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TWO-SCALE EIGENFUNCTION METHODS

WITH AN APPLICATION TO THE VISUAL SYSTEM*

By
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1. Introduction. We investigate the eigentheory of Hermitian integral operators in

unbounded domains. Although the analysis and methods apply to higher dimensions, the

application lies in two dimensions and so do our examples. Our problem has its origin in

studies of vision and in what follows we make use of mathematical models which arise

from laboratory data. The seldom analysed features of our eigenfunction problem arise in

general situations where two scales are present, as they are here. The present paper is a

continuation of our earlier investigations in which the assumption of one-dimensionality

was adopted [1, 2, 3], A short general account and related ideas appear elsewhere [4, 5],

We start with a brief background to the problem.

A visual system is stimulated by an excitation <?(x), which in the present context may be

considered as a pattern of illumination. This elicits a response, which in a useful range is

linearly related to the excitation

r(x)=/A:{x,y}e(y)rfy. (1.1)

From the origin of the problem the dimension of x and y is 2. It is natural to consider the

eigenfunctions of the kernel A"{x, y} which in the present context means self-replicating

patterns,

f K{x, y}xjs(y)dy = \xp(x). (1.2)

Those eigenfunctions which have the largest eigenvalues play a special role and are

referred to as principle eigenfunctions. With regard to the visual system these represent

the patterns most strongly amplified. Assumptions based on experience specify the kernel

to a form which is tractable.
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In the context of vision K{\, y}, referred to as the point spread function [6, 7],

represents the response at x due to a unit source at y. Experience bears out the

approximation that cause and effect are reciprocal, in the sense that the kernel is

symmetric, i.e.,

K{x,y} = K{y,x}. (1.3)

Without loss of generality we may write the kernel in terms of mean and relative

coordinates,

K{x,y} = K((x + y)/2, x - y) = K((x + y)/2, y - x), (1.4)

where the last is a consequence of (1.3). Considerable progress in the theory of vision is

based on the assumption of homogeneity [8, 9]

K = K(x- y). (1.5)

The resulting eigentheory is then straightforward. Eigenfunctions are sinusoids, the

eigenvalues correspond to the Fourier transform of K, and the spectrum is continuous.

However, (1.5) is recognized as an idealization which yields some misleading results even

though the departure from homogeneity is in a sense locally slight [10, 11]. Analytically,

this slow departure from homogeneity is represented by writing

K = K(e(x + y)/2, x - y) = tf(q,u), (1.6)

where

u = x - y, q = e(x + y)/2 (1.7)

and e is the small parameter measuring inhomogeneity.

Further simplification of (1.6) results from consideration of the underlying mechanisms

of visual information processing. Common visual nerve networks are organized so that the

excitation (due to illumination) is collected over an approximately circular area of say

radius d[ 12, 13]. Both the amplitude of response, say A, and the collection radius d vary

at a rate which is slow compared to the scale of d. A general model incorporating these

inhomogeneities has the form

K — A(q) M(u/d(q)). (1.8)

Note that all arguments are scalar in (1.8), so that it contains the assumption of circular

symmetry of collection. In visual terms, d is referred to as resolution and A as sensitivity.

Visual systems are commonly organized in an opponent manner [7] so that instead of (1.8)

one has

K = A1(q)Ml(u/dl(q)) - A2(q)M2(u/d2(q)). (1.9)

This is referred to as a center-surround organization of excitation and inhibition. In what

follows we consider the more general kernel,

K = K(q, u), (1.10)

and illustrate the results for particular models having the form (1.9).
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2. Generalities. We now briefly develop the general procedure for dealing with the

eigenfunction problem (see also refs. 4, 5)

J K{e(\ + y)/2, x - y)^(y) dy = \>p(x), (2.1)

where e is a parameter of smallness. In order to find a solution we express the

eigenfunction in the form

= exp [;'<£ (q;e)/e], (2.2)

where in the present instance

q = ex. (2.3)

If we set x - y = u, (2.1) may be arranged in the form

J K(q - eu/2, u)exp[/($(q - eu) - </>(q))/e] du = A. (2.4)

Thus in the limit e{0,

£M<J>o/aq) = A, (2.5)

where K denotes the Wigner transform [14]

^(q,p) = J K(q, u)exp[-/p • u] du, (2.6)

and

<f>o(q) = *(q;0). (2.7)

We write

p-^f. (2-8)
and then by standard methods the first-order partial differential equation (2.5) is reduced

to the Hamiltonian system [15]

dq = dK dp^ dK . ,

dt 9p ' dt 9q y '

while phase <#>0 is determined by

d<t>0 - n d<* (1 M\\

~dT = P ' ~dt' (2'10)

The time variable in the above simply denotes the natural variable along an orbit. K,

which plays the role of a Hamiltonian, is an invariant of (2.9).

These steps form the first stage in a formal perturbation procedure based on the

expansion,

<f>(q,e) = $„(q)+ e$i(q) + . (2.11)

It proves convenient to write <j>l as

<#>! = In y4(q),
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so that

^ = ^(q)(l + 0( e))exp[z^0(q)/e] (2.12)

As may be verified, the next order yields the amplitude equation,

(2.13)
9q \ 0p

The above development must be applied to each branch of equation (2.5). Thus if a

subscript is used to denote each such branch the full solution has the form

t = E ~ E ^exp[;<f)/e]. (2.14)
J j

(We have dropped the now superfluous zero subscript on the phase (p.)

The steps just outlined parallel those associated with the WKB method [16, 17] (or the

semi-classical approximation), but now appear in a broader context. In fact the only

restriction on the kernel of (2.1) is that the integral exist in some sense. For example, the

case of pseudo-differential operators is included. At this point the classic development of

Keller [18, 19] can be carried over directly. Each WKB solution breaks down when A

diverges, e.g., at a caustic or a focus. The analysis must then be reexamined and the

resulting local analysis results in connection formulas. The Keller procedure is therefore

seen to apply to the more general case just discussed. These remarks are only known to

apply when K represents an integrable Hamiltonian. For further remarks in this vein see

reference [4].

3. The separable case. The kernels which arise out of the vision problems discussed in

the Introduction are well approximated by kernels of the general form

K — K(q, u), (3.1)

for which the Wigner transform is

K=K(q,p), (3.2)

with

P2-p2i + pl' = + (3-3)

Thus the Hamiltonian K is separable as it is for example for the central force problem of

mechanics [20].

In order to treat a Hamiltonian of the form (3.2) we introduce cylindrical coordinates

(q,9) via a canonical transformation [20]. Hence

P2 = P2 + M2/<72, (3-4)

where p is the radial and \x/q the tangential component of momentum. In the present

context

_ 9<£ _ 9<#> , s

P dq, 30 ' ^ ^
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Hamilton's equations now become

. 3 K dK .9 K , 9 K

p ~ 9q' M " 36» ' q ~ ~ dp ' 9/i ' ^ ^

where the dot refers to differentiation with respect to the running time variable along the

orbit.

Since K is not a function of 6 we immediately have

/i = m

where m is constant. We may therefore write

K=K(q,p)\ p2 — p2 + m2/q2. (3.7)

Unlike a true dynamical problem the time dependence is of no direct physical interest.

Integration of the system (3.6) is completed by recognizing that p(q) is implicitly defined

by

K(q,p) = \. (3.8)

The phase equation becomes

or if we write

then

<j> = p(q)q + rnd, (3-9)

R{q) = j P(q)dq, (3.10)

<t> = R(q) + md. (3.11)

In view of the way in which the phase enters (2.2),

m = em, (3.12)

where m is an integer. In mechanical terms, (3.12) states that the angular momentum is

negligible unless the circular wavenumber, m, is relatively large.

Passing next to the determination of the amplitude, A, equation (2.13) becomes

=° (3-13)
q dq\ 3p

or

A a \/(qkp)1/2. (3.14)

Thus, to the present order, we have determined

t ~ {qK-Xq- [p2 + mV/?2]1/2)} 7 exp[im6 + iR(q)/e\. (3.15)

The above procedure breaks down when the denominator of the amplitude vanishes.

Thus q = 0 is one such critical point. Other critical points are determined by Kp = 0. For

q bounded away from zero the second term under the radical is negligible (unless m is

large) and in such cases the critical points are determined by

kp(q,p) = 0, (3.16)
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and hence by the turning points of the equivalent one-dimensional problem. Additional

possible turning points can occur near the origin. To see this write

Kp(q, [p2 + m2e2/q2]l/2) = Kp(q,p)^. (3.17)

Near the origin,

has the solution

tf(0,p) = X (3.18)

p- = [p2 + m2E2/q2} ~ /?02(X) (3.19)
-i

where p0 represents the intercept at q = 0. Therefore, p, and hence K vanishes for

q = O(e) unless em is not negligible. In the latter case the inner turning points are 0(1).

Each critical point indicates the need for a further analysis. As we will see the two

critical points in the neighborhood of the origin can be considered simultaneously unless

em = 0(1). Before these repairs are made some specific cases are considered in the next

section.

4. Visual models. A model kernel which arises in visual experiments is [21]

A
K =  ;—7 {exP

tt(1 + q2/a)

—u2

l +q2
- B exp

-u2

b2(l + q2)
(4.1)

where A, B, a, b are positive constants. This kernel is in the form of (1.9). In particular,

we observe that for this model, as we move well away from the central region, the

resolution varies linearly with distance and sensitivity varies with inverse distance squared.

Both properties are supported by observation [22, 23, 24],

The Wigner transform of (4.1) is given by

R = A[ i1 + 2/ )(exP[-/>2(1 +<?2)/4l - Bb2exp[-b2(\ +q2)p2/4}}. (4.2)
\ 1 + q /a J

For purposes of illustration and discussion we first consider the excitatory part of (4.1),

1
k = —  —-exp

77(1 + q~/a)

-u2

\+q2
(4.3)

and its Wigner transform,

~k = / + 2/ exP["/?2(1 + <?2)/4]- (4-4)
\ 1 + q /a I

The form of ~k implies that the spectrum is restricted to the unit interval (as discussed

below a < 1)

0<X<1. (4.5)

The contour lines of

k(q,p) = A (4.6)
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are given explicitly by

P2 = -[4/(l + ^2)]ln(^[(! + <72A0/(l + q2)])- (4.7)

A sketch of such contours is shown in Fig. 1. In plotting these we have found it convenient

to allow the magnitude p to formally take negative as well as positive values. The figure

depicts a case for which a < 1, which is the case in experiment [21]. (Otherwise no closed

contours exist.) Referring to the figure, closed contours occur for

a < X < 1, (4.8)

and open contours for

0 < X < a. (4.9)

As will be seen, the former correspond to discrete eigenvalues and the latter clearly

correspond to the continuous spectrum. Recall that p and q each represent magnitudes of

two-vectors and hence Fig. 1 is a two-space projection of four-dimensional phase space.

Contour lines in the p-q plane are obtained from (4.7) on substitution of (3.19),

p2 = -(m2e2/q2) - [4/(l + <72)]ln(\[(l + q2/a)/(l + ^2)]). (4.10)

The corresponding contours are sketched in Fig. 2. The contour for m = 0 is one of those

shown in Fig. 1. It plays a special role and we denote it by

p(q,m = 0) = p0(q) = -[4/(l + ^2)]ln(X[(l + q2/a)/( 1 + ^r2)]). (4.11)

Except for q = 0(e) the contours (4.10) lie close to p0(q), unless m » 1 in which case the

inner turning point is removed from the neighborhood of the origin as discussed above.

Fig. 1. Contours p = p(q) for Eq. (4.7). Nominal values of a = .25 and e - .01 are taken. The values of \ are

indicated on the figure.
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Fig. 2. Contours p = p(q) for Eq. (4.10) with the nominal values of a = .25 and e = .01. (a) indicates variation

with A, m = 2 fixed, (b) variation with m, \ = .5 fixed.

We return to the discussion of visual models and in particular to (4.2). Although an

explicit form of p(q\ m) such as (4.10) does not seem feasible in this instance, the contours

are easily obtained. Observe that as a function of (1 + q2)p2 is immediate and from

this the required contours are easily generated. In Fig. 3 we give the result of such a

procedure. Again we only focus on the case of closed contours and, as we show shortly,

discrete eigenvalues. The figure caption contains a full discussion. We only remark on the

fact that four branches are now present and therefore four terms will be present in the

eigenfunction representation.

5. Turning points and other connections. In this section we consider the corrections

which must be made at the critical points mentioned in the previous section. This will lead

not only to a uniform description of the eigenfunctions but also to the determination of

the eigenvalues. In approaching this portion of the problem we recognize that the nature

of the contours of K will play an essential role. It is impractical to anticipate all possible
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topologies. We will therefore be content to consider two examples which incorporate

enough features to deal with fairly complicated topologies. These will permit us to treat

the case depicted in Fig. 2 which we term type I and that depicted in Fig. 3 which we term

type II.

Type I. In a type I situation we have two branches for all values of m, as indicated in

Fig. 2. For the turning point at the right, q0 of the figure, p = 0. As is well known [1, 16,

17], the phase advances by u/2 as we pass clockwise around a turning point. Thus we may

X=0.85

X=0.5

Fig. 3. Contours illustrate Eq. (4.2). The values a = .395, c = .009, b2 = 49 represent values based on human

psychophysical data. The nominal value of m = 4 is taken in (a) to illustrate variation with X, while X = .7 in (b)

with m varying.
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represent the WKB form of the solution by

K = exp(imti)
1/2

sin + (5.1)
Po^Kp

p{) is the intercept of p0( p) as indicated in the figure and

Kp = Kp(0, p0).

Multiplicative constants have been introduced for later convenience. Eq. (5.1) has been

written so as to accommodate the phase condition at q0. If the inner turning point Q0 is

bounded away from the origin (so that m » 1) and indicated by the curve with the

hatched interior, then the phase condition at Q0 yields

A(X) — 2 f p(s) ds = (2m + \)tte. (5.2)
Qo

Thus A(A) is the hatched area of Fig. 2 and n is an integer. As indicated, A is a function

of X and in fact (5.2) is the condition that X be an eigenvalue. We have termed this

condition the area rule [1, 2, 3], The neighborhood of the origin proves to be of no

consequence and we comment on this below.

If m does not become large the inner turning point is in the neighborhood of the origin,

and from (3.19),

Q0=O(e). (5.3)

Inner analysis. To deal with the turning point (5.3) as well as the critical point at the

origin, <7 = 0, we consider the inner limit: q/eM fixed; 0 < ju < 1; e|0. Observe that

under this limit p —> p0, Kp -> K°. We will also need the limit of

f" p(s)ds = f° p(s) ds - f p(s) = y - f p(s) ds. (5.4)
Ji JQo JQo 1 JQo

As before A refers to the area enclosed by the curve described by (4.10) (the dashed curve

in Fig. 4) and is therefore still a function of e. A straightforward calculation shows that

the cross-hatched area of Fig. 4 is mue—independently of p0\ It therefore follows that

A — A0 — W77E and / p(s) ds ~ p0q — mire, (5.5)

JQo

where A0 is the area of the entire hatched portion of Fig. 4 or, equivalently, it is the area

enclosed by p0, (4.11). It therefore follows that the inner limit of (5.1) is given by

exp (imO) . (A 0 -n \ <r,\
<56)

Under the inner limit the integral equation itself (2.1) becomes

A:(0,x - y)yp]{y)dy = X^j(x). (5.7)
/

Thus

ipj a. exp(-/p • x) (5.8)
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Fig. 4. Nominal values of a = .25, e = .05 and X = .5 have been used in this sketch. The continuous line

corresponds to m = 0 and the dashed line to m = 2.

is a solution if p is such that

K(0,p) = \ (5.9)

and hence

P=Po■ (5-10)

Superposition of all admissible solutions gives the inner solution

1 /*2t7
^1 = 2vf0 ™ f(0')exp[~'Porcos(0 - e')\ d6'

Z7T Jq
i exp -i^-cos( 6 - 6')

e
d0\ (5.11)

where f(9) is an arbitrary function. Under the outer limit (q fixed and ej,0) a simple

stationary point calculation yields

1/2 ifin^ I 'Pol , iir\ , t( a \ I iPol in
ti ~ U/(Po^)] i /(^)exp(--^- + -jJ + f(6 - 77>exp(^ g 4

(5.12)

Comparison of (5.12) with (5.6) implies that / oc exp(im#) and for convenience we write

f(0 ) = C ,/2 exp(/mfl). (5.13)
/(2c)

Therefore, in order to obtain a match between the inner and outer solutions, we must have

C = exp[L40/(2e)] (5.14)

and

Cexp(-z'w77) = -exp(-/'^0/(2e)). (5.15)
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It therefore follows that

A0 = {In + 1 — m)iTe (5.16)

where n is an integer. If (5.5) is substituted we obtain

/1(A) = (2n + l)we (5.17)

where n is an integer so that the area rule is again obtained.

Next the constant C is given by

C = exp
m 1

11 n - — + - 177 (5.18)

If (5.13) is substituted into (5.11) we see that the inner form of the eigenfunction can be

evaluated in terms of a Bessel function and is

, (")" + mJm(p<A/e) n)
^, = — exp (imd). (5.19)

V2e

We mention in passing that the eigenfunction in the neighborhood of the origin must also

be of this form even when me > 0(1). Since this implies that m » 1, it follows from the

properties of the Bessel function that is negligible to the left of the inner turning point

in this instance.

Fig. 5. Curve is based on Eq. (4.2) with e = ,(X)9, a = .395, A = .85, and m = 4. See text for discussion.
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Type II. The type II situation is characterized by the curves of Fig. 3. For later purposes

we show two additional figures, Fig. 5 and Fig. 6, which depict this case. In both cases the

four branches are denoted by ±px, ±p2, the outer turning points by (q0, ±p°), and the

two inner turning points by Qx and Q2. Fig. 5 describes the case of the inner turning

points bounded away from the origin, me » 1, while for Fig. 6, we « 1, so the Qx and

Q2 lie in the neighborhood of the origin.

The WKB or outer form of the eigenfunction is given by

exp (imO)
i* =

lyjq-n

~Jq"Pi(s) ds + iir/4 exp - p2(s) ds — i-n/4

{Kp(q,pl))1/2 (Kp(q,p2))l/2

+ b{-
I exp --fjj° p2(s) ds + iir/4 exp ~Sq°Pi(J) ds ~ i"/4

\ (^P(^'P2))1/2 {Kp(q,Pi))l/2
, (5.20)

where the constants a and b remain to be determined. In writing (5.20) we have already

taken care of the requirement that the phase advance by w/2 in clockwise passage around

each of the two outer turning points.

We first treat the case depicted in Fig. 5 (me = O(l)). Since the inner turning points are

well away from the origin in this case the standard treatment applies. The condition that

the phase advance by -rr/2 in advancing across and across Q2 in the clockwise direction

P

Fig. 6. Curve is based on Eq. (4.2) with e = .009, a = .395, \ = .7, m = 3. See text.
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yields

f pl(s)ds~f p2{s)ds = (Al - A2) = (2n + 1)tte, (5.21)
JQ, Qi I

where A is the area enclosed by the contour of Fig. 5, i.e., it is the entire hatched area A1

minus the cross-hatched area A2. As could have been anticipated, the area rule for the

determination of A, (5.21), is still valid. We also find

I = ^"[exp(~'A2/e) - exp(-/X1/e)], (5.22)

which finishes the determination of the WKB form of the eigenfunction.

In order to treat the case depicted in Fig. 6 an inner analysis is required.

Inner analysis. The same scaling used in the type I situation applies again. Under the

inner limit we find

/<7o i 71 i rnc
Pj{s) ds - =   pjqr; j = 1,2, (5.23)

A? A: + nvrre

where the arguments follow those given for (5.4) and (5.5). A° and A2 refer to the areas

obtained when e = 0 (or m = 0). As is seen in Fig. 6,

A0 = A°1-A°2 (5.24)

refers to the area of the two unconnected lobes. It then follows that (5.20) under the inner

limit becomes

exp (im8) exp[(^°/(2e)) - iPlq + iir/4] _ exp[(iA°2/(2e)) - ip2q - iir/A\

(Kp(/>i,0))1/2 (Kp(Pl, 0))1/2

(5.25)
+ b ( exp[~(iA2/(2e)) + ip2q + i-n/4] _ exp[~(<^°/(2e)) + iPlq - iv/4]

\ {kp{Pl,0))1/2 (kp(Pl, 0))1/2

The inner form of the integral equation is again given by (5.7) and its solution has the

form (5.8), with p such that (5.9) is satisfied. However, instead of (5.10) we now find

p=pl,p2. (5.26)

Thus superposition yields

♦.-£f
^P'Mo ')«p

'Pxq cos(6' - 0)

+ 2-,

e

ip2q

d6'

cos( 6' - 6) d0' (5.27)

where the functions fv f2 remain to be determined from an outer matching. Under the

outer limit (5.27) becomes

r ipxq iir
[£/( )] 1/2| /j(^)exp

+ [«/(/>2<72TO]1/2(/2(0)exp

'P iQ i*_

e 4
+ fi(* - 7r)exp

'Pig ijl
e 4

+ fi(Q ~ "")exP

e 4

ip2q _ ijrr_

e 4
. (5.28)
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Comparison of (5.28) with (5.25) implies

fi(0) = Cleim6{l/(2e))l/2,

f2(0) = C2e-e(l/(2e))l/2.

It then follows that

AQ=(2n + l)eir = A(\) = A1-A2. (5.30)

Once A is fixed by (5.30), A] and A2 are each determined as a consequence of their

functional relationship as required by K(p, q) = X. The ratio of a to b is again de-

termined by (5.22) and

C\ = «(/'i/^P°(/'i))1/"exp
iA?
2e

C2 = (-)ma{p2/K°(p2))
1/2

exp
« ,5-31)
2e

determine the remaining constants.

To finish the job, (5.29) is substituted into (5.27), which again results in Bessel functions

of order m,

exp (imd)
<P i =

(2e) 1/2 Fw)

Jh \
1/2

+ ib t>o/~ x Jm(P2<?A)exPK°Ap2)) myrw ' *\ 2e
. (5.32)

6. Principal eigenfunctions. For eigenfunctions of low index, the so-called principal

eigenfunctions, last section's approach is no longer reliable. To see this observe that the

areas calculated say in (5.2) and (5.14) are 0(e) and as a result, the phase term no longer

dominates the amplitude term, so the basis of the expansion procedure becomes

questionable. This problem can be treated by going directly to the integral equation and

introducing appropriate approximations. [See Section 4 of ref. 1 for this approach in the

one-dimensional case.] In this section we approach the problem of principal eigenfunc-

tions in a somewhat different, but equivalent fashion.

It will be useful in the sequel to start with the following example:

-V 2<p + e2r2<p = -V 2<t> + e2(x2 + y2)<f> = \<i>. (6.1)

(As will be clear in a moment, e scales out of the problem). This is a separable equation

and is easily seen to have the solution

4> = Hk(e1/2y)Hn(e1/2x)exp^~(x2 + y2) ; A = (2n + 2k + 2}e, (6.2)

where Hn denotes the nlh Hermite polynomial [25]. The eigenvalues have the degeneracy

associated with the integer (n + k) being constant. Another form of the eigentheory is
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obtained by introducing cylindrical coordinates. Thus we write

<p = (f(r)exp[/m0], (6.3)

in which case (6.1) becomes

S + %-*>]<-» M)
and

/= rmLlm)(er2)exp[~er2/2], A = {An + 2m + 2)e, (6.5)

where L\'") represents the modified Laguerre polynomial [25].

The Wigner transform of the operator associated with (6.1) is K = p2 + q2 so that the

contours are simply the circles

p2 + q2 = A (6.6)

or more precisely semicircles for q > 0. This corresponds to a type I contour and, if we

apply the rule (5.11), we see that in this instance it exactly gives the eigenvalues (6.5). For

low index however, the approximate eigenfunction does not give a good fit to the exact

form (6.5), a fact already foreshadowed by the one-dimensional treatment [1, 2, 3].

In the remainder of this section we treat the two cases referred to as types I and II in

the previous section. We now adopt a slight change of notation and write the kernels as

K = K{ p2, q2), (6.7)

a form which underlines the symmetries assumed thus far. The corresponding contours are

given by

k{p2,q2) = \. (6.8)

Type I principal eigenfunctions. Under investigation are those cases for which the

contours of (6.8) enclose small areas. Of necessity these lie near the peaks of (6.8). In the

present instance the only peak lies at the origin. In this neighborhood we can Taylor

expand to obtain

K ~ A0- kxp2 - k2q2 (6.9)

where

Ao = £(0,0), = -Arfl(0,0), k2 = -K,2{ 0,0). (6.10)

The negative signs in (6.10) reflect the fact that the origin is a peak, i.e., kx, k2 > 0. If we

use (6.9) in (6.8) then

A0 — A = A' = kxp2 + k2q2. (6-11)

Equation (6.11) can be regarded in its own right as arising out of the eigenfunction

problem

-k{V2<t> + k2£2r2(p = A'<p. (6.12)

The Wigner transform of the operator in (6.12) is (6.11) and it shares with the original

integral equation (2.1) for the particular kernel implicit in (6.12) the same contour

structure in the neighborhood of the origin. Intuition would then say that (6.12) has a
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principal eigenstructure which closely approximates that of the original problem. This can

be confirmed by directly investigating the integral equation for principal

eigenfunctions—an approach taken in the one-dimensional case and therefore not deemed

necessary here [1, 2],

Equation (6.12) is easily scaled into the form (6.1) and the result yields

ek2r2
4> = r mL<nm' | |exp im6 —

2 kl
(6.13)

A = A0 — ̂ j(4« + 2m + 2)e. (6.14)

In particular, for the simplified kernel (4.3) we have

1 ~ A = \p2 +i~^\cl2 (6-15)

<t> = rmL(nm)[ 4l     I er2 lexp

4r \ a

with the resulting eigenfunctions and eigenvalues,

im6 — 2^ jer2 , (6.16)

A = [l - (l/4)(4n + 2w + 2)e]. (6.17)

Type II principal eigenfunctions. In this case the Wigner transform has two peaks

located at

(p,q) = (±po,0) (6.18)

with pQ such that

°) = o.

The appropriate Taylor expansion of (6.8) has the form

k ~A0- a(p2 - pi)2 - Pq2 (6.19)

with

a = -K,l{p2,0), P=-K,2(pl 0).

In particular, for the visual model (4.2) we have

K ~ A exp [ ~Pq/4] (1 - \/b2){\ -(1 - a)q2/a - b2(p2 -pi)2/ 32} (6.20)

with pQ such that

Bb4
'0 = 41V-i

If (6.19) is substituted into (6.8) we obtain

A0-A
{p2 -Po)2+(P/a)q2- (6-21)

a

Considered in its own right, (6.21) is the Wigner transform of the operator for the

following eigenproblem:

8A<£ = (v2 + Po)2<t> + S2r24>, (6.22)
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where

82 = —e2, A = X° " X . (6.23)
a ao

The factor 8 on the left hand, which has been introduced for formal reasons, is

appropriate as indicated by the previous case. Unlike the previous case (type I) this

principal eigenproblem does not lead to a solvable canonical equation and instead we

must resort to asymptotics in the limit 8 jO.

The gross features of the appropriate approach follow from a study of the comparable

one-dimensional problem and we digress to consider

d2

SA<t> = ['dx2 + P°) ^ + S'x2(t>' ^6'24^

A naive perturbation analysis applied to (6.24) soon suggests the two-scale procedure

(f> = <p(x0, Xj; 5), x0 = x, xl = 81/2x (6.25)

so that (6.24) becomes

8A(f> =

This in turn suggests the expansion

3 ,1/2 3 \2 2
+ 6 ~d^J +Po <f> + 8x2(f>. (6.26)

At the lowest order.

with

<f>= £ 8n/\{x0,xi). (6.27)

n = 0

02 +P«Uo = 0 (6.28)
dx2

h = /(*i)exp[f>o*ol- (6-29)

The conjugate need not be considered and the remaining solutions may be excluded since

they show growth at infinity. At the next order, we find <p1 = 0 and at O(S) we are left

with

9 + />o| <t>2 = f A + 4Po^-J - xl |(/(*l)exP['A>*o])- (6-3°)
3xq ) \ dx2

Secular growth is avoided by choosing / such that

02
~*Po

The solution to (6.31) is

^o2—/+.x12/= A/. (6.31)
dXj

f Hn{(2Po)i/2rp

A = 2p0(2n + 1), (6.32)

= H„
8 \1/2\ I x28

2pj (6J3)4 p

and the asymptotic form of the eigenfunction is obtained by substituting (6.33) into (6.29).
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The corresponding analysis of (6.22) parallels the above one-dimensional treatment, and

we simply outline the steps. We first separate variables

<f> = <&exp [im6] (6.34)

and also write

, d2 1 d m2 ,,

V dr2 + ~r dr r* '

A straightforward perturbation procedure again indicates the need for a two-scale analysis

and in anticipation of this we define

r0 = r, r, = S^2r (6.36)

and hence

A= 3 +§i/2 3 (6 37)
dr 3 r0 drl

The presence of purely geometrical terms in (6.35) and (6.22) leads to some flexibility in

the expansion of the operators. A convenient form of expansion is given by

where

Then if we expand

M'>2 + 4Po^ + (6^I + ^|A)2} + 0(8^2) (6.38)

3 1 9 m2 2 , .
A) =7-^ + 797- —+ /V (6-39)

3/vr ro dro rft

^ = t>(r0,rl8) = ^8"^<i>n(r0,r1), (6.40)

insert it and (6.38) into (6.22) to lowest order, we obtain

(A>2K = 0, (6.41)

the solution of which is

$0 = Jm{Poro)f{r\)- (6-42)

Other solutions of (6.41) have unacceptable growth properties.

At the next order we find that <E>, = 0, and at O(S) we obtain the condition that / be

such that

-4/>o^7 + r?jf= A/. (6.43)

This is the same as Eq. (6.31) and has the solution (6.32), (6.33) with xl replaced by rv If

we remove all the intermediate scale changes and reassemble the asymptotic solution the

result is

X ~ X0 - 2e^3(2« + l)/>0, (6.44)



768 L. SIROVICH AND B. W. KNIGHT

and

/

<t> = JjPor)Hn

\

Pt2

4 apl

1/4

exp

/

imd - —
flE

2

\ 4aPo

1/2

r2 (6.45)

The dependence of A, (6.44), on the angular quantum number, m, does not appear until

next order, in which case it can be shown that

A ~ A0 = 2e^S (2n + I)j80 - e,^ 7 1 . (6.46)
4Po
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