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1. Model and equations. A carbon particle in combustion is a complex system involving

mainly: the diffusion of temperature and oxygen, the production and diffusion of carbon

monoxide, and the production and subsequent diffusion of carbon dioxide. The relative

importance of these and other factors and the exact details of various models are discussed

in Caram and Amundson [4], Sundaresan and Amundson [12, 13], and Amundson [2], As

far as we know, no time-dependent case has been analyzed in the literature, although these

papers contain very interesting results for the "quasi-steady equations". They suggest a

hierarchy of models of which we have studied the simplest.

This (Amundson, [2], p. 5) disregards the production of carbon dioxide; oxygen is

consumed at the surface of the carbon, and the carbon monoxide thus formed diffuses

away. The diffusion is confined to a stagnant boundary layer about the carbon particle.

Outside the boundary layer the ambient temperature and oxygen density are known.

Geometrically simplest is a semi-infinite slab of carbon burning homogeneously on the

exposed face, in effect a 1-dimensional problem with the coal occupying the initial domain

x > R at t = 0. Let w(x, t) and z(x, t) be the oxygen density and temperature, and y(t)

be the position of the burning surface. The boundary layer occupies 0 < x < y(t) and

ambient conditions are applied at jc = 0. We then consider the following free (moving)

boundary problem:

w, = Diwxx\ n ^ ^ t.\ wx= -clWexp(-c4/z)
0 < x < y(t)

y( o) = R.

■t J2zxx) zx = c2wexp(-c4/z) } at x = y(t)

w(x,0) = A1 dy/dt = c3wexp(-c4/z) j

z(x, 0) = A2

w(0, t) = wa

(1A)

z(0,t) = za
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We also consider a slightly simpler model which leads to neater a priori estimates. For

aesthetic reasons the existence and uniqueness proofs are carried out in this case. Every

step can be suitably modified to fit the first model, though with messier details.

The simplification is to replace the boundary layer by the entire exterior of the carbon.

There are no ambient conditions to match. Instead solutions w and z are assumed to

satisfy certain spatial bounds. The carbon occupies initially the domain x ^ 0.

W, = D\Wxx

Z, = D2Zxx

-oo < x < y(t)

w(x, 0) = AI

z(x,0) = A2

wx = -c:wexp(-c4/z) \ (IB)

zx = c2wexp(-c4/z) \ at x = y(t)

dy/dt = c3H'exp(-c4/z))

z, w, zx, wx = 0(exp(|x|5)) as x -> -oo, for some 5 < 2

v(0) = 0.

These two models will be called the bounded and unbounded models respectively.

We remark that the unbounded model is related to the one-phase Stefan problem (see,

for example, Cannon [3], p. 281). The Stefan problem results from the singular perturba-

tion c4 = 0, c1 —> oo.

A slab of finite length L can be handled by stopping the solution when y(t) reaches a

certain level. In the bounded model, if ambient conditions are the same on both sides, the

slab will burn to extinction when y(t) = L/2.

Using Green's functions we convert (1A) and (IB) to systems of integral equations in

the time variable for the unknown functions w(t):= w(t, y(t)) and z(/):= z(t,y(t)). A

degree-theoretic proof is given that the equations have a solution. It is then shown that

this solution is unique and is in turn a solution of (1A) or (IB). The integral equations,

though mildly singular, can be solved numerically with extreme efficiency and accuracy by

the method given in Kershaw, [6]. These numerical calculations show that, asymptotically,

w(t) ~ ct~l/2,

y(t) ~ ktl/2,

z(t) - Z

for constants c, k, Z. The integral equations enable us to calculate these constants

explicitly. These expressions are given in Sec. 5.

The method of lines can also be applied to prove the existence of solutions and to

compute them. This has been explained by Meyer, [9], for a general class of problems. On

the other hand this approach does not yield our simple a priori estimates or exact

asymptotic results.
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2. Integral equations. Consider the unbounded model. For any smooth u = u(x0,t0)

and v = v(x0, t0) and any T and D,

fT dt0{i>(« - Du ) - u(-v - Do )} rfx0
J{) J-oc v 7

= fT dt0h/dt0r('°' uvdxo~(uv)\Xo=vUo)y'(t0)\ (2)
^0 V — oo /

J7 /"<'0) d/dx0(uvXo - vuXo) dx0.+ D

For t > 0 let x = y(t) and let v be the "causal" free space Green's function

-% ~ Dvx0x0 = s(xo - x)s('o - 0, -00 < t0 < CO, -00 < x0 < 00

v = 0 for t0 > t, -oo < x0 < cc

k v regular at x0 = ± oo,

(see Stakgold, [11], Vol. II, p. 197). We recall that v is related to v*: v* - Dv*qXq = S(x —

x0)S(t - 10), v* = 0 for t0 < t, by v* - v ° it where m is the permutation x -» x0 -» x,

t t0~* t. Hence

/ (x ~ x0)2
exp—

4/>(r-/„)

/4t7Z)(? - r0)
'o)>

//(x) is the Heaviside function.

Thus if m is a solution to u, = DuXoXo and J > f, the left side of (2) is

(° >(')<*
-J} u(x0,t)8(x - xQ) dx0 = l-\u(x,t) y(t) = x

\-u(x,t) y(t) > x

= "2«(0-

The right side of (2) is easily computed and the result after simplification is

h(0 = (vDt )~l/2 f° u(x0,0)e-(-H')-x»)2A4D')dx0
-00

(AO -y(t0))2

v0

\ 2 '

exp

+ (wjD)-v2r_J
4D(t - t0)

x u(t0)

t0

'* M

+ z)",„(^('o)^o) ^o-
2 t t0
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For given initial data, this is an integral relation satisfied by u and ux on any smooth

curve .X = y(t). Applying the boundary data from (IB) for u = w and then u = z and

using the evaluation

(7TDt)~l/2(° e-(v(,)-x")2/(4Dndx0 = 1 - erf(y(t)/(4Dt)i/2)
-00

= erfc( )/(4£>r)1/2),

2 rx
erf(x) = —pr { e ' dt,

\ m •'O-fn •'o

we obtain a coupled system of equations for

w(t) = oxygen density at the front,

z(t) = temperature at the front,

y(t) = position of the front.

Integral equations for unbounded model.

■'(t) = erfc(y(t)/(4D1/)1/2) + —= ['    ~=   -/w(j)/(j)
jo yjt - s I

w(s)y(<t] Zy^ - clDlw{s)e-l</z{s)| ds (4B)

exp
(y(t) - j(^))2

/ 1 /i\ 1 rt 1 *0
- (') = /4 2erfc( y{t )/(4D2t) ) + -==(  -= 

\j7rD2 Jo \Jt - s

~y(s) + c2D2w(s)e r*"<^ds (5B)

y(t) = f c3w(s)e~u/z(s) ds.
Jo

The integral equations for the bounded case are derived in a similar way but using

u = the Green's function of (0, 00). The analogue of (3) with integrals explicitly evaluated

where possible is

u{ t) = AI 2 erff(44)-erf(>^Urf(>^))
12JtD ) I 2jtD I I 2\ftD I)

+ 2/0' ~ Du(s)°x„ + Dvux„(s)] ds + 2M"erfc(
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This assumes u(s) = u(y(s), s), u(x,0) = A, w(0, t) = and u, = Duxx in 0 < x < y(t).

The expression for v is

v = e+),
y477( / — s)D

e _ = exp<
(y(t)

4 D(t-s) /'

e =exp/Lio±zM)!\.
eXP 4 D(,-s) ■

hence

„ 1 (y(')-y(s) . 4.

v" 4\irD{t - s) \ D(t - s) ~ D(t - s)

We successively take u = w and u = z, with the expressions for w (s) and zXo(s) taken

from (1 A), i.e.,

H'v„(s) = -Ciw(^)exp(-c4/2(i)),

zx0(s) = c2w(s)exp(-c4/z(s)).

This results in two integral equations which we call (4A) and (5A). The equation for y is

y( 0 = R + f c3w(s) exp(-c4/z(s)) ds. (6A)
J(\

3. A priori bounds for the unbounded model. We assume the existence of continuous

solutions w(t) and z(t) and smooth solution y(t). As will be explained in Sec. 4. the

parabolic system (1) has a corresponding solution.

Theorem 1. 0 < w(t) < Av z(t) > A2, dy/dt > 0.

Proof. These all follow from the "boundary point" theorem of the maximum principle

(see Protter and Weinberger, [10], p. 170). For if w(x,t) were to have a nonpositive

minimum on the front x = y(t), the boundary conditions would imply wv > 0 there while

the boundary point theorem requires wx < 0. Hence w(t) > 0.

If the maximum of w(x, t) were to occur on the front then wv > 0 there, which together

with w(t) > 0 contradicts the boundary condition. Hence w(t) < Av

Likewise the minimum of z(x, t) cannot occur on the front, for zx < 0 at a point on the

front would be incompatible with the boundary condition. Hence z(t) > A2.
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oxygen

(heat equations) coal

Fig. 1.

Lemma. For any continuous function F,

< max F(s) X erf (-^=r |.
so \ ]/4Dt I

( y{t) -y(s))2

ds

Proof. Define v = (y(t) — y(s))/ ]/4D(t — s). Then

dv_ _ 1 I ,(rA 1 y(t) -y(s)}

ds /4D(t - s) \ 2 ' - 5 /
<i.y

so that the integral can be rewritten

2 fy«V^ esF(s)dv!
'nt Jft'fir Jo

which leads immediately to the result.

Theorem 2. For each /, y(t) < Y(t) where

^ = AlC} - c^erf
no t > 0,

/4^7 / ' (8)

y(o) = o.
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Proof.

y'(t) < c3w(t) from (6)

(y(t) ~y(s))2

/V3e rfc + J— f
in i -/) l\

exp -
4Dx(t - s)

V'4Dxt {itD[ Jo \/t - s

x {c3w(s) /(j) _y^ ~C\D\/(*)}<&

< y4xc3 erfc

exp

mo + -
y'4Dxt f5[ Jo

{>'(<) -y(s))

4Z>i(f - j)

It - s

\ r \ ^At-s) , , ^
=  7= (C3w(j) — C!^)
-D 'n \// — c

< /ljC'3 erfc
;;(0

Axc3 — c1Dle rf

+ ( Axc3 - cxDx) erf

7(0 1

y(t)

vW
by the Lemma

\ F^t)'
The result then follows from [Hartman, [5], p. 26, Theorem 4.1].

Remark. Thus an upper bound for the front position can be rapidly computed by solving

a single differential equation.

Corollary. If r\B = Alc3/{cxDl) < 1 then y(t)/ \j4Dxt < erf _1(i?) < oo.

Theorem 3. If tjb < 1 then for t < T,

c2D2
A H-  erf

C3

y(t) j ^ Z{ ^ a2 + iT^py-A^

\I4D2' ) 1 - eri[)Dx/D2 erf _1(rj))

Proof. From (5) and the Lemma

z(t) < A2 + max Z(s) • erf -4=U + x 2r1/2.
/4D2t ] fttD2

Now apply the Corollary and take max over t < T. Likewise from (5) and the Lemma but

with > min F replacing < max F,

z(t) 3s A2erfc ALLI _L „ y(0 + erf y(?)+ A2erf
fD^t J \[4D^t c3 \ )f4D^t )'

Remarks. If Tjfi is not < 1 we can still derive bounds adequate for the existence proofs

but not as close to the sharp results of Sec. 5. We do not bother to do this. The Corollary

suggests w < Kt'x/1 as t —> oo and this will be formally substantiated in Sec. 5. Were we
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to take this as a hypothesis in Theorem 3, instead of the 0(t1/2) term in the bound for

z(t) we would have a bound independent of t. A sharper result will be formally derived in

Sec. 5.

If it is known that z(t) < M for all t and (xz(x,0) dx < oo then choosing v = x0 and

u = z in (2) we find

J° z(xQ,0)\xo\dxo+ D2fT z{t0)dt0= JUT) z(T,x0)\x0\dx0
-OO

+ fT z(to)y('o)y'(to) dto + D2(T y{t 0)z (t0)dt0.
Jo Jo

The right side is ^ D2c2c^ly(T)2/l while the left side is < D2MT + C>(1) as T —> oo.

Hence, under the assumptions made,

y(T)2
limsup Mc3/c2.

T oo

4. Existence and uniqueness for the unbounded model. Equations (4), (5), (6) are not

strictly speaking a system of integral equations for unknowns w, z, y—at least as the term

is normally used—because v(t) occurs explicitly in the right side; hence the system needs

an additional (implicit) elimination, after which it can no longer be written down explicitly

by formulae involving integrals. If y(t) were replaced on the right side by a parameter, we

would have a nonlinear system of Urysohn equations (Krasnoselskii, [7], p. 32) which

could be analyzed by use of Leray-Schauder degree. We rapidly sketch out a proof from

scratch.

Thus we consider equations (4), (5), (6), interpreted as the problem of finding a fixed

point of a map F,

X = F(X),

F: B -> B,

where X = (w, z, y) and

B = C[0.T] X C[0,T] X C'[0,r] n {^: y(0) = 0}

with norm taken as the maximum of the usual norms of the three factors. We observe the

following.

• F is a compact map depending upon parameters c3, c4. The proof is routine and is

omitted.

• c3 i 0, c4 10 is a homotopy of these maps.

• If A' is a solution then an upper bound for its norm is obtained from the results of Sec.

3, and this upper bound itself remains bounded by some constant M in the course of the

homotopy.

• The limiting equation X = F0(X) is simply an Abel integral equation followed by two

quadratures.

Hence, given e > 0, any and all solutions to X = F( X) lie in the ball of radius M + e

about 0 in B and none lie on the boundary. So the Leray-Schauder degree deg(id — F,

ball, 0) (see Lloyd, [8]) is defined and independent of c3, c4. But deg (id - F0, ball, 0) is
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easily seen to be ±1. Hence deg(id — F, ball, 0) =£ 0 and on this account there must be a

solution in the ball of radius M itself. Since the reasoning holds for any T we have proved

this theorem.

Theorem 4. The system of integral equations (4), (5), (6) possesses a continuous solution

h>, z for t > 0.

It remains to be shown why the original system of partial differential equations has a

solution. We take the front y(t) computed from (6) as a given smooth boundary and let w

be the unique solution (see Cannon, [3], Ch. 14) to the problem

= Dxwxx,

vv(0, x) = Ax,

™(y( 0.0 = w(')

and let z be defined similarly. We must show that (le) and (If) are satisfied, that is,

wx(y( 0.0 = -c1w(0exp(-c4/z(0),

zx(y( 0.0 = c2w(0exp (-c4/z(0)-

The existence of these derivatives is proved in [ibid., pg. 247, Theorem 14.4.1.]. We write

down equation (3) for u = w and compare it to (4). Five of the six terms are identical.

Subtracting these equations we find

n2

exp
(y(t) ~y(s))~

f       —— { wv(j>(s), s) + c1H'(i) exp(-c4/V(.y))} ds = 0 all / > 0
J() ]/t — s

and a similar equation related to (If), and obtained by taking u = z and comparing to (5).

It is quite obvious that if F is continuous a relation

f    A°X '  F(s) ds = 0
Jo it — 5

cannot hold for all / > 0 unless F is identically zero. For if F had isolated zeros at T{,

Tn,... then by taking successively t = 7,, T2,... we find successively F to be zero for

s < 7"[, 5 < T2,..., etc. We have proved:

Theorem 5. The free boundary problem (1) has a solution.

We now prove uniqueness. Suppose w,, zx, yx and w2, z2, y2 are each solutions of

(4)-(6) and temporarily let w(t) = w,(?) - w2(t), z(t) = zx(t) - z2(t), y(t) = yx(t)-

y2(t). By subtracting equations, adding and subtracting terms, and applying the mean-value

theorem we find with new c's,

/.x c,(t)y(t) , f c2w(s) + c3z(s) + c4(y{t)-y(s))/(t - s)
w(t) <     + /  j= ds,

]/t Jo y/t - s

z(t) < similar expression with different c's,

|/(0l < ^1^(01 + cU)|z(/)|,
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and

1^(01 < f c9|w(s)| + C10|z(j)|ds,
Jo

where c- = cf(s,t) and by the a priori estimates of Sec. 3 each c, < C, a constant

independent of s, t but depending on the parameters Ax, A2, etc. From now on the value

of C can change from line to line.

We observe that

[' c4(s, t)  SA ds = | (' C4(s>f)(t _ s)~3/2 f y'(r) drds
J0 it - S I A) Js

= I ['y'(r) [ cA(s,t)(t-s) v2dsdr
K0 J0

f'\y'(r)\[(<-r)-1/2-r^]dr
J (\

< c

< c f (H-Ol + |z(s)|)-
Jri

ds

and since (/ — s) 1/2 ^ / 1/2

MO]
ft

Thus

•Jt — s

^ similar expression with different C.

HOI < Cj' (|w(j)| + |z(s)|)"p^=r,
•'o it — s

|z(/)l < Cf (|w(s)| + |z(j)|)-r^=r.
•'o it — s

So with 4>(t) = |w(/)| + \z(t)\,

<p(t) < = CK [</>].
Jd Jt — c

However, K is the operator of integration of order 1/2 [Cannon, [3], Theorem 8.1.1], i.e.,

tf2[</>] = C [' <p(s) ds.
Jo

Applying K to both sides we find

K [$] < C f <t>{s) ds
Jo

which implies

<#>(0 = C f' <f>(s) ds,
Jo

so clearly <£(/) = 0. We have proved

Theorem 6. Both the integral equations (4B), (5B), (6B) and also the free boundary

problem (IB) have unique solutions.
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5. Asymptotic properties. The integral equations possess formal asymptotic solutions as

t —■* oo,

w(t) = a.t~x/1 + aj/-1 + • • • ,

z(0 = z + Ylr1/2 + y2r1+•••, (9)

y(t) = 2k(Dlt)1/~ + log/ + §2r~1/2 + • • • .

We do not prove (but do not doubt) that these series are asymptotic; we do calculate the

leading coefficients. First consider the unbounded case.

On the basis of these expressions a short calculation in (4B) shows that only two of the

five terms are dominant and they are

A, erf 7==) - c,D\/2ir-1/2 j'  ^^—— w(s) exp(-c4/z(i)) ds
(/4£),f I Jo it - s

= O

(10)

log?

it

Assuming (9), the error we commit by integrating in (10) over T < s < t rather than

0 < 5 < / is 0(t~l/2). Therefore (10) is also correct when the shifted functions

w + (s) = w(T 4- 5),

z + (s) = z(T + s),

^+(5) =y(T + s)

replace w, z, y. This justifies the insertion of the asymptotic expressions (9) into (10). The

result will be a relation between a, k, and Z. Two more relations are obtained from (5B)

and (6B). Two definite integrals are required.

Lemma.

-k2( 1 -s'/2f
exp

f"  ^ / 1 x ~ds = ek\ 1 -(erf(/c))2),
Jo p{\ - s)

-k2( 1 -51/2)2
exp

C    2- 5 11 ds = nek2( 1 — (erf(^))2) - erf(k).
J() V 1 — S IS K

Proof. Substitute x2 = (1 - ^1/2)2/(l - s) and refer to [Abramowitz-Stegun, [1], p.

302, #7.4.12],

From (10) with t —> 00, recalling t)b = /I ,c3/( <:,£>,), we find after some simplification

and reference to the lemma,

?}fl = \fnkek\ 1 + erf(£)) = hB(k).
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Proceeding to (5B) and (6B), we note each term has a limit as t -> oo, straightforwardly

but lengthily computable using the lemma where necessary. The result is an expression for

Z. We summarize.

Asymptotic behavior of the unbounded model.

!im = A-'(t,b),
r->co

lim z(t) = A2+ C-~hBUDl/D2hB\^B)) = Z,
/ —* oc

lim tx/2w(t) = cjlD\/2exp(-c4/Z)h~B( rjfi).

Corollary. If D, = D2 then Z = A2 + A1c2/c1.

The calculations for the bounded model are much more lengthy and will also be

omitted. The results are quite similar. We define

hA(k) = \fn kek' erf(k),

c-M>„
Va

Asymptotic behavior of the bounded model.

c,Z) i

lim ~7== =
/ —» OO

lim z(t) = za+ C-^hA(jD^D-2h-A\VA)) = Z,
t~* oc (-3

lim t1/2w(t) = c^D\/2exp(-c4/Z)h-Al(7]A).
t—* 00

Corollary. If = D2 then Z = za + wac2/cv
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