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Abstract. The Stroh formalism of anisotropic elasticity leads to a 6 x 6 real matrix

N that can be composed from three 3x3 real matrices N; (/ = 1,2,3). The eigenvalues

and eigenvectors of N are all complex. New identities are derived that express certain

combinations of the eigenvalues and eigenvectors in terms of the real matrices N, and

the three real matrices H, S, L introduced by Barnett and Lothe. It is shown that

the elements of Nj and N3 have simple expressions in terms of the reduced elastic

compliances. We prove that -N3 is positive semidefinite and, with this property, we

present a direct proof that L is positive definite.

1. Introduction. In a fixed rectangular coordinate system x,, let the stress 07j and

strain etJ of an anisotropic elastic material be related by

°ij = Cijks 1 (1-1)

in which repeated indices imply summation and Cljks are elasticity constants having

the symmetry property

Cijks = Cjiks ~ Cjjsk = Cksij■ (1-2)

If uk are the displacement components, the strain-displacement and equilibrium

equations are

^ks 2 fak.s ^s,k)> 0*3)

aUJ = 0, (1.4)

where a comma stands for partial differentiation.

Consider a two-dimensional deformation in which uk (k — 1,2, 3) depends on X\

and x2 only. The general solution has the form [1,2]

uk = akf{z), (1.5)

z = xi + px2, (1.6)

where p and ak are, respectively, the eigenvalue and eigenvector of the elasticity

constants to be determined and / is an arbitrary function of its argument. One then

obtains from (1.1) and (1.3)

  Oij - [Cijkx + pCijk2)akf'{z), (1.7)
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where a prime denotes differentiation with its argument. Equation (1.4) now leads

to, in matrix notation,

{Q + />(R + RT) + p2T}a = 0 (1.8)

in which the superscript T denotes the transpose and the 3x3 matrices Q, R, T are

Qik ~ Ci\k\<

Rik = Cnk2, (1.9)

Tik = Cj2k2-.

We note that Q and T are symmetric and, subject to the positiveness of strain energy,

are positive definite. Equation (1.8) provides the eigenvalues p and the associated

eigenvectors a.

Introducing a new vector

b = (RT + pT)a=-^(Q + pR)a, (1.10)

where the second equality comes from (1.8), (1.7) for i = 1 and 2 can be written as

Oil = -<t>i,2< Oi2 = <j>i,\, (1-11)

where <j> is the stress function given by

<$> = b/(z). (1.12)

The two equations in (1.10) can be rewritten in the following standard eigenvalue

problem

N t = pt, (1.13)

in which [2, 3, 4]

N = € = (1.14)

(1.15)

(1.16)

N, N2

N3 N}j

N,=-T-'Rt, N2 = T-'=Nj/

N3 = RT'Rt-Q = N]\ }

In view of the symmetry of Q and T, we see that N2 and N3 are symmetric. If we

introduce the 6x6 matrix J,

J=[° 11
Li o.

where I is the identity matrix, we have

JN = (JN)T = NtJ. (1.17)

In this paper, we will present new identities which relate p, a, b, and N, (i = 1,2, 3).

We will show that Nt and N3 have simple structures whose elements can be expressed

in terms of the elastic compliance which is the inverse of Cijks. With the

property that -N3 is positive semidefinite in any reference coordinate which is rotated

about the x3-axis, we present a direct proof that the real matrix L introduced by

Barnett and Lothe [5] is positive definite.
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2. The orthogonality relations. There are six eigenvalues and six eigenvectors from

(1.13). Since p cannot be real if the strain energy is positive [6], we have three

pairs of complex conjugates for p. If Pa (a = 1,2,..6) are the eigenvalues and (a

(a = 1,2,..., 6) are the associated eigenvectors, we let

Pa+3 = Pa, Im pa > 0,

U3 = ta (a =1,2,3),
(2.1)

where an over bar denotes the complex conjugate. Unless stated otherwise, we assume

that pa are distinct so that (a span a six-dimensional space.

The left eigenvectors rja satisfy the equation

NTr, = pV, (2.2)

and are bi-orthogonal to (a. If we multiply (1.13) by J and use (1.17), we have

NT(J0 = p( J£). (2.3)

We may therefore take [4,7]

V = J£, (2.4)

and normalize the so that the bi-orthogonality relation takes the form

Otp = SaP, (2.5)

in which 5ap is the Kronecker delta.

Introducing the 3x3 matrices A and B by

A = [ai,a2,a3], B = [b1,b2,b3], (2.6)

and the 6x6 matrix U by

A A

B B
(2.7)

the orthogonality relation (2.5) can be written as

UTJU = I. (2.8)

Expanding the matrix product on the left using (1.16) and (2.7) leads to

AtB + BtA = I = ATB + BTA (2.9a)

ATB + BtA = 0 = ATB + BTA (2.9b)

Equation (2.8) implies that UT and JU are the inverse of each other and hence the

order of the product can be interchanged. We have

JUUT = I, (2.10)

or
AAt + AAT = 0 = BBt + BBT, (2.11a)

BAt + BAT = I = ABt + ABT (2.11b)
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Equations (2.1 la) imply that AAT and BBT are purely imaginary. Hence let

H = 2/AAt = Ht, (2.12)

L = -2/BBt = Lt, (2.13)

where H and L are real and symmetric. Equations (2.1 lb) imply that

ABt = \(I - iS), S = z(2ABt - I), (2.14)

where S is real. (In Sees. 4 and 6, S is used for the elastic compliance.) The three

real matrices H, L, S, first introduced by Barnett and Lothe [5], can be shown to

have simple structure when referred to a suitably chosen basis [8], Moreover, H and

L are positive definite, if the strain energy is positive [4],

From the relations

BA_1 = (ABt)t(AAt)-1, AB"1 = (ABt)(BBt)-1,

and (2.12) to (2.14), we obtain

BA_I = z'M, AB~' = — z'M-1, (2.15)

where M is the impedance matrix [9]

M = H~'(I + iS) = (I - iST)H~l, (2.16a)

M~1 = L"1 (I + /ST) = (I - /S)L"1. (2.16b)

The second equalities in (2.16) come from the fact that H~'S and SL-1 are antisym-

metric [10, 4, 7], Hence M is a Hermitian matrix.

Before we close this section we write the general solution for u and <f> obtained

from (1.5) and (1.12) as

3

U = ^{aQ/Q(zQ) +a^/a+3(z'Q)}, (2.17a)

a= 1

3

<P = ^2{bafa(za) + bafa+3(za)}, (2.17b)
Qr=l

in which f, are arbitrary functions of their argument and

za= X\+ pax2. (2.18)

If we define the 3 x 1 matrices ti and by

ti = 021

L ct31 J

h =
<712

(722

C32

(2.19)

the stresses are, by (1.11),

ti = —0,2, t2 = <t>, l- (2.20)

We see that ti and t2 are, respectively, the surface traction on the x\ = constant plane

and X2 = constant plane.
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3. Identities involving the eigenvalues p. If we write the inverse of N as

N"1 =
N(-i) n^'»

Ln(-') n(-»t

N"
AP"

BP"

N"

It is readily shown from (1.17) that

aat abT1
bat bbt

Therefore, if N" is written as

N" -

we have

Nf) N^)
n(") N(")t .

(3.1)

(3.2)

it can be shown that [4]

N(f1} = -Q-'R, N<-1} = -Q-' = (N^_1))T,1
Nj-i) =T-RtQ-'R = (N^_1))t. J

From (1.13) we see that for any integer n, positive or negative,

N nt = pnZ. (3.3)

Using the notation of (1.14) and (2.6), we have

(3.4)

in which P is the diagonal matrix

P = diag[/?i, pi, p3]. (3.5)

If we post-multiply (3.4) by [AT, BT] we obtain

AP"AT AP"Bt
(3.6)BP"At BP"Bt

JN" = (JN")t. (3.7)

(3.8)

(3.9)

(3.10)

Nl,") = N^T, = N^)T,

Nf) = I, N^0) = N^0) = 0.,

Using (2.12), (2.13), (2.14), and (3.8) on the left-hand side of (3.6) leads to the
following identities for any integer n:

AP"At = j(N^M - i"N^)H,

AP"Bt = i(N^M_1 + /N^»)L,

BP"At = i(N^"»TM - /N^)H,

BP"Bt = i(N^M-' + /N^'T)L(j

in which M is defined in (2.16).

Since the 6x6 matrix on the right-hand side of (3.6) is symmetric, the product of

the two 6x6 matrices on the left-hand side must also be symmetric. This property

leads to, using (3.7) and (2.12) through (2.14),

"Nf> Ni,") I" S Hi _ I" S Hi [N{"> '
.n("' N^»tJ l —L StJ ~ [-L STJ [n(") N^)t. (3.11)
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This is equation (14) in [11],

If we post-multiply (3.4) by [A-1, B-1] and use (2.15), we have

AP"A_1 = N^> + /N^M,

AP"B~' = N^ -

BP" A"1 = + /N^M,

BP"B_1 = N1,"^ -

(3.12)

From the relations

(AP B" )(BP-"A~ ) = I,

(3.13)(AP"A-1)(AP~"B-1) - -z'M"

(BP"A-')(AP"nA-1) = zM,

more identities can be obtained by substituting (3.12) into (3.13).

We note that the left-hand sides of the identities in (3.10) and (3.12) involve

products of complex quantities for which it is not clear what the real and imaginary

parts are. The right-hand sides of the identities provide the answer to the real and

imaginary parts. These identities will be useful in obtaining a real form solution to

two-dimensional anisotropic elasticity problems. (See [ 12], for example.) Identities

(3.10) for n = 1 have been obtained by Nishioka and Lothe [13] for the real parts

and by Bacon et al [14] for the imaginary parts. For n ± 1, the real parts of

AP~'At, AP2At, BP_1Bt, and BP2Bt

are presented in [13], and the imaginary part of AP2AT is given in [15].

4. Positive definiteness of the reduced elastic compliance. In many applications, it

is more convenient to write the stresses and strains as 6 x 1 column matrices <r and

e by introducing the notation

(4.1)

£ll=£l, £22 = 22- ^33 = £3. I ^2)

2£23 = e4- 2fi3i = £5, 2fi[2 = Ee- J

The stress-strain laws (1.1) can then be written as

= Ce, (4.3)

in which C is a 6 x 6 symmetric matrix. The inverse of (4.3) is

e = S a, (4.4)

where S denotes (in this section and in Sec. 6 only) the elastic compliance, which is

also symmetric. The strain energy W is

W = jOijBij = \aTe = {£JC£ = (4.5)

which tells us that C and S must be positive definite for W to be positive.
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For the two-dimensional deformations considered here

e3 = 0 = S-$jOj. (4.6)

Solving for cr3 and substituting in (4.4), we have

e, = Y,Su°j< 3, (4.7)
m

in which the symmetric matrix

Su = Sij - Sl3S3j/S33 (4.8)

is the reduced elastic compliance. Since

<S,3 = S3i = 0 for any i, (4.9)

there is, in fact, no need to exclude j = 3 in the summation of (4.7). Likewise, there

is no need to exclude i = 3 in (4.7) because it reduces to a trivial identity when i = 3.

The matrix S considered as a 6 x 6 matrix has zero elements on the 3rd column and

the 3rd row. If we remove the 3rd column and the 3rd row, the reduced 5x5 matrix

S is positive definite. To see this, we introduce the 5 x 1 matrices a and e which are

obtained, respectively, by deleting from a and e the third element. Equation (4.7) is

equivalent to

e = S&. (4.10)

In view of the fact that e3 = 0, the strain energy is

W = \aJk = (4.11)

which shows that the 5 x 5 matrix S is positive definite if W is. In particular, the

2x2 matrices

Sn 415
Sl5 ^55.

,22 .24
*$24 *$44

are positive definite. So are the following two matrices

■Su —Sis

-Sis Sss \

S22 —S 24

—S24 '^44

(4.12)

(4.13)

because the eigenvalues of these two matrices are identical to the eigenvalues of the

corresponding matrices in (4.12), which are positive and nonzero. These two matrices

will be useful later on in representing the elements of N3 and N^-1'.

5. Representation of uniform strain solution. When the strains s,j are uniform, the

displacements m; are, aside from a rigid body translation, linear in the coordinates

Xj. We may write

Ut = (Eij + MU)Xj, (5.1)

where is an arbitrary antisymmetric constant matrix. This satisfies the strain-

displacement equations (1.3). For the two-dimensional deformations considered

here, 633 = 0, and the w, do not depend on x3. We therefore choose

0 a> —£13

-co 0 -e23 . (5-2)

.£l3 e23 0 .
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where a> is an arbitrary constant. Equation (5.1) now has the form

u = £\X\ + £2*2. (5-3)

in which

£1 =

The following question arises.

£11

e,2 - a>

2ei3

£12 + w

£22

2£23

£l

6 -

£5

2 £6 CO

j£6 + CO

£2

£4

(5.4)

Inasmuch as (2.17a) is a general solution for u, how

does one choose the arbitrary functions fa so that (2.17a) reduces to (5.3)?

The first step is to let fa be proportional to its argument. Since u is real, we let

3

u = ]T(a,azaqa + a azaqa), (5.5)

a=l

where qa are arbitrary complex constants. The problem is to determine the constants

qa. Introducing the diagonal matrix

Z = diag[zi, z2, z3] = X)I + x2P, (5.6)

we write (5.5) in matrix notation as

u = AZq + AZq = (Aq + Aq)xj + (APq + APq)x2- (5.7)

In view of (5.3), we have

Aq + Aq = £ 1, 1

APq + APq = £2/
If we let

h = Aq, (5.9)

we obtain _
h + h =

(5.8)

APA~'h + APA 'h = £2.
(5.10)

The first equation of (5.10) tells us that the real part of h is e\/2. The imaginary

part of h can be determined from the second equation of (5.10). With APA-1 given

by the identity in (3.12), the result is

2h = e, -/{HT£2 + (HRT + S)£l}
= 2A{AtT£2 + (AtRt + BT)£,},

where the second equality is obtained with the use of (2.12) and (2.14). It follows

from (5.9) that
q = AtT£2 + (AtRt + Bt)£1. (5.12)

Associated with (5.5) or (5.7) is the stress function

(f> = BZq + B Zq = (Bq + Bq)xi + (BPq + B Pq)x2. (5-13)

With q given by (5.12) and using (2.13), (2.14), and the identities in (3.10), we have

<j) — (RT£ 1 + T£2)Xi — (Q£i + R£2)^2- (5.14)

We will show in the next section that this leads to a correct stress-strain law.
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6. Representation of Ni, N3, N1', and N^1'. In this section we will derive an

alternate expression for the 3x3 matrices Ni, N3, and N^_1) defined in (1.15)

and (3.2). With the elastic constants C,^ redefined as a 6 x 6 symmetric matrix Cap,

the 3 x 3 matrices of (1.9) have the expressions

Cn Ci6 C15

Q =

R —

T =

Qi Q6 Q 5
C5I C5 6 C55.

Cl6 C\2 C\4

C(,6 Q 2 Cm

.C56 C52 C54.

Cs6 Q2 Q4
C26 C22 C24

. ^46 ^42 ^44 -

(6.1a)

(6.1b)

(6.1c)

We notice that

Hence

Rik — T\ k, Rki — Qk2• (6-2)

(N1),-2 = -(T-1RT),-2 = -(T-1)1.,i?2,

= -(T ~x)ikTxk = -dn
(6.3)

/!•
This means that the second column of Ni has the elements (-1,0,0). Next, using

(6.2) and (6.3),
(N3),-2 = ^(T-'RtU2-(2/2

= Rik<>k\ ~ Ril = 0.

Therefore, the second column and, in view of the symmetry of N3, the second row

of N3 contain only tero elements. Similarly, one can show that

(Nf!1))n =-Si2, (6.5)

(N<~'>),-, =0. (6.6)

With the new notation for the stresses, (2.19) is equivalent to

ti =
0\

L cr5 J

h —
^6

a2

L(74

and (4.3) in conjunction with (2.20) can be written as

— <t>,2 = ti = Qei + R^2. 1

<t>,\ = t2 = Rt£i + Te2, )

(6.7)

(6.8)

in which e\ and £2 are defined in (5.4). In view of (6.2), the arbitrary constants co

contained in £\ and e2 on the right of (6.8) cancel each other. We see that <j> given

by (5.14) satisfies (6.8). By eliminating e2 or between the two equations in (6.8),

we obtain

-N3£i = tj + N}t2, (6.9a)

N^I)e2 = (N(1-1))Tt1+t2. (6.9b)
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We will consider (6.9a) first. The arbitrary constant co in the second element of

£ i disappears after multiplication by N3 because the second column of N3 contains

only zero elements. If we use (4.7) to express e\ in terms of 07 on the left of (6.9a)

and use (6.7) to express ti and t2 in terms of 07 on the right of (6.9a), we can equate

the coefficients of 07. Using the properties (6.3) and (6.4), we find that Ni and N3

have the expressions
~ £55 0 -51S"

0 0 0, (6.10)

.-5,5 0 5,, .

r6 1 s6

r2 0 s2 > (6-11)

. r4 0 54.

-N, = I

-N, =

in which

A = 5n 555 -(515)2 >0,

n = (-S55Su + Sl5S5i)/A (i = 6,2,4), (6.12)

Si = (Sl5Su-SnS5i)/A (i = 6,2,4)..

In the same manner, we obtain from (6.9b) the following expressions for N(3_1) and

N(f1).

N(-n _ 1
A'

0 0 0
0 544 —524

0 -524 522

0 r[ 5,

1 r6 S6

0 r'5 s'5

(6.13)

(6.14)

in which

A' = 522544 - (524)2 > 0,

r\ = (-54452/ + 52454,)/A' (/' = 1, 6, 5), (6.15)

= (52452, - 52254,)/A' (/= 1,6,5)..

From the positive definiteness of the matrices shown in (4.13), we see that A and

A' are positive and -N3 and N^-1^ are positive semidefinite. To be more specific, let

y be a 3 x 1 constant matrix. Then

yT(-N3)y>0. (6.16)

The equality holds only when y\ = ^3 = 0. For the equality holds only when

y2 = y3 = 0.

7. A direct proof of positive definiteness of L. The three real matrices H, L, and S

of (2.12), (2.13), and (2.14) can be obtained by an integral formalism proposed by

Barnett and Lothe [5] in which the necessity of finding the eigenvalues pa and the

eigenvectors aa, bQ is circumvented. For L, the integral is

L= - f -N3{co)dco, (7.1)
71 Jo
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in which
N3(ca) = R(w)T~> (m)RtM - Q(eo), (7.2)

and Q(w), R(<u), T(<w) are the generalization of Q, R, T of (1.9) defined as

Qlk{co) = CijksnJns, j

Rik(a>) = Cijksnjms, I (7.3)

Tik{(o) = Cijksmjms ,J

«, = [cos co, sin co, 0], m, = [-sinco, cosa>, 0], (7.4)

When co = 0, (7.3) reduces to (1.9).

We introduce a new coordinate system x*, which is obtained from x, by rotating

about the ,x3-axis an angle co. That is,

x* = Six, (7.5)

cosco sinw 0

& = -sin co cos co 0 ■ (7.6)

. 0 0 1.

The elastic constants C*jks referred to the rotated coordinates x* are

c*jks = nipn jqakrastcpqrt. (7.7)

Noticing that
Qij = rij, Q2j = m j, (7.8)

it is readily shown that (see also [16])

Qik ~ Ci\k\ = QipQkrQpr(&>),

Rlk = c*lk 2 = nipnkrRpr(co), (7.9)

T*k = C*2k2 = nipnkrTpr(co),.

or, in matrix notation,

Therefore,

where

Q((o) = ilTQ*Sl,

R (co) = aTR*i2,

T(co) =

(7.10)

N3(ta) = (7.11)

Nj = R*T*~'R*t - Q*. (7.12)

It should be pointed out that while N3 has the same simple structure as N3 shown in

(6.10), the structure of Nj(fe)) does not have such simplicity. Nevertheless, it is clear

that —Njj and -N3(ci>) are, like -N3, positive semidefinite.

To prove that L of (7.1) is positive definite, let y be an arbitrary 3 x 1 constant

matrix and consider

yTLy = — [ -yJNi(co)ydco. (7.13)
n Jo

By (7.11) the integrand is

-yTN3My = y*T(-N3*)y*, (7.14)
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y* = fty. (7.15)

According to (6.16) and the discussion following it, the right-hand side of (7.14) is

either positive or zero. It is zero only when y* = y* = 0, which means, by (7.15),

y3 = 0 and tan co = -y\/yi. We see that tan co = -y\/yi provides only one value of

co if 0 < co < n and two if 0 < co < In. Therefore the integrand is either positive

for all co (if y3 7^ 0) or positive except at the specific co at which tana> = —y\/yi (if

yi = 0). Consequently the integral in (7.13) is positive and L is positive definite.

The fact that L is positive definite has been shown indirectly by Chadwick and

Smith [4] by considering the strain energy of a line dislocation. The above derivation

is a direct proof that L is positive definite.

Note added after the paper was accepted. It has come to our attention that an alter-

nate direct proof that L is positive definite has recently been presented by Gundersen,

Barnett, and Lothe [17],
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