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Abstract. In this paper we consider a model problem that simulates an atmospheric

acoustic wave propagation situation that is nonlinear. The model is derived from the basic

Euler equations for the atmospheric flow and from the regular perturbations for the

acoustic part. The nonlinear effects are studied by obtaining two successive linear

problems in which the second one involves the solution of the first problem. Well-posed-

ness of these problems is discussed and approximations of the radiation boundary

conditions that can be used in numerical simulations are presented.

1. Introduction. In this paper we are interested in a two-dimensional model of acoustic

wave propagation in the atmosphere. The propagation originates from a point source with

a high intensity of sound. It is well known that acoustic wave propagation in the

atmosphere is rather a complex phenomenon. It is influenced by atmospheric conditions

such as pressure, density, temperature, and wind variations. To analyze the complete

problem is a difficult task. However, numerical methods have proven capabilities of

handling such problems, but it has not yet been carried out for this class of problems.

During the 1960s approximate analytical methods have been attempted for simplified

models of the atmosphere. Axisymmetric three-dimensional time-dependent models were

done by Cole and Greifinger [1] and [11], and discussions on the time harmonic case were

done by Pierce [2], These models essentially handle only linear wave propagation but

allow inhomogeneities in the atmospheric conditions on pressure and density. Our

ultimate goal is to treat the full nonlinear model which can incorporate all variations of

atmospheric conditions. However, at the present time we shall be concerned with the

simplified situations of the above model but retaining nonlinearity.

The goal of the paper is twofold. First, one is to define the problem that governs the

nonlinear behavior. It turns out that the problem can be decomposed into two linear ones.

We examine the well-posedness of these problems, i.e., devise the mechanism that will lead
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736 S. I. HARIHARAN

to the existence and uniqueness of the solution of these problems. The second part will

contain a brief discussion on radiation or absorbing conditions that are suitable for

numerical calculations. It turns out that these are derived from the appropriate dispersion

relations for the linear problem. The question of well-posedness of the problem also plays

a crucial role in the numerical simulation. In this particular study, modelling the acoustic

source is a crucial part. The source should be of the nature that does not violate the

well-posedness of the problem. Here we are interested in including sources that are rather

nonsmooth. An example is a blast wave sound such as a space shuttle takeoff situation.

The sound sources may be pulses, i.e., "delta functions" in both space and time. However,

other standard sinusoidal types of sources can be included without difficulty. It turns out

that the well-posedness of the problem yields the regularity of the source and thus gives a

guideline to approximate a source such as the delta function type in a proper manner. The

analysis of this class of problems can be treated according to the theory of Kreiss [3] for

hyperbolic systems. Unfortunately, what turns out is a characteristic problem. This does

not conform with Kreiss's analysis entirely. We take a slight deviation from his approach.

As an outcome of this analysis, one can also derive a family of boundary conditions that

can be used for numerical computations. The numerical results will be reported elsewhere.

As we mentioned earlier, the governing equations are derived from the Euler equations

for the atmosphere. As in Cole and Greifinger [11], we consider an isothermal atmosphere

above a ground plane with sound produced by instantaneous energy release at a point on

the ground. We will also consider cases other than that of instantaneous release rate such

as sources of smooth sinusoidal type.

We shall begin with the statement of the fluid flow problem which governs the acoustic

phenomena. The model assumes strictly a two-dimensional field of atmosphere with a

source that produces a release of sound energy at a point z0 above the ground. The case

we treat is of an isothermal atmosphere with the standard model of exponentially varying

pressure and density fields. We shall not be concerned with wind speed so that the

atmosphere is in equilibrium. Then the equilibrium atmosphere is characterized by

exponential distributions for pressure and density with a scale height h,

P0(z) Po(z) „ ^
 = e =—5T-' (I-1)

p* p

where P*, p*, T* are sea level pressure, density, and temperature respectively. Also, the

scale height h is given by

RT*
(1.2)

To nondimensionalize the problem we need

c* = \JyRT* , (1.3)

which is the isentropic sound speed and

cg = ][igh, (1.4)
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the gravity sound speed. Then the nondimensional form of the Euler equations (the

equations of continuity, balance of momentum, and energy) is

+ div(pq) = 0, (1.5)

^ +(q • V)q = — Vp - -k, (1.6)
at yp y

3
¥ + (,-v ^ = t). (1.7)

Note that in equation (1.6) the forcing term, -(l/y)k (k is the unit vector in the z

direction), arises due to the forcing term per unit mass -gk in the original variables which

is due to gravity. In equation (1.7), f(x, z, t) dictates the space time dependency of the

source (see Fig. 1) and £ measures the energy release per unit volume. For the case of an

instantaneous energy release, e is given by

(Y-I)fio£ = (1.8)
h3P*

where Q0 is the total energy released at time t = 0. The initial conditions are

p = p = e~z, q = 0 at / = 0. (1-9)

The boundary conditions at z = 0 are

qz = 0, (1.10)

which states that the vertical component of the flow is zero at z = 0. •

2. Formulation of the acoustics problem. The acoustic expansion is based on e « 1 and

represents the flow as small changes superimposed on the flow of the ambient state. We

note that the ambient velocity is zero, but pressure and density have the form e~z. Thus

(0,z0)

7777777777777777777777777777777777777777777777

Fig. 1.
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the expansions are:

q = eu + e2u, + • • • , (2.1)

p = e~:{\ + ep + e2pl + ■ ■ ■ }, (2.2)

p = + ea + e2a1 + ■ ■ • j, (2.3)

where u = (u, w), and u: = (i/j.ivj). Quantities u, ux and w, wl are the x and the z

components of the acoustic velocities, respectively. We substitute expansions (2.1)—(2.3)

into equations (1.5)—(1.7), initial conditions (1.9), and boundary conditions (1.10) to

obtain the field equations.

The problem that results from order e is linear and is similar to the one reported by

Cole and Greifinger [1], This is as follows:

a, + ux + w. — w = 0, (2.4)

u, + ^px = 0, (2.5)

h> + —p, - ——- = 0, (2.6)
Y Y

Pi~ Y°, + (y —1)w = f(x, z, t). (2.7)

We rewrite (2.7) using (2.4) as

p, + Y".v + - w =f(x,z,t). (2.8)

Initial and boundary conditions for these perturbations are:

p = a= u = w = 0, (2.9)

w = 0 at z = 0, t > 0. (2.10)

For convenience we will call (2.4)-(2.10) problem Pv

Similarly the problem that results from order e2 has the form:

+ "i,* + Wi.*-wi =A> (2-11)

"u+a/Y =/2, (2.12)

wu+CL/y)Pi,:-(Pi - ffJ/Y =fi, (2.13)

Pu - y°\,t +(y - 1)^1 =/4, (2.14)

with initial conditions

and boundary conditions

px = a, = Mj = wl = 0 at t = 0 (2.15)

Wj = 0 at z = 0, t > 0. (2-16)
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Here,

/l = -[(°")x +('»).- - OH'],

fi = °px/y -("«* +

/a = ®(Pz - p)/y - (uw, + (2-17)

/4 = y{/>° -(y + i)®2/2},- «(/> - y®)x

+ w{(/> - ya)z +(y - 1)(/? - ya)} -(y - \)af(x,z,t).

Again, for convenience, we shall refer to equations (2.11)—(2.16) as problem Pn. We allow

sufficient smoothness on the right-hand side which contains terms given by (2.17) so that

Pn is well-posed. In fact this gives us the regularity of solution of Pn. Once a numerical

procedure is constructed for the solution of problem the same procedure can be used

to compute the solutions of Pu since the differential operator on both problems is the

same with the bonus of identical initial and boundary conditions. Also, once the

components of the solution (p, p{), (a, aj, and (u, u,) are known then the solutions of the

nonlinear field are given by:

p = ep + e2px,

a = ea -1- e2alt (2.18)

q = eu + e2^.

This procedure can be continued to obtain higher-order approximations for the nonlin-

ear problem. However, a sequence of study reported by Hariharan and Lester [4, 5] for

one-dimensional problems and by Hariharan [6] for two-dimensional problems of nonlin-

ear acoustic calculations shows that only two terms are needed to investigate the

nonlinearity, even for the case of shock waves. A natural question one may ask is why not

solve the nonlinear problem directly, as in the above references, including discontinuities

in the solutions such as shock waves. The solutions may form shock discontinuities in the

vicinity of the source, in which case considering two linear problems P, and Pu separately

will not be uniformly valid. However, we are interested in the sound field far away from

the source, and the region of possible shock discontinuities is still considered as a source

region. A full mathematical justification may be a difficult task.

3. Formal solutions and estimates. Here, we discuss the existence and uniqueness of the

initial boundary value problems Pt and P„. We shall accomplish this by obtaining proper

energy estimates. The first step is to write the governing equations in the following form:

u( = Auv + Bu. + Cu = f (3.1)

where

A = dij, an = 1, a2i = I/7, a42 = y and all other atJ = 0,

B = bjj, bu = 1, bJ4 = 1/y, b43 = y and all other biy = 0,

c = c//> C13 = -!• C31 = ~c34 = l/y> c43 = -h the rest 0.
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Also, u = (a,u,w, p)J for ?! and u = (a1; ux, w1, p^)1 for Pn. Similarly, the right-hand

side f has the following definition:

f = (0,0,0,/)T for P, and fj = (/,, f2, /3, /4 + yfY)J for Pu.

The boundary conditions are:

w = 0 on z = 0 for Px,

h'j = 0 on z = 0 for Pu.

Initial conditions are: u = 0 at t = 0 for both Px and Pu. We want to treat the problems

in the context of hyperbolic equations. Let us collect needed relevant information from the

theory of hyperbolic equations. First consider the definition of hyperbolicity. Let A (u)

and C(u) be such that

u,+ E A,(u)ux. + C(u)u = f(x, t). (3.2)

Definition 3.1.

If the eigenvalues of

A(u, w) = Y. A7(u)h-v

are real for real vectors u and w then the system (3.2) is said to be hyperbolic. If the

eigenvalues are real and distinct, then the system is said to be strongly hyperbolic.

According to this definition, it is easy to verify from (3.1) that the eigenvalues of

Aw, + Bw2 are

0, 0, (w2 4- w22)1/2 and -(w2 + w22)1/_

satisfying hyperbolicity, but not strong hyperbolicity. The next notion we require is the

symmetry property. Again we consider the system (3.2) for this purpose. In general, Ay(u)

need not be symmetric. There are varieties of procedures which are equivalent to saying

the system (3.2) can be written in symmetric form. One of these is in the Freidrichs sense;

i.e., there exists a matrix-valued function E(u) which depends on u such that the matrices

B,(u) = E(u) 'A;(u)E(u)

are symmetric and then system (3.2) can be written in the symmetric form:

v, + LB/(v)vXy+Rv = E(u)f(x,0. (3.3)

In our considerations A and B do not depend on u, implying E will not depend on u

either. Our first goal is to obtain this matrix E which we call the symmetrizer. The

construction follows from:

Lemma 3.1. There exists a matrix E such that the system (3.1) can be written in a

symmetric form:

v( + Pvv + Qv. - Rv = Ef, (3.4)

where P and Q are symmetric and v = Eu.

Proof. The procedure consists of finding a matrix which will simultaneously symmetrize

both A and B. The first step is to find a matrix T such that T_1AT is diagonal. This is

easily accomplished by forming the matrix T using eigenvectors of A. In this case, T is
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given by

T =

10 1 1
0 0 1-1
0 10 0
0 0 y y

so that

T BT = (3.6)

D 'T BTD (3.8)

T_1AT = diag(0,0,1, -1). (3.5)

The diagonal elements are simply the eigenvalues of A. This in turn yields:
"0 0 0 0"

0 0 11

0 1/2 0 0

0 1/2 0 1

This matrix is not symmetric. So we further investigate possibilities of symmetrizing this

matrix which preserve the symmetry of A. Consider a diagonal matrix D = diag(a, P, y, 5).

This gives the above property for properly chosen constant diagonal elements. We observe

that

D-'T-'ATD = diag(0,0,1,-1), (3.7)

which simply shows the diagonal form of A is preserved while
"0 0 0 0"

0 0 y/p 8/p

0 jB/(2y) 0 0

0 p/{2 S) 0 0

We choose a, /?, y, and S in (3.8) so that the right-hand side will be symmetric. This

restriction gives us the following relations:

y/P = P/(2y), 8/P = P/{28), and a arbitrary.

Upon solving these equations, we find that the one solution is P = -Jl, y = 8 = 1. Since a

is arbitrary we choose it to be 1. Then D = diag(l, v/2 ,1,1). This the matrix G = (TZ))"1

gives both G_1AG and G_1BG as symmetric. Hence, we have the following symmetric

hyperbolic system:

v, + Pxv + Q,v - Rv = F, (3.9)

where v = Gu, P = GAG1, Q = GBG \ R = -GCG 1, and F = Gf

The next step is to consider the well-posedness of the problems P{ and Pn. Any

definition of well-posedness of an initial boundary value problem consists of several steps.

Namely, they are:

a) specification of spaces HF to which F belongs,

b) the space in which the solution v is sought,

c) existence and uniqueness of the solution v e Hy, for any F e Hv,

d) continuous dependence of the solution on the function F.

Composition of all these steps leads to a detailed analysis of the problem. The machinery

to establish such steps follows from Friedrichs [7], provided a suitable energy estimate is
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derived. Therefore, we shall be concerned only with deriving an estimate for these

problems. It turns out that the energy estimate indicates the regularity of F, which gives a

guide to modelling the source in our acoustics problem.

To derive energy estimates for both problems, we define the following quantities.

Denote the inner product of two vectors by

(u,v) = uTv.

Let 12 c R2 be the half space z > 0, -oo<x<oo. Define the L-, norm of a vector in £2

by
r /* 00 /• 00

||u||o = l(u,u)dxdz = I / (u,u )dxdz. (3.10)
Ja Jo J-oo

We introduce functions w = e~v'\, H = e'^'F, for some positive constant 17. Then (3.9)

becomes

w, + Pwv + Qw_ — Rvv + rjlw = H. (3.11)

Now consider the derivative of the inner product,

(w,w), = (w, w,) + (w,,w).

Using equation (3.11) we have

(w,w), = —(Pw,wA.) -(w,PwJ — (w,Qw.) — (Qwr ,w)

+ (w,(R + RT - 2tjI)w) + 2(w,H).

Now using the symmetry properties of P and Q derived in Lemma 3.1, we obtain:

(w, w), = -(w, Pw) v - (w, Qw), + (w, (R + R7 - 2ijl)w) + 2(w, H). (3.12)

Integrating (3.12) over fi, we obtain the following energy integral:

— Ilw|l2

dt
w||o = [ (w, Qw)||._0dx + f { (w, (R + RT - 2t/I)w] dxdz + 2 f (w, H) dxdz.

J-ao JSl JQ

(3.13)

Recall our aim is to obtain an energy integral inequality. At this point we need the notion

called "maximal dissipativity." A discussion of this concept can be found in Kreiss [8].

Suppose a boundary condition of the form = 0 at z = 0 is posed where is a

rectangular matrix. Then we have the following:

Definition 3.2. The boundary condition BjW = 0 at 2 = 0 is maximally dissipative

provided

(y>Qy)|z_o < 0 for all y satisfying Bxy = 0.

For the moment we shall assume there is a boundary operator Bj which satisfies the

definition 3.2. This means that we need to prove the following:

Lemma 3.2. There is a boundary operator B:w = 0 satisfying maximal dissipativeness with

w(x, 0, t) = 0.

Remark 3.1. The resulting boundary operator B, is exactly the rectangular matrix:

Bj = [0 0 1 0],
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Returning to the equation (3.13), the energy integral, we use Lemma 3.2 and obtain the

following inequality:

^"IMIo ̂ j {(w, (R + RT — 2tjI)w)| dxdz + 2 J (w, H) dxdz. (3.14)rfl|WK% 

If t)0 is big enough, t)0I > R + Rt, for instance, set

tjo = 2||R||/6 (5 < 1).

Then for t] > 2r/0,

-(w,(R 4- Rt)w) + 2?)(w, w) > 2(tj - t]0)(w,w) > rj(w,w). (3.15)

On the other hand we have the inequality,

(w,H) < ||w|| ||H|| < (e/2)||w||2 +(l/(2e))||H||2.

Take e = 7)8/2, so that

(e/2)||w|| = (tjS/4)||w||2 < (i)/4)||w||2.

Thus the inequality (3.14) becomes

^IMIo < -i7l|w||o +(V2)||w||o +(2t)"V5)||H||o. (3.16)

Integrating (3.16) from time t = 0 to t = T and using the zero initial conditions, we

obtain the following inequality:

'T .. . _ , fT .
lle-^^r)!!2 +(tj/2) (T \\e-v\{x,t)\\ldt < Crj"1 fT ||e^'F(x,/)\\20dt. (3.17)

Jc\ Jc\

Here, x = (x, z), -q > 2rj0, and C is a constant independent of F(x, t). Inequality (3.17)

holds for both problems P{ and Pu with an appropriate forcing function F. In summary,

the above procedure yields the desired result.

Theorem 3.1. Problem P1 is well-posed; i.e., for any F e L2(Q), there exists a unique

solution v in L2(i2), satisfying the estimate

llv(x, T) + (1/2) 77 (T ||v(x, t )e~r''\\l < Kt)~1 (T ||F(x, t)e~r"\\20dt (3.18)
Jo Jo

for any rj > 2r)0 > 0 and for some constant K independent of F.

Remark 3.3. Observe that u = G_1v, f = G_1F, and it is readily verified that u satisfies

the same estimate as that of (3.18) with F replaced by f.

Remark 3.4. Theorem 3.1 suggests that the forcing function f should be at least in L2(£2).

Thus for practical considerations, even if the acoustics are generated by pulse sources (e.g.,

of the "delta function" type), they should be modelled by a function which is in L2(fi).

Proof of the well-posedness of the problem Pu is similar as mentioned earlier and we

merely state it.
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Theorem 3.2. For any f, e L2(i2) there exists a unique solution Uj e L2(fi) such that

T ||u,(x, t)e~v'\\ldt < Kf]~l fT
J0 J0

llui(x, t )e~r,T\\Q + \i) fT ||u,(x, t)e~v'\\ldt < K-q'1 t)e~7"\\20dt (3.19)
Jc\ Jr\

and the solution of Px, i.e., u and the forcing term f are both in

Remark 3.5. The requirement u e Hl(&) (which is the Sobolev space of order 1) arises

because the forcing term for contains derivatives of the solution of P{.

Recall that the nonlinear solution is sought in the form

u„ = eu + e2^. (3.20)

This is as stated in equation (2.18) the linear combination of problems Px and Pn.

Combining Theorems 3.1 and 3.2, we have the following:

Theorem 3.3. There exists a unique nonlinear solultion u„ e L2(&) for the two term

linear solutions of P, and Pn for the nonlinear acoustic problem provided that the forcing

function f for Px is in L2(tt).

This theorem tells us that the smoothness of the source of acoustics should be more than

a square integrable function. Its first derivative must also be a square integrable function.

In such a situation, it is sufficient to assume enough smoothness on it. This becomes

crucial in the numerical computations. If one uses a second-order finite difference scheme,

all the spatial derivatives need to be at least in C3(£2). Thus, rather than considering step

by step the regularity of the source, it is easier to approximate it by a C°° function. For

example, if we consider a source term of the form f(x,z,t) = S(x)g(z, t), where g is a

smooth function, then one may approximate / by fm where

f= (m/Tr)exp{-m2x2)g{z,t). (3.21)

Similar modifications are easily made when the source is a pulse in the other independent

variables z and t.

To end this section, let us conclude with the proof of Lemma 3.2.

Proof (Lemma 3.2). Same proof holds for both Pl and Pu. The given boundary

condition in both problems is the normal velocity component zero; i.e., w = 0, w, = 0 on

z = 0. Therefore, let y = (p, m, 0, p)T. For any vector in this form, we compute (w, Qw),

that is,

(w,Qw) = yTGTGBG Gy. (3.22)

Noting that G = (TD)"1, we have

10 11
0 0 1-1

0 0 0
0 0 y y

and G =

1 0 0 -1/y

0 0 l/v/2 0

0 1/2 0 1/(2 y )

0 -1/2 0 1/(2y)
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Then simple matrix manipulations yield

0 0 0 0
0 0 0 0

GTGB = 0 0 0 J_
2y

0 o 0
2y

and (w, Qw) = 0 and the corresponding boundary conditions have the form

[0 0 10] = 0

and the rectangular matrix Bt is easily identified.

4. Radiation boundary conditions. For computational purposes, it is essential to truncate

half space £2 into a finite region S2'. For example, if one uses a finite difference scheme,

then it makes computations easier if is a rectangle as indicated in Fig. 2.

Then the pieces of the boundaries Tj, T2, and T3 need to be nonreflecting or radiating

boundaries since they must correspond to wave behavior at far distances. For the simple

wave equation such discussions are extensively known. A summary of these may be found

in Hariharan [9], In this reference, particularly the work of Engquist and Majda [10] is

noted. What follows is an attempt to extend the idea in [10] to obtain boundary conditions

for the linear problems under consideration. For this purpose, we shall be concerned with

only the problem Pv The same radiation conditions are applicable to problem Pn. Recall

that problem PY is prescribed by equations (2.5)-(2.10). Suppose we are interested in the

radiation boundary condition on the boundary T3. It is sufficient to treat this boundary

alone for obtaining radiation conditions. That is to say, treat the problem as a half space

problem, with T3 playing the role of the x-axis (-00 < x < oo).

7777777777777777777777777777777777777777777777

Fig. 2.
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To follow the idea of [10], we take the Laplace transform with respect to time t (since

the initial values are specified) and the Fourier transform with respect to ;c of equations

(2.5)-(2.8). Using initial conditions (2.9) we obtain:

id + + vv, — w = 0,

™ + (^)/> = o,

sw +{l/y)pz - = 0, (4.1)

sp + iy^ii + y w. — w = f.

At far distances the effect of the forcing term / vanishes. Thus we seek homogeneous

solutions of (4.1) with dependence exp(Az). This leads to the characteristic equation

5 /£ A - 1 0

0 .v 0 /£/y

1/y 0 5 (A-l)/y

0 />£ yA - 1 s

This has roots

det = 0. (4.2)

where

with

Au = 1/2 ± mM), (4.3)

H(s, {) = (1/4 + s2 + £2 + y82|2A2)1/2 (4.4)

£2=(y2-1)/Y (>0). (4.5)

For a decaying wave we choose the negative root of (4.3). Moreover, [i(s, £) can be written

in the form

n(s,£) = (s2 + wf(Z))1/2(s2 + a>j(t))1/2/s. (4.6)

Indeed one can obtain a theoretical solution of (4.1) by variation of parameters using the

homogeneous solution dictated by exp(Az) with the values of A given by (4.3). But the

difficulty will be to invert the transforms using the boundary conditions. A similar

difficulty arises at far distances even without the source term. It is easy to see that the

integrand will contain terms of the form exp((l/2)z - /u(s, £)z). From equation (4.6) we

obtain Wj and co2 explicitly as follows:

«i(f) = y
1 \ 1/2 ii a/2'

4 + £2 + 2 ft] + - + £2-2/^

"2U) = ~=j
1 \J/2 /I \J/2
- + £2 + 2/^) - - + £2-2/?^

(4.7)

Let j = /t. Then equation (4.6) becomes

/i(z'r,£) = 1/(/t)[(t2 - co2(£))(t2 - coj(£))]1/2- (4.8)
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For propagating waves we require ju to be imaginary. This is ensured by r > or

t < w2(£)- From (4.7), one finds such a requirement is satisfied provided |£/t| < 1, or

equivalently |£/j| < 1. Thus we shall be concerned with approximating ji(s. £) for large

values of s. To see this let us emphasize that the solution of X we seek is of the form

X = (4-9)

Multiplying equation (4.9) by exp(Az), we obtain an associated differential operator

J = \p - P(s,$)p- (4.10)

In the pseudo-differential operator terminology, ju.(s, £) is the symbol of an associated

pseudo-differential operator. To obtain radiating solutions, equation (4.10) needs to be

inverted for both the Laplace transform and the Fourier transform. Indeed a perfectly

absorbing boundary condition arising from (4.10) is given by the inversion,

a
3 z

('°° ( p{z\£,s)es' ,ixd£ds= f'X f p(z\~ n(s,£)
-/oo — oo -zoo — oo v

es'-i(xd£ds.

The above expression simplifies to

^ = \p-f'X f n(s,£)p{z-,£,s)es' ,(xd£ds. (4.11)
^ —zoo -oo

Equation (4.11) provides a boundary condition that is nonlocal in time and space. A

similar procedure to that discussed above will hold for boundary conditions on the

boundaries I\ and F2 provided we take the Fourier transform with respect to 2 and

construct differential operators in the direction of x. Boundary condition (4.11) is not easy

to implement. However, if we approximate the symbol ji(s, £) for large values of .v then it

is possible to obtain approximate local boundary conditions from (4.11). To do this we

consider n(s, |) again and investigate its nature when \£/s\ « 1. We rewrite i± as

i + \~ + e)/s2 + n2e/sA
1/2

(4.12)

A crude approximation is n = s. Substitution of this approximation in equation (4.11)

gives the boundary operator

dp 1 dp , .

This is a possible boundary condition. Using the Taylor approximation of (1 + x)l/2 for

small x, we see from (4.12) that the next level of approximation is

1 + 1/(8s2) + je/s2 . (4.14)

We differentiate (4.11) with respect to t and substitute the approximation (4.14) to obtain

m(^£) = *

ith respec

the next order boundary condition

Pz, = \p ~ [p„ + P/8 - \pxxY (4-15)
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Similarly, higher-order accurate boundary conditions can be derived. This process seems

elegant. However, not all such boundary conditions yield stable results. That is to say,

well-posedness of the problem is not guaranteed with all such boundary conditions. At

this point it remains to be shown that we can derive energy estimates of the form (3.18)

with boundary conditions of the above type on the boundaries I\, T2, and T3. Discussion

of these results, including corresponding discrete versions of our problems, will be

reported elsewhere.
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