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Abstract. Differential equations are derived which describe the evolution of area tensors

and normals associated with the subspaces of an ^-dimensional Euclidean phase space,

En. These provide computational methods for determining the Lyapunov exponents of

continuous dynamical systems.

1. Introduction. In [7] and [14] a method is given for the computation of the Lyapunov

exponents. A subspace, Em, of ^-dimensional Euclidean phase space, En, is defined by a

set of m orthogonal vectors which are evolved. These are repeatedly orthonormalized to

prevent their collapse into a set of lower dimension.

In the following, subspaces are defined by the area tensor and its dual, the normal

tensor. Sets of o.d.e. are derived which describe the evolution of these quantities, some of

which have three-dimensional counterparts in the theory of continuum kinematics, [4], [5],

and [9], The Lyapunov exponents may be expressed as limits of functions of m-dimen-

sional area elements. [7, 8], Evaluation of the Lyapunov exponents was effected through

the integration of the derived o.d.e. for area elements of dimension r, 1 < r < n, along a

trajectory. A numerical study indicates the utility of the derived algorithms.

Phase space. Consider a continuous dynamical system

* = f(x,/) (1)

where x are spatial curvilinear coordinates in an w-dimensional Euclidean phase space,

En. Under general conditions the solution of (1), [1],

x = x(X, /), (2)

is one-to-one, continuous together with its inverse and continuously differentiable with

respect to X and t. X are material coordinates.
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A subspace, Em, of dimension m ^ n may be defined by the parametric equations

X = X(u) in materia] coordinates and, after the deformation (2), by x = x(u) in spatial

coordinates, u has m components. The corresponding area tensors " and da'l '"'r"

are given by [2], [3],

Br'1
da'■ — • • • -5—du; A • • • A dui , (3)

3U: 3u, J' v '
J1 Jm

and

I,/ , dX'1 dX'- , .
dA 1 m = —— • • • — du: A • • • A du.. (4)

9 u, du, h Jm w
J1 Jm

The summation convention is assumed to hold, jr = 1, m. The range of all other indices is

1, n.

The area element is given by, [2],

(^<m))2= (1 /m\)daii-i"daii...im. (5)

It follows from (5) that (1 /da{m))da'' "'m is an area tensor of constant magnitude. The

material derivative, D/Dt, [4], of (5) may be expressed as

~~ !n du < m) = (1 /ml) 1 ~idall'"'m)-r—daiy
dolm) Dt da(m) "-,"

(6)

where Dg^/Dt = 0. Since dx'/dUj = (dx'/dX')(dXr/dUj) it follows from (3) and (4)

that, [4],

da1' ■■■''- = x'\h ■ ■ ■ x'"Jm dA'' " 'm (7)

where ( ) , = 8( )/dXr and ( ) { = 3( )/3*,. Noting that D(dA'1 "'"•)/Dt = 0 and

D(x'f)/Dt = v'.rxr,, [5], the material derivative of (7) may be expressed as

1 ^-da'' = i>'' -r-!— dari>+ v'\r-^—daiir ~'™
da(m) Dt da^mj da^m)

+ ... +v-m -J—da;'2 'm ^ (8)
" da(m)

where v' = Dx'/Dt and ( ).r = covariant derivative of ( ) with respect to xr. The material

derivative of the area tensor of constant magnitude may be expanded to give

7T ( T~—da1' = -j-— 7\-dah "'m - -j—— -^-(da, .) —da'1 "'m (9)
Dt\da(m) ) da(m) Dt da(m) Dty (m)J da(m)

Alternatively the area tensor da'1'"determines its dual, [2], the normal tensor by

(1 /ml)e,i...tmrt...rm_da^"'- (10)n
r\ ■ ■ rn-n

where eii... ^ is the alternating tensor. It follows from (10) that

dasi = (1 /(n - m)\)es* - s>»r* - r»-»'nri...rn_m. (11)
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Equation (11) may be used to express previously defined quantities in terms of the normal

tensor. Equation (5) becomes

(daim))2 = (V(« - m)\)nr^"r--nri...rn m. (12)

Equation (12) implies that nri "r" m/da{m) is a tensor of constant magnitude.

Equation (6) becomes

~\nda{m)= (l/(n - JrkV'rnq;mm (13)
(m) UU(m)

where S^V.Vi is the generalized Kronecker delta, [6]. Equating n — m — 1 in (13) yields

j^-\nda(m) = vk.k- vk-,r^— nk-J~-"r (14)
UL uu(m) au(m)

for the hypersurface. Substituting (11) into (8) gives

uu(m) LJl uu(m)

Equation (9) becomes

) =-r—^rniI ~(da,m))~^— n*"'9--.(16)
Dt\da(m) J da{m)Dt da(m) Dty <m)> da(m)

Lyapunov exponents. Let da{m) and dA(mj be spatial and material area elements of Em

respectively. In the literature these may also be referred to as volume elements. Em c En.

Let L.E. = Lyapunov exponent. The m-dimensional L.E. associated with a trajectory

originating at X is defined as [7], [8],

X(x»£m)= lim {Hda(m)/dA(m)))/t. (17)
t ~» 00

The one-dimensional L.E. for the arc, ds, with tangent, n, associated with a trajectory

having initial conditions respectively of dS, N, X is defined as, [7],

x(X, n) = lim (In Xn)/t (18)
t~* 00

where Xn = ds/dS, (ds)2 = gtJdx'dxJ and (dS)2 = GudX'dXJ. It is shown in [7], [8] that

the one-dimensional L.E. for the arc takes at most n different values. They may therefore

be ordered, Xi > Xi > " " > X„- It follows, [7], [8] that for Em c En,
m

x(X,£m)= E X,(X,n,). (19)
i = i

The material derivative D( )/Dt = d( )/dt along a given trajectory since X, the initial

conditions, are by definition constant in the differentiation, [9]. It follows that the o.d.e.

(6, 8, 9, 13, 15, 16) describe the evolution of the area element, area tensor, and normal

tensor along a trajectory. It is known, [7, 8], that if N and therefore dS is chosen at

random in (18) then all corresponding n will evolve into the same vector. The n vectors

satisfy the relationship

X(X,n) = Xl(X). (20)
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A similar result applies to area and normal tensors. If the initial values of the components

of the area tensor of constant magnitude, da(. /da(m), are chosen at random then all

corresponding quantities will evolve into the same area tensor of constant magnitude. This

result is also satisfied by the normal tensor of constant magnitude. The corresponding area

elements, da(m), satisfy (17).

Computation of L.E. The Lorenz, Rossler, and Rossler Hyperchaos equations are

subsequently used as test cases:

Lorenz equations, [10],

= a(x2 — xx) a = 16.0,

x2 = Xj (b — x3) — x2 b = 45.92, (21)

x3 = xxx2 — C.X3 c = 4.0;

Rossler equations, [11],

xx = ~{x2 + x}) a = 0.15,

x2 = xx + ax2 b = 0.20, (22)

x3 = b 4- jc3(jcj — c) c — 10.0;

Rossler Hyperchaos equations, [12],

= ~(x2 + x3) a = 0.25,

x2 = jcj 4- ax2 + x4 b = 3.0,

x3 = b + xxx3 c = 0.05,

x 4 = cx4 — dx3 d = 0.50.

(23)

For the given sets of parameters, (21, 22, 23) possess chaotic solutions.

The evolution of the area tensor of constant magnitude was computed from (9) in which

the first term on the right-hand side is given by (8) and (1 /da)D(da)/Dt, in the second

term, by (6). Equations (6), (8), and (9) were solved simultaneously along a trajectory.

Alternatively (6) may be substituted into (9) and the result solved simultaneously with (8)

to give an area tensor of constant magnitude. Equation (6) may be integrated numerically

to yield In da{m). The limit, (17), may then be found. dA{m)= 1 in all subsequent

computations and therefore In dA{m) — 0 in (17). Similarly (13), (15), (16) determine the

evolution of the normal tensor of constant magnitude, give In da{m) and through (17) yield

X(X,£J.
The sum of the first two L.E. for (21), (22), and (23) were found by evolving the E2 area

tensor. After 50,000 iterations converged values were 2.16, 0.128, and 0.19 respectively.

Reference [13] reports values of 2.16, 0.13, and 0.19 respectively. The sum of the first three

L.E. for (23) was found by evolving the £3 area tensor. After 90,000 iterations the

converged value was 0.19 which agrees with the result reported in [13]. In this case X3 = 0.

The evolution of the normal to the hypersurface, (14), (15), and (16) for (21) and (22) gave

2.15 and 0.126 for the sum of the first two L.E. after 50,000 iterations. These values are in

close agreement with those found above through evolution of the E2 tensor.
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Conclusions. Numerical tests of the algorithms developed here, for the computation of

the Lyapunov exponents, demonstrate their convergence to be at least as rapid as that of

the method given in [7], [14] and discussed in [13]. The representation of subspaces by area

and normal tensors and the form of the resulting differential equations describing their

evolution have three-dimensional parallels in continuum kinematics, [4], [5], and [9].
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