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CAUSTICS ASSOCIATED WITH THE ASYMPTOTIC SOLUTION
OF THE DIFFUSION EQUATION*
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Abstract. The Lagrange manifold technique for finding asymptotic solutions of wave
equations at turning points is adapted to diffusion-type equations.

1. Introduction. Parabolic differential equations of the form
ag(r, )V 2u + a(r, 1) - Vu + ay(r,t)u = a3(r,t)%—l;, (1)

where (r, 1) are spatial and time coordinates, respectively, occur in physical processes as
diverse as neutron transport [1], to heat diffusion [2] and fluid flow [3]. If the «;, actually
are functions of r and ¢, seldom can such equations be solved exactly. Consequently,
approximate solutions are often developed, each valid under situation-special conditions.
One technique for obtaining such solutions is the geometrical optics formalism of Keller
[4]. Although usually associated with wave propagation, this technique can also be applied
to parabolic partial differential equations when a scaling of coordinates allows introduc-
tion of the large parameter A in the time derivative term, i.e.,

ou ou
a3(l',[)§ - Aog(r,t)E.

Following Cohen and Lewis [2], a solution of the form

u=A(r,1)exp{-AS(r, 1)}, A1) ~ Y A (r, )Xk (2)

k=0

is then assumed. (In Eq. (2), S(r, 1) is commonly referred to as the “phase” and the 4, as
the “amplitudes.”) Then carrying the differentiation in Eq. (1) across the summation in
Eq. (2) leads to an eikonal equation for the phase and a transport equation for the
amplitudes. However, just as in wave propagation problems, on certain (caustic) curves
this procedure can lead to unbounded amplitudes.
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For example, consider the already-scaled diffusion equation (r = (x, y) for simplicity)
of Cohen and Lewis with ay(r,7) = 1 and a;(r,7) = k — x, i.e.,

du
2, — il
viu=Ak x)at.

Then, assuming a solution of the form as in Eq. (2) and noting

9S

p=vS7 w=_¥’

leads to the Hamiltonian
H=pl+p)—w(k—-x)
and, from Hamilton’s equations, the flow
x = -wy?+ 2ypycosd + x,,  y=2ypysinf + y,,

where v is a ray-path parameter and 6 is an initial direction. If we assume at time zero an
initial position at the origin with p, = 2!/2 k = 2, w, = 1, then on the curve obtained by
setting the Jacobian determinant (d(x, y)/0(y, #)) to zero, i.e., here, ycos§ — 21/ = 0,
the technique predicts unbounded amplitudes.

One approach to circumventing such problems in wave propagation is the Lagrange
manifold formalism [5]. Here we make explicit that with only slight modification, the

procedure extends to parabolic partial differential equations, which we illustrate by
completing the example above.

2. Formalism. We consider equations of the form

ag(r, 1)V 2u+ a(r,t) - vVu + a,(r,t)u = Aa (r,t)a—u, (3)
3 ot

1.e., parabolic differential equations scaled as discussed above. Analogous to the solution

assumed for hyperbolic differential equations, near caustic points we assume a solution of
the form

u(r,1) ~ [ dpexp{-A¢(r,p,1)}A(r,p, 1, \) (4)
where

¢(r,p,t)=r-p—S(p,t)
and A(r,p,t, A) and its derivatives are bounded. Then passing the derivatives in Eq. (3)
across the integral in Eq. (4), followed by a re-grouping by powers of A (noting here
p= V¢, w= -3¢/0t = 3S/dt) obtains

fdPCXP{""‘P(LP,')}{Azl(ao(r,t)(p-p) —ay(r,1)w)]4
+A[2a0(r’t)(l) - vA) —(ey(r,7) -p)4 - %(r,t)%'j_]

+20[ao(r, 1)V A + ay(r, 1) - VA + uz(r,t)A]} ~o(x®). (5
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The coefficient of the A2 term is Maslov’s Hamiltonian
H = ay(r,1)(p - p) — way(r,1).

The exponential integrals in Eq. (5) are evaluated asymptotically using the Laplace
technique [6, 7], 1.e., at any field point, r, the principal contribution to the integral comes
from those values of p specified by v, ¢ = 0. Here, however, invoking v ,¢ = 0 not only
identifies the critical points of the phase, but also turns the Hamiltonian into an eikonal
equation and determines the Lagrange manifold

r=v,S(p,?) (6)

which leads to obtaining an explicit phase via Hamilton’s equations. First, solving
Hamilton’s coordinate and momentum equations (f = VH, p = -V, H) yields the posi-
tion coordinates and momenta parametrized by ¢ and w:

r=r(y,01,02,t,w), p=p(7’01*02’t7w)'
Next, the momentum map is inverted to obtain
y=v(pt), 0=0(p,1),

where Hamilton’s time-frequency equations (/ = -dH /0w and & = 9H /dt) have been
used to re-parametrize entirely in ¢, rather than in ¢ and w. Finally, a direct substitution in
the coordinate space equations (and hence in Eq. (6)) explicitly determines the Lagrange
manifold and an integration leads to the phase

¢(r,p,t)=r-p—S(p,1).

Simpler procedures exist to obtain the phase if the Hamiltonian is cyclic in either a space
or time coordinate [6]. We note that the caustic may be determined by setting the Hessian
determinant of the phase to zero:
3% |
det{ i )
dp

Each real set of p = ( p,, p,, p,) satisfying this equation at a given time specifies a caustic
point whose configuration space coordinate may be obtained by substituting in the
Lagrange manifold, Eq. (6). The locus of these configuration space points is the caustic
curve.

The transport equation proceeds by Taylor expanding the Hamiltonian near the
Lagrange manifold,

ag(r,1)(p-p) — a5(r. 1) 0 = (7,8, 1)(p - p) = a3(v,S,1)0 +(r = v,5)-D
=(r— VPS) -D,
where

D =£1 v,H(g(r - VPS) + V,,S,p,t,w)a'g.
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Substituting into Eq. (5) obtains

/ dpexp{—)\¢(r,p,t)}{}\(va D+ AV, D~ 2p- v, A)a(r.1) —a(r, 1) - p4
04
_0‘3('3’)5)

Fay(r )V + ay(r i) - VA + az(r,t)A} - o(x®),

which, upon introducing the flow
i=-2a0(r.)p. p=D
and (analogous to Cohen and Lewis) the differential operator

d 0
217= a3(r.t)§+ 2a0(r,1)p~ v,+D- \

leads to the transport equation (cf. [5])
i,
dy

To find u(r, t) it is necessary to evaluate the resulting integrals, 1.e.,

fexp{—)\¢(r,p,1)}AA(faP)dP

asymptotically. As this has been detailed elsewhere [6, 7, 8], we do not repeat it here.

+(a, - p - 7 D)A, = ay(r. 1)V A, | +o(r1)-v,4, | +ay(r.1)A4, .

3. Example. To illustrate the technique we return to the example above,

5 du
viu= (k- X)E .
where for a point source beginning radiation at ¢t = 0 at the origin, p, = 2!/?, k = 2, and
w, = 1. On the caustic curve (ycosf — 2'/? = 0), we assume a solution of the form given
in Eq. (4), which leads to the same Hamiltonian (and Hamiltonian flow, hence the same
caustic) as above. At any v, 8 on the caustic, we can find (x, y, p,, p,) from Hamilton’s
equations. Explicitly, let (y,6) = (1.58, 26.6°), then at r = .79, a caustic point occurs at
(x, ¥, peo p,) = (1.5,2.0, -.32, .63). Proceeding along the algorithm we obtain the Lagrange
manifold
2 2 2\1/2
x=-5p.+p:+p., y=2+ 2p_‘p“.— 2pr(2—p;)
and hence the phase

1 ) 2 3/2
ol v popt) =xp +p + 3+ popl =2+ 3(2-p))
(We note that at (p,, p.)=(-.32,.63) the Hessian determinant of the phase is zero,
confirming the level-equivalence of the Hamiltonian and Lagrange manifold maps, i.e.,
regular points are carried to regular points and caustic points are carried to caustic
points.) For this simple case,

D = wi + 0],
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leading to the transport equation

dA
T[k + VzAk_l = 0.

Finally, if 4, =1 at the emitter, the first two terms in the asymptotic series for u(r, t) at
(r,t) = (1.5,2.0,.79) are

u(r, 1) ~ e O 0659N7/6 — 0447N 43 ),
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