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THE WINDING OF A RELAXED ELASTIC LINE ON A CYLINDER*
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Abstract. We analyze several cases of the boundary-value problem that determines the

path of a relaxed elastic line on a cylinder. A short line with oblique initial tangent

deviates from the corresponding helix toward the direction of the axis of the cylinder. A

line initially directed along the base circle continues to wind circumferentially if the ratio

of its length to the radius of the cylinder does not exceed the critical value 77/23/2; longer

lines deviate from the circle. Infinitely long elastic lines wind in proportion to the

logarithm of their arc lengths, as distinct from the direct proportion of a helix. Possible

implications for biological structures are discussed.

1. Introduction. We recall from an earlier paper [1] the definition of a relaxed elastic line

as an arc with fixed initial point and direction and minimum elastic energy /0'k2(.s)<&,

where ^ is arc length, k(s) the curvature of the arc, and / > 0 the length /0'ds of the arc. If

the elastic line is constrained to a curved surface, it generally cannot be straight when

relaxed, because k(s) cannot vanish along its length. The relaxed path is determined by

the solution of a variational problem with boundary conditions determined by the

specified position and direction at 5 = 0 and the freedom of the line at .? = / [1,2],

We showed in [1] that the boundary-value problem for a general surface is solved for a

plane or sphere by the arc of a geodesic, thus confirming the obvious statement that an

elastic line relaxed on a plane is straight but lies along a great circle if confined to a

sphere. We also showed that the relaxed path is not geodesic (i.e., not a helix) if the

surface is a cylinder. A proof that the plane and sphere are the only two surfaces with

geodesic relaxed elastic lines may be found in [2], This result is not obvious. Indeed, in the

limit / -» 0, a relaxed elastic line on any surface is geodesic [1], To bend away from the

geodesic curve at any point thus requires energy. The behavior of a short (but nonzero)

elastic line is therefore not clear in advance of the calculations. One of the results in this
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paper is that a short elastic line initially directed along the base circle of a cylinder

continues to wind along the circle, but a short line directed obliquely does not wind along

the corresponding helix. One aspect of the qualitative behavior of a long elastic line, on

the other hand, is clear. A long line will tend toward the principal direction of minimum

curvature; whatever increase in energy accompanies the local deviation from a geodesic is

then more than compensated by the decreased energy along most of the length of the rod.

We examine here some solutions for a cylinder of the boundary-value problem posed in

[1] for a general surface. The principal direction of greatest normal curvature on a cylinder

is along the base circle, and we will refer to the circumferential direction. The axial

direction is understood to be that of the axis of the cylinder and represents the direction of

least curvature. The nucleosome core particle in chromosomes provides biophysical

motivation, as discussed in [1], Considerations on this structure, suggested by our result

that an elastic line relaxes on a cylinder by tending strongly toward the axial direction, are

presented.

2. Boundary-value problem for the cylinder. The path of a relaxed elastic line on a right

circular cylinder, with initial direction fixed, is a solution of the following system of

equations [1], wherein u(s) is the coordinate value at s that measures distance along the

base circle of radius R, v(s) is the distance along an axially directed generator, X(s) is a

Lagrange multiplier, and a prime denotes differentiation with respect to 5,

u"' - u'(X + 2R-2u'2) = 0, (1)

v — Xv' = 0, (2)

u'2 + v'2 = 1. (3)

Equations (1) and (2) are Euler-Lagrange equations, while Equation (3) recognizes that s

is arc length. Both v and A are readily eliminated to yield an equation for the M-coordi-

nate. With the assumption that u' is nowhere equal to ± 1, we get

u + u'u"2/( 1 - u'2) - 2/T V3(l - u'2) = 0. (4)

We introduce the dimensionless quantities a = s/l and ju.(a) = u/l, where / is the fixed

length of the elastic line. With the convention that a prime on a Greek letter means

differentiation with respect to a (as distinct from a prime on a roman letter, which means

differentiation with respect to s), we can rewrite Eq. (4),

y" + YY'VO - y2) = 2/-V(i - Y2), (5)

where y = /x', and r = l/R, the constant ratio of the length of the elastic line to the radius

of the cylinder.

We have to specify two boundary conditions for the second-order equation (5) for y(a).

The first,

Y(0) = a, (6)

reflects the initial direction of the elastic line. The extreme values of a an3 zero for an

initially axial direction, and +1, when the curve initially proceeds in a counterclockwise

circumferential direction. The second boundary condition,

Y'(1) = 0, y(1)#±1, (7)
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is obtained from Eq. (40) of [1] by eliminating v" (with the help of Eq. (3) above) and

corresponds to a free end.

The solution is obvious if the initial direction is axial. Indeed, if a = 0, the function

Y(or) = 0, corresponding to a generator (straight line), solves Eq. (5) and the boundary

conditions at both ends.

3. Short elastic line with initially oblique direction. We look first at the case of small r.

The reader may wish to have in mind the picture of a short elastic line (small /) on a piece

of cylindrical surface formed by slight bending of a plane (large R). We will solve Eq. (5)

by a second-order perturbation procedure.

Let

y(°) = Yo(CT) + Hi(°) + r2y2(a) + ■■■ . (8)

Equations (6) and (7) imply

Yo(°) = a> Yi(0) = 0, y2(0) = 0,

Yo(l) = 0, Yl'(l) = 0, y2'(l) = 0.

Substitution of Eq. (8) into Eq. (5), followed by independent treatment of the coefficients

of the various powers of r, yields a hierarchy of equations of the form

Yo" + YoYoV(l ~ Yo ) = 0, (10)

Yi" = Yo/(yo,Yo,Yi,Yi')> (11)

Y 2 = 2Yo(l - Yo) + &( Yo> Yo> Yi> Yi< Y2> Y2)' (n)

where the functions / and g are well-behaved except for the extreme case a = 1, which

will be discussed separately. The solution of Eq. (10) that satisfies Eqs. (9) is y0 = a.

Substitution into Eq. (11) gives y" = 0, from which Yl = 0 in order to satisfy Eqs. (9). The

function g in Eq. (12) is composed of several terms, each of which is proportional to y,- or

y[, hence vanishes. Thus, y2' = 2a3(l - a2), from which, with Eqs. (9), y2 = -a3( 1 -

a2)o(2 — a). To second order in r, then

y(a) = a - r2a}( 1 - a2)a(2 - a). (13)

Since y = /x', we can get n(a) by integration and then convert to the original coordinate

function u(s) = /ju. The axial coordinate u(s) is obtained by application of Eq. (3). The

result, if the initial point [u(0), v(0)] = (0,0), is

u(s) = as[l — R~2a2( 1 — a2)s(l — 3$)], (14)

v(s) - ± ]/1 - a2 s [l + R 2a4s(l — ys)]. (15)

The upper sign is chosen if the elastic line is initially directed in a right-handed sense; the

lower sign applies to the left-handed sense.

In agreement with the general considerations in [1], the relaxed elastic line approaches

the geodesic corresponding to the initial direction, in this case the helix u = as, v =

+ ]/1 - a2 s, if its length / is sufficiently short. If, however, longer elastic lines are

considered, their relaxed trajectories depart increasingly toward the axial direction from
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the corresponding helix; the rate of increase of the circumferential coordinate u(s) slows,

while the axial coordinate v(s) proceeds at a faster rate to maintain Eq. (3).

The case a = 0 is represented, according to Eqs. (14) and (15), by the generator u = 0,

v = ±s, while a = 1 gives an arc along the base circle, u = s, v = 0. The latter case is

delicate, however. Although there is no hint in Eqs. (14) and (15) of a problem at a = 1,

we have already noted that both the differential equation (4) and the boundary equation

(7) are valid only if u' ¥= 1. We will now discuss the case of an initially circumferential

direction and get an interesting result.

4. Initially circumferential direction. We return to the original system of Eqs. (1-3) and

eliminate A(s) and u(s),

V + v'v"2/(\ - v'2) + 2R 2v'(\ - v'2)2 = 0. (16)

Now we. may investigate solutions lying near u(s) = s, since, for them, v'(s) is close to

zero (see Eq. (3)), and there is nothing indeterminate in Eq. (16). The boundary conditions

are u(0) = 0, i>'(0) = 0, v"(l) = 0, the second of which corresponds to the initially

circumferential direction of interest in this section, and the third to a free end.

Going over to the dimensionless quantities a = s/l, v(a) = v/l, and introducing

co = v\ we get

u" + wco'VO - «2) + 2r2w(l - w2)2 = 0 (17)

with boundary conditions <o(0) = 0, w'(l) = 0. Equation (17) and the boundary condi-

tions are satisfied by « = 0. We seek other solutions of Eq. (17) that lie near the base

circle of the cylinder. Thus, u and its derivatives are small quantities, and Eq. (17)

becomes

u>" + lr2u = 0, (18)

if we neglect terms of third order in smallness. (Note that r in this section is not regarded

as either small or large.)

The general solution of Eq. (18) is

« = A sin(v^2Va) + Bcos(j2ro) (19)

and the boundary conditions provide two equations for the integration constants A and

B, from which B = 0 and

Acoi(\llr) = 0. (20)

Equation (20) does not determine A uniquely. One solution is A =0, and tells us again

that a circumferential arc is an equilibrium position, but not necessarily a stable one, of a

relaxed elastic line of any length / with circumferential initial direction. But Eq. (20) is

also compatible with nonzero A and lengths / such that ^2 r = (2n + 1)(w/2) for integral

n. The shortest such length is I* = (■n/2}//1)R ~ 1.11/?, or about a sixth of the cir-

cumference of the base circle. There is an exchange of stabilities at /*; shorter elastic lines

with circumferential initial direction lie entirely along the base circle, but longer lines

become stable only by deviating toward the axial direction. The path of elastic lines of
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length I > /* is obtained by integrating w(a). With d(0) = 0, we get

d(j) = {A/tI2)r[\ - cos(v^5/^)]- (21)

It is understood that the approximate validity of Eq. (21) requires / to be not much greater

than /*, and A not much greater than zero. In fact, the boundary condition v"(l) = 0 for

the free end is satisfied only for 1=1*.

5. The infinitely long elastic line. For large r the picture should be that of a long,

narrow cylindrical tube with an elastic line wound around it. Before making appro?uma-

tions, we find it convenient to subject Eq. 5 to the transformation y = cos 6. In terms of 6,

which is the angle by which the elastic line is inclined from the base circle, Eq. (5) becomes

6" = -2r2cos3 6 sin#. (22)

A routine sequence of operations (multiplication of both sides by 6', use of the identity

29'0" = d6'2/da, then integration) yields

r~l6' = +(cos40 + q)1/2 (23)

where q is a constant of integration. The boundary condition equation (7) is compatible

with both 6'(\) = 0 and 0(1) = 0. The latter, however, implies that y(l) = 1, a third

boundary condition on y(a) that overdetermines it, in view of the second-order equation

5. Therefore, 9'(\) = 0, and the constant of integration cx is identified,

r~l8'(a) = [cos40(a) - cos40(l)]1/2. (24)

The positive sign has been chosen because, from Eq. (24), cos6(a) must not be less than

cos 0(1), so that 6' > 0. Returning to the original unknown y shows that integration of

Eq. (24) involves integration of the radical of a sixth-order polynomial, so further progress

without recourse to an asymptotic analysis for large r is blocked.

We have completed an analysis for distances .? near the end of an elastic line of length

/ s> R. A simpler procedure suggested by Nickerson provides sufficient insight, however,

and we will instead discuss her solution [2]. Equation (24) with 0(1) = w/2 is a first

integral of Eq. (22). A second integration gives

0(s) = tan"1^//*) + £■„], (25)

where

c0,= tan0o, 60 + +77/2, (26)

and we have returned to the variable .s = la. We now have a solution satisfying the initial

boundary condition 0(0) = 0O; however, it is compatible with the value <n/2 for 0(1) if and

only if / equals infinity. Equation (25) is therefore the solution of our problem for an

infinitely long elastic line. The coordinate functions u(s) and v(s) are obtained by
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integration of cos0 and sin#, respectively,

I + Cn [ 1 + C'n) 1
«(s)-R ln^  [ ,°;J , (27)

^0 +11 + Co)

0(5) = r{\\ +(i + c0)2]1/2 -(l + cl)X/2y (28)

Examination of the asymptotic behavior for great distances s along the infinitely long

elastic line is particularly instructive. The angle of inclination to the base circle, 6(s),

tends toward tt/2, and the axial coordinate v(s) ~ s. Thus, the path of the relaxed elastic

line becomes essentially axial regardless of the initial angle of inclination. However,

<p(.?) ~ ln(/«), where 4> = u/R is the winding angle (number of times the elastic line

winds around the axis of the cylinder, mod 277-), and b is the constant reciprocal length

2/?~1[c0 + (1 + Cq)1/2]~'. While striving toward the axial direction, the infinite elastic line

winds forever about the cylinder, but at a much slower rate than a helix, which winds in

proportion to .y.

6. Implications for biological structure. Chromosomes are giant nucleoprotein complexes

in which the carrier of genetic information, DNA, is elaborately packaged by systematic,

hierarchical winding about proteins called histones. In the first level of winding a stretch

of about 145 DNA base pairs (bp) winds almost twice around a core of eight histones. The

dimensions of the resulting structure, called the nucleosome core particle, are such that

one may visualize the protein octamer as a squat cylinder with ends, about twice as wide

as it is tall, with the DNA wound, like a piece of string, more or less helically on the

cylindrical surface. The top and bottom discs of the cylinder are free of DNA, and the

lateral surface is covered with DNA [3],

It may not be an accident that the nucleosomal length of 145 bp is about the same as

the persistence length of free DNA under near-physiological conditions (160 bp at 0.1 M

NaCl and 25°C). The persistence length of any polymer gives the scale on which the

polymer possesses elastic bending resiliency in the face of thermal buffeting by solvent [4],

Thus, nucleosomal DNA is not really like a piece of string; it is more like an elastic line, in

the sense of this paper. For both the kinetics of formation of the nucleosome core particle

and its final structure, the effects of the elastic resilience of DNA should be considered.

The critical length I* found above corresponds to about a 16 bp stretch of DNA. A

stretch of DNA longer than 16 bp will deviate toward the axial direction, even if it starts

winding circumferentially (i.e., with small pitch) around the histone core. The observed

winding of nucleosomal DNA is almost circumferential. The natural tendency of DNA,

due to its bending resilience, to deviate toward the axial direction as it winds would

provide opportunity for an orderly progression during the winding process. In the absence

of this effect, the bulky DNA polymer, on completing one turn, might collide with its

starting point.

The tendency of an elastic line toward the axial direction is quite strong. According to

Eq. 27, applied to the radial dimension of the nucleosome core particle, an infinitely long

DNA polymer, winding on an infinitely long cylinder with initially circumferential
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direction, would require 2 X ]06 bp to complete two turns around the cylinder. Of course,

thermal buffeting would have destroyed the elastic resiliency of DNA long before such a

length was reached, but, still, a comparison with 145 bp of two turns of nucleosomal DNA

is striking. In another view, the DNA polymer would complete only about half a turn after

145 bp, compared with two turns of 145 bp of nuclesomal DNA.

Elongated protein structures are commonly found, microtubules, for example. If nature

had at some point in evolutionary history tried to wind DNA on a long cylinder, she

would quickly have learned of the uselessness of this packaging scheme and gone on to

something else. The advantage of the small histone octamer could be that DNA, to avail

itself of the negative energy of binding to the octamer surface, must wrap efficiently.
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