or interface. Such formulas are given for Kelvin's waves in

Whitham (1972, p. 448, Eq. 13.56), for surface waves in water of finite depth and for

gravity-capillary waves in Havelock (1908), and for internal waves in two superposed

fluid layers by Hudimac (1961), Carrier and Baski (1963), and Yih (1985, Eqs. 30
and 31), among others. What is important for our purpose is that in these formulas

there is always the exponential factor

exp i($x + riy) (2)

in a double integral with respect to £ and rj.

The application of Kelvin's principle of stationary phase at any point (x, y) re-

quires,1 because of the factor (2),

(3)
x drj

The normal to any curve of constant phase has the slope t]/£. The slope of the tangent

to any curve of constant phase must then have the value -£/rj, so that for that curve

£ = <4)dx t]

The requirement that the wave velocity at any point must be equal to the component

of the velocity of the disturbance normal to the wave front (or the phase line) is

expressed by

X = c(*)' (5)

1 The Fourier integration is in the (£, ?/)-plane. The main contribution to the integral comes from the

neighborhood of a £-t] curve where a factor in the denominator vanishes. This vanishing is represented by

(5). The integration in this neighborhood involves essentially an integration across this curve (giving what

amounts to residues) and an integration along that curve subsequently. It is to this latter integration that

the method of stationary phase applies. After this application //, and k are considered (slowly varying)

functions of x and y. This understanding should be kept in mind from (3) onward.
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where c(k) denotes the wave velocity, dependent on k, the geometry (for instance,

depth of water), and the physical parameters relevant to the problem, such as the

gravitational acceleration g and the surface tension T. We are concerned in this

paper with gravity waves mainly. We shall use U as the velocity scale, and a finite

depth d as the length scale. If such a depth is not available we shall use U2/g as the

length scale. Then <*, rj, k, x, and y are dimensionless. The dimensionless form of (5)

is now

Z = F(k), (6)

where F(k) = kc(k), and the function F(k) may depend on other parameters, such

as the Froude number, as well as k, because c(k) does.

Since (6) is an equation between £ and k, it is convenient to write (3) and (4) in

terms of £ and k explicitly. A brief calculation gives, upon use of (1),

y = L_ = (fr2~£2)'/2 m

X dri/dt k(dk/d£) - £' 1 '
dy £
dx (k2~Z2)1/2'

Finally, upon using (6), we have

y _ F'{k2-F2)1'2

x ~ k - FF'
dy F

(8)

(9)

(10)
dx (k2-F2)1'2'

We can write

y = —f(k)F'{k2 — F2)1/2, (11)

x = f(k)(k - FF'), (12)

which satisfy (9), and endeavor to determine f(k). From (11) and (12) we obtain

dy = -{k2_lF2yl2[fF\k - FF') + (fF')'(k2 - F2)), (13)

dx = f(k — FF')' + f'(k — FF'). (14)

These, together with (10), give

fF(k - FF')' + f'F(k - FF') = fF'{k - FF') + (fF')'{k2 - F2). (15)

It is satisfying that this equation can always be explicitly integrated, for it can be

rewritten as

fF(k - FF')' + (fF)'(k - FF') = 2fF'{k - FF') + (fF')'(k2 - F2), (16)

and this can be immediately integrated to (a = constant of integration)

fF(k - FF') = fF'(k2 - F2) + a, (17)

or

<18)
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Thus,

y = ~W^Wr^2-"2)112' (19)

a(k - FF>)

k(F - kF')' [ '

These are the parametric equations for the curves of constant phase, when the eikonal

equation is in the form of (6), and it is remarkable that they can be explicitly given in

terms of F(k). The function F(k) can easily be obtained for any kind of waves and

any geometry in a two-dimensional wave motion (or one-dimensional propagation).

Once it is given, (19) and (20) can be applied to find the wave pattern directly. Thus

they are very useful and convenient.

2.1. Determination of the critical angle (j>c. The critical angle <f>c is determined by

d2t] _ A d kdk/dZ-Z _n ,,,,,
d& ' °r #(*2-{2)1/2 °' (21)

When (6) is the eikonal equation, this becomes

d_
dk

k-FF'
= 0. (22)

_F'{k2-F2y/ 2_

Given F, this can be solved for k. With k known and equal to kc (say), £ is known

from (6), t] is known, and x and y are known, so that

4>c = tan-1 — . (23)
X kc

If there is more than one root of (22), take the greatest of the values of (f> correspond-

ing to these roots to be <f>c. This determines the vertex angle (2(f)c) of the wedge in

which waves can be found. Equation (22), too, is an important result. One expects

to find waves only in some wedge where

0c 0 < (frc

3. Applications.

3.1. Gravity waves in deep water, or Kelvin waves. For Kelvin waves the dimen-

sionless eikonal equation is (the length scale for this case is U2/g)

e = k. (24)

Then

F{k) = kl/2 and F'(k) = ~k~1'2, (25)

y = -p(fc2-fc)1/2, (26)

x = <27>

Following Lamb (1945, p. 433), we define 6 as the angle of inclination of the normal

to any curve of constant phase, so that, along any curve of constant phase

dv
~~ = -- = -cotfl. (28)
dx ri
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Because of (24),

k2 - k = k2 - ? = rj2,

so that

y = ^ = .±TL (29)
y k2

Now (28) can be written as

£ £ 1
±COt0 - jprzr^yjl = (£4 _ (=2)1/2 = 2 _ 1)1/2

so that

i = sec#, (31)

and (29) becomes

y = -a cos3 9 tan 6 - -a sin 6 cos2 6. (32)

Similarly, (27) becomes

a(2fc-l) a(2£2-l) ... 2
X =  py2— = ^3—- = a cos 0(2 - cos2 0),

or

x = a cos 0(1 + sin2 6). (33)

Equations (32) and (33) are exactly the equations (Lamb, 1945, p. 434) for the Kelvin

curves of constant phase for surface waves. The wave pattern is shown in Fig. 1, upon

taking a equal to 1, 2, 3, etc. Since on the centerline k — 1, because the length scale

is U2/g and on the centerline U — c, the increment in a, indicating a wavelength

on the centerline, corresponds to 2nU2 / g when converted to dimensional length.

(Recall wave number = 2^/wavelength.) The cusps occur at £ = (3/2)l/2, giving a

<t>c of 19°28'. The flow near the cusps requires better resolution. This was provided

by Ursell (1960).

3.2. Gravity waves in water of finite depth. Let the depth of the water be d. Then,

as is well known, in dimensional terms the phase velocity c{k) is given by

c2 — y- tanh kd.
k

In dimensionless terms, with d as the length scale and U the velocity scale, this

becomes

c2 = Np2k~x tanh A:, (34)

where Np is the Froude number defined by

, U2
n - js- (35)

Then (6) takes the form

£ = Nfl{k tanh k)1'2, (36)

the right-hand side of which is F(k). Using this F(k) in (19) and (20), we obtain

the wave patterns shown in Figs. 2 for

NF = 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, and 5.0,
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Fig. 1. Kelvin-wave pattern.

respectively. On the centerline, £ = k = ko, and (36) gives

Np = tanh k$. (37)
*0

The wavelength of transverse waves is 2nd/ko on the centerline. Given the Froude

number Np and the depth d, ko is determined from (37) and the wavelength on the

centerline is known. The patterns in the figures should be read with this in mind.

The fact that the patterns have been obtained by assigning integral values to a in (19)

and (20) is of little importance since the scale used in plotting the figures is arbitrary.

The most important feature of Fig. 2 is that only when the Froude number Np is

less than 1 are there transverse waves. This is because the wave velocity c is bounded

by (gd)1/2, so that when Np exceeds 1 no waves, however long, can be stationary at

the centerline, so that no transverse waves can exist. When Np exceeds 1, the phase

lines at large distances from the disturbance appear to approach asymptotes.

The kc (k at the cusps), defined by (23) when Np < 1, and the </>c giving the half

angle of the wedge in which waves exist, depend on the value of Np. We note that

when transverse waves exist, k increases from k$ on the centerline to kc at the cusp,

and then increases monotonically along the phase line of a divergent wave. When

transverse waves do not exist, k increases along such a line as |j;| decreases; i.e., as

the centerline is approached. The same is true for internal waves.

3.3. Internal waves. Let us consider gravity waves in two superposed fluids. The

upper fluid has density p and depth h, and the lower fluid has density P'(> P)

and infinite depth. Let the velocity potential perturbations (from the mean flow of
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Fig. 2. (a)-(d). Pattern of ship waves in water of finite depth.

(a) Nf = 0.2, (b) NF = 0.4, (c) NF = 0.6, (d) NF = 0.8.



24 CHIA-SHUN YIH AND SONGPING ZHU

velocity c) for the two layers be <p and 0', respectively. The displacement of the

free surface is denoted by C and that of the interface by All quantities will be

dimensional until otherwise stated. The phase velocity c will be determined from

a calculation for stationary waves, that is, for a coordinate system moving with the

waves to the left. Then the kinematic condition at the free surface is (the origin of

z being at the interface)

cCx = <j>z at z = h, (38)

and the dynamic condition there is the Bernoulli equation

gC + c<f)x = 0 at z = h. (39)

Combination of (38) and (39) gives

s<Pxx = ~<f>z at z = h (40)

for the free surface, where

'"7- (41)

At the interface, the kinematic conditions are

cCx = 4>z and cC,'x = 4>'z at z = 0, (42)

and the dynamic condition is

PgC + pc<t>x = p'gC + p'c<f>'x at z = 0. (43)

Defining

fi = (44)
P

and substituting (42) into (43), we obtain

fj<j>z = -(0+ iwxx + <t>xx at 2 = 0. (45)

Equations (42) can be combined into

<j)z = (f)'z at z = 0. (46)

One last condition is

4>' = 0 at z = —oo. (47)

Taking

<p = (Aekz + Be~kz) cos kx, ft — Cekz cos kx, (48)

which satisfies (47), since k is assumed positive, we use (40), (45), and (46) to

eliminate the constants A,B, and C, and obtain from a straightforward calculation

(.ks - l)[fcs(2 + 0 + pe~2kh) - 0(1 - e~2kh)] = 0. (49)

The root
c2 l

-7-J (50)
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(e)

->

V

(h)

V

Fig. 2. (e)-(h). Pattern of ship waves in water of finite depth.

(e) Nf = 1, (f) Nf = 1.5, (g) Nf = 2, (h) Nf = 5.
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corresponds to irrotational wave motion of the entire fluid, with no vortex sheet even

at the interface, as is well known (Yih 1960, and 1980, pp. 60-62). This wave motion

has the Kelvin-wave pattern presented in subsection 3.2. The other root of (49) is

2 = fig e2kh - 1 

k (2 + p)e2kh + p' 1 '

and corresponds to predominantly internal waves. Substituting (51) into (5), using

h as the length scale, we obtain the dimensionless equation

v'(^r£ = — • (52)

a(k) = (2 + 0)e2k + fi, (53)

y(k) = e2k~ 1, (54)

and Nf is the Froude number now defined by

gh

We have done the calculations for the internal-wave patterns for /? = 0.04. The

patterns are shown in Fig. 3 for

= 0.01, 0.05, 0.1, 0.15, 0.2, 0.5, 1, and 2,

respectively. Again transverse waves exist only if NF is sufficiently small. The critical

Np can be calculated from (52) upon putting £ equal to k, letting k approach zero

(to get the longest wavelength possible), and taking the limit. Doing so, we obtain

the critical Froude number

Wri* = JTp- (55)

When Nf > (Np)c, no transverse waves are possible. For /? = 0.04, (NF)C is approx-

imately 0.2. That is why in Fig. 3(e) no transverse waves appear.

As for surface waves in water of finite depth, the angle </>c which the line of cusps

makes with the centerline, defined by (23), depends on NF. This dependence is

evident upon examination of Figs. 3(c) and 3(d). From Fig. 3(e) onward to Fig. 3(h),

the wave region narrows as the phase lines, which appear to approach asymptotes,

make smaller and smaller angles with the centerline.

3.4. Capillary waves on a thin sheet. For a fluid sheet of thickness 2h, there are

two modes of capillary waves. For the one mode, the sheet deforms as a whole an-

tisymmetrically, with hardly any change in thickness. In this mode the waves are

nondispersive. For the other mode, the sheet deforms symmetrically, and the dimen-

sional dispersive equation is, upon neglect of gravity effects and on the assumption

that the wavelength anywhere is much greater than h,

Th
c2 ~k2,

P

where T is the surface tension, p is density of the fluid, and c and k are the di-

mensional phase velocity and wave number, respectively. (See Whitham, 1972, p.
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Fig. 3. (a)-(d). Pattern of internal waves created by a moving body,

(a) NF = 0.01, (b) Nf = 0.05, (c) Nf = 0.1, (d) NF = 0.15.



28 CHIA-SHUN YIH AND SONGPING ZHU

405.) We shall use h as the length scale and {phl/T)y!2 as the time scale. Then the

dimensionless dispersion equation becomes

c — k, or F(k) = ck = k2.

Putting this into (11) and (12), we have

.. a(l-2k2)

k2

in which the square root may be positive or negative, while k is restricted to values

less than 1.

It is a very simple matter to show that the x and y given above satisfy a parabolic

relation

; = <*>

The source of the disturbance is at x = 0 = y, at which a must be taken to be zero.

Along the centerline (y = 0) in front of the disturbance, the dimensionless k is 1.

That is to say, the dimensionless wavelength A (in units of h) is 2n. Hence to show

the wave pattern one must take successively

a = In, 4n, 6n, etc.

Whitham (1972, pp. 415-416) gave a more indirect derivation of the pattern of

capillary waves in thin sheets, and obtained "roughly parabolic crests" in his Fig. 12.7.

From our derivation here it is clear that the crests are not merely roughly parabolic,

but exactly parabolic.

We note that Whitham's Fig. 12.7 (Whitham 1972, p. 416) is for the disturbance
moving to the left. Our formula (56) is for the disturbance moving to the right.

Otherwise our pattern for capillary waves is the same as his.

4. Gravity waves in the wake of a moving body. The wake behind a moving body

is an important effect of viscosity, for it is ultimately related to the boundary layer

on the body. Again let U2/g be the length scale and use x and r as dimensionless

coordinates, r being the radial distance from the x-axis. The velocity distribution

in the wake can take a variety of forms, depending on the shape of the body and

the Reynolds number, as is well known. Using U again as the velocity scale, the

dimensionless velocity can be represented, without serious error, by a class of profiles

as follows (a and /? are not the same as in subsection 3.3):

u= 1 — ax-2/3exp(-j?r2Jt-2/3). (57)

The momentum flux across any section of constant x below the free surface is, for

the mean flow given by (57),

(58)

and this is equal to the viscous drag force CoApU2, if A is a cross section of the

body and Co the coefficient of drag. This equality is based on the neglect of the
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Fig. 3. (e)-(h). Pattern of internal waves created by a moving body,

(e) Nf = 0.2, (f) Nf = 0.5, (g) Nf = 1, (h) NF = 2.
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longitudinal stress across any section of constant x, and gives

f<59)
where FA is a Froude number based on a linear dimension A '/2, defined by

/y4

K = TT-7- (60)

In our calculation we have taken

Co = 0.05, (61)
a 1 (62)

This corresponds to

p 20'

-er-0.89, (63)

not an unreasonable number. Other values of Co and FA can be taken, resulting in

other values of a//?.

On the free surface (57) becomes

u = 1 - ax_2/3exp(-f}y2x~2/3). (64)

We shall assume this velocity to be prevailing in the fluid, and furthermore shall

assume the wave motion to be irrotational. This requires some justification and

explanation. Assuming (64) throughout the fluid amounts to assuming that the wave

motion does not penetrate the fluid significantly to distances below the free surface

where u is very different from that given by (64). This is true only if x is large. As

to the irrotationality of the wave motion, one justifies it on two grounds.

(i) The length scale of the variation of u for large values of x is large, and therefore

much greater than the wavelengths in the wave region.

(ii) All the vorticity lines for the flow (57) are circles in planes normal to the x-

axis. Near the free surface they are nearly vertical, whereas the local wave motion,

assumed irrotational in the plane containing the wave-number vector and a vertical

line, can become rotational only if the local wave motion bends the vertical vorticity

lines of the mean flow in the direction of the phase lines. But any bending of the

vorticity lines by the local wave motion would be in the direction normal to the phase

lines. Thus the irrotationality of the local wave motion is hardly affected.

We can use equations (3) and (4) again, but must modify (6) to

u£ = F{k). (65)

The calculation is one of step-by-step computation, as k is increased from ko (now

not constant) on the centerline toward kc (at the cusp) and beyond. The k$ for the

transverse waves on the centerline is determined from (64).

We have performed the calculations for

a = 1/8,1/4,1/2,3/4,

fi = 2.5,5, 10, 15.
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The results are shown in Fig. 4, in which (a) is for (a,/?) = (1/8,2.5), etc. In

starting the lines of the same phase, we start with x = 8 on the centerline, calculate

the wavelength of the transverse wave there, and mark off the next point on the

centerline of the same phase, and use that point to start the calculation for the next

line of the same phase, and so on. From Fig. 4 it can be seen that near the centerline

the transverse waves bent back toward positive x more pronouncedly than in the

Kelvin-wave pattern, but become straight sooner. The curvature of the transverse

waves at the centerline is larger when there is a wake.

For the Kelvin-wave pattern,

£ = £c = (3/2)1/2

at the cusp, and <f>c = 19°28'. In our case, since u in (65) is variable, it is not obvious

that (j)c has the same value. However, our calculations seem to give the same value.

An explanation of this on analytical grounds goes as follows. It can easily be verified

that for any fixed value of u the maximum value of dti/ck.I occurs at £ = (3/2)1/2,

and gives (f>c — 19°28'. Now fix the * and y in u, and perform the calculation for

the phase lines as if u were constant. A cusp is encountered at some point (xc, yc).

If these are not the same as the fixed x and y, the cusp has no real significance. But

if they happen to be the same, then, since the calculation in a neighborhood of that

point is now valid, it must be a cusp in the wave pattern. This can be seen in the

following way. Start from any cusp point (xc,yc), calculate u(xc,yc), fix u at this

value, then use the equations of Section 2 to trace out the two branches of the phase

line originating from the cusp. Let us call this line A. Then starting from the same

cusp, use the actual u in the step-by-step numerical computation in this section to

trace out the two branches of the phase line originating from the cusp. Let us call

this line B. Lines A and B are not the same, of course, but they have the same cusp

and are nearly coincident near the cusp.

5. Range of k values for the figures. For the benefit of those who wish to reproduce

the wave patterns given in the figures of this paper, we supply the ranges of the values

of the dimensionless k for each of the figures, except Figures 4(a)-4(d), in Table 1.

Table 1

Values for /cmin and k at cusp for the figures.

Figure 1 2a 2b 2c 2d 2e-2h

kmin 1 25 6.24995 2.7554 1.37458 1.5
A: at cusp (3/2)1/2 37.432 9.39995 4.0574 1.74508

Figure 3a 3b 3c 3d 3e-3h

A:min 196.0784 7.84313 1.91763 0.6113 0.3
A: at cusp 294.3604 11.74913 2.72963 0.7933

For Figures 4, the minimum k for each of the phase lines is for the transverse wave

at the centerline, and this minimum k is determined by the equality of the local wave

velocity of the transverse waves at the centerline and the local speed of the fluid in the

wake. Because of the nonhomogeneity of fluid velocity in the wake (even apart from
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Fig. 4. (a)-(d). Pattern of gravity waves in the wake of a ship, (a)

a = 1/8, p = 2.5, (b) a = 1/4, p = 5, (c) a = 1/2,/? = 10, (d)

a = 3/4, yS = 15. The phase difference between consecutive phase

lines is approximately 1 radian.
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wave effects), the spacing of crests at the centerline cannot be determined simply, and

can only be approximated by computing the locations of many intermediate phase

lines. For this reason only phase lines, which are not necessarily crests, are shown

in Figure 4, to give a general idea of the wave pattern. The maximum k for all the

figures, including Figure 4, is infinity. We have simply stopped at a large enough

k when the position of the disturbance has become too near to draw phase lines

distinctly. We believe this description will be sufficient to guide anyone wishing to

reproduce our figures.
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