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Abstract. The physical properties of the commonly used second-order closure models

are examined theoretically for rotating turbulent flows. Comparisons are made with

results which are a rigorous consequence of the Navier-Stokes equations for the problem

of fully-developed turbulent channel flow in a rapidly rotating framework. It is demon-

strated that all existing second-order closures yield spurious physical results for this test

problem of rotating channel flow. In fact, the results obtained are shown to be substan-

tially more unphysical than those obtained from the simpler K-e and K-l models.

Modifications in the basic structure of these second-order closure models are proposed

which can alleviate this problem.

1. Introduction. The ability to accurately predict rotating turbulent flows could have a

wide variety of important applications ranging from the analysis of turbomachinery to the

description of turbulence in the atmosphere or in oceans. However, with the exception of

some recent work on the limiting case of two-dimensional turbulence [1-3], there appears

to have been little work which accounts for the effects of rigid body rotations on

turbulence modeling by a direct analysis of the Navier-Stokes equations. In fact, much of

the work in modeling rotating flows has been conducted utilizing the K-e (or K-l) model

of turbulence which requires the effects of rotations to be accounted for by the use of a

variety of ad hoc empiricisms (cf. Majumdar, Pratap, and Spalding [4], Howard, Patankar,

and Bordynuik [5], and Galmes and Lakshminarayana [6]). While such approaches can be

useful in correlating experimental results for a particular class of rotating turbulent flows,

^Received October 7, 1986.

©1987 Brown University

721



722 CHARLES G. SPEZIALE

they do not form the basis for a general theory which is needed if models are to be

developed that truly have a predictive value.

The purpose of the present paper is to examine the consistency of various second-order

closure models with results which are a rigorous consequence of the Navier-Stokes

equations in a rapidly rotating framework. Although there have been a few previous

studies of rotating turbulent flows using second-order closure models (cf. So [7], So and

Peskin [8], and Mellor and Yamada [9]), only a narrow range of flows have been

considered so that no definitive conclusions could be drawn about the correctness of the

models. In this paper the test problem of fully-developed turbulent channel flow in a

rapidly rotating framework will be considered. It will be proven, as a rigorous conse-

quence of the Navier-Stokes equations, that the Reynolds stress tensor for this problem

must be two-dimensional (as a direct consequence of the Taylor-Proudman theorem [10])

and must have a nonzero Reynolds shear stress in the plane of the flow. The commonly

used second-order closure models yield completely opposite results (i.e., a three-dimen-

sional Reynolds stress tensor with vanishing Reynolds shear stresses), and, hence, are

fundamentally inconsistent with the Navier-Stokes equations for turbulent channel flow

in a rapidly rotating framework. It is also demonstrated that the results obtained from

these second-order closures are substantially more unphysical than those obtained from

the simpler K-e or K-l models. Modifications in existing second-order closure models

which can alleviate this problem will be explored. By the addition of one term to the

second-order closure obtained by Haworth and Pope [11] from a generalized Langevin

model, it will be shown that consistency with the Navier-Stokes equations in a rapidly

rotating frame can be achieved. Other possible modifications will be discussed briefly in

the last section along with the prospects for future research.

2. Second-order closure models and rotating channel flow. The turbulent flow of a

homogeneous and incompressible viscous fluid in a rotating frame of reference will be

considered. The velocity field v and pressure P will be decomposed into ensemble mean

and fluctuating parts, respectively, as follows:

v = v + u, P = P +p. (1)

Of course, the decompositions in Eq. (1) are solutions of the mean and fluctuating parts of

the Navier-Stokes equations and continuity equation which, in a steadily rotating frame

of reference, take the form [12]

3 v  
-T- + V ■ VV = -vP +fV2v - V • T - 2S2 X V, (2)
ot

^ + v • vu = -u ■ VU - u ■ VV - V/1 + cv2u + V • T - 2Q X u, (3)
at

V • V = 0, (4)

V • u = 0, (5)

where v is the kinematic viscosity of the fluid, fl is the angular velocity of the reference

frame relative to an inertial framing, and t is the kinematic Reynolds stress tensor given



SECOND-ORDER CLOSURE MODELS 723

by

t = uu . (6)

It should be noted that P in Eq. (2) is the modified mean pressure which includes the

centrifugal and gravitational body force potentials.

The Reynolds stress transport equation is obtained by taking the ensemble mean of the

symmetric part of the outer product of Eq. (3) with u. This equation takes the form [12]

Drk, du, dvk 9 , >.
~Dt~+ Tkm dxZ+ T/maZ"~ ~ aT"'umukui'

dp dp \ duk du, 7
u^ + u'^-k)-2vdrm^:+vv^

+ 2fWA,T„/ + ^mlnQmTak (7)

in a rotating frame of reference. In (7), Cartesian tensor notation is utilized where the

Einstein summation convention applies to repeated indices and eklm represents the

permutation tensor. Second-order closure models are obtained when closure relations are

provided that tie the higher-order turbulence correlations in (7) to the Reynolds stresses

(along with their spatial gradients), the mean velocity gradients, and the length scale of

turbulence. The closure relations used for the higher-order correlations (i.e., the triple

velocity correlation, pressure gradient-velocity correlation, and the dissipation rate corre-

lation) in an inertial framing are of the general form

Wm = Q/m(T.VT,/), (8)

hdx, + U'dxk Cl\kmdxm + T,mdx, I (9)

du,. du,
2vdTdT =^/(t,d,/), (10)

UAm m

respectively (see Mellor and Herring [13], Launder, Reece, and Rodi [14], and Lumley

[15]). In (7)-(10), Cj is a dimensionless constant, I is the length scale of turbulence which

must be obtained from a separate transport equation, and

Jr£ + iv' (11»
— 1 I duL du, \ . .

17*57 (12)2 ^ dx, dxk J

are, respectively, the mean substantial derivative and rate of strain tensor. By extending

(8)—(10) to rotating frames of reference (see Speziale [2]) and then substituting the results

into (7), it is a simple matter to show that all existing second-order closure models are of

the form

Drk, . „ , / du, dvk \ 3 „ , .~W ~ + ) ~ _ 3^

-Ak,{r,Vr,D,l) - Bkl(t,D,l) + W2Jk,

+ (2 - Cx)(zmk$tmTn, + em,nVmTnk) (13)
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in a rotating frame of reference. It should be noted that in the Rotta-Kolmogorov model

[13] the constant C, = 0 and in the Launder, Reece, and Rodi [14] and Lumley [15]

models, Cl is a nonzero constant which does not equal 2. Hence, the Coriolis term on the

right-hand side of (13) survives in all existing second-order closures where it constitutes

the only noninertial term.

Now, we will consider the test problem of fully-developed turbulent channel flow in a

rapidly rotating framework (see Fig. 1). This fully-developed channel flow is maintained

by a constant axial mean pressure gradient,

<14>

while the channel is subjected to a steady spanwise rotation with the angular velocity (see

Fig. 1)

S2 = fik. (15)

The mean velocity field is given by

v = U(y)i (16)

and the Reynolds stress tensor is of the form

T = T (>') (17)

since the flow conditions are fully-developed. Hence, the axial component of the Reynolds

equation (2) in a rotating channel flow is given by

d2U drxy

dy2 dy

©

+ G = 0. (18)

Q

/ / / / t / // // / _/ t ii, ,1,1,, ii ii ii /

U u(y)
X

/ / ////// / /))) 11 ) I ) ) 7 / / 77/ I I / I /

Fig. 1. Fully-Developed Turbulent Channel Flow Subjected to a Spanwise Rotation after Johnston, Halleen,

and Lezius [16].
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Since it is well known that the axial velocity profile in fully-developed turbulent channel

flow is not parabolic like its laminar counterpart, it is clear that

rxy * 0 (19)

(also see the experimental results of Johnston, Halleen, and Lezius [16]). The y- and

z-components of the Reynolds equation (2) take the form

J£-W-2aU-°- (20)

<2i>

Since there is no forcing in the z-direction,

and (21) can be integrated to yield the result

V = 0 (22)

since t must satisfy the no slip condition at the channel walls. Similarly, it can be shown

that

T,xz
= 0. (23)

The vorticity transport equation in a steadily rotating framework (where to = V X v)

takes the form [10]

^ = « ■ Vv + ?<v2w + 2fl ■ vv. (24)

A rapidly rotating framework is defined as one in which

» 1 (25)

where ?0 is the time scale of the turbulent fluctuations. For a rotating channel flow where

£2 = 12k, (24) can be written in the equivalent form

a v, + nv" + 2k v>- (26)

As a result of (25), equation (24) yields the approximate constraint (in a rapidly rotating

framework) that

2k • Vv = 0. (27)

It, thus, follows that

t' "• <28>

Since the walls of the channel are parallel to the axis of rotation, (28) has the exact

solution

v = \(x, y,t) (29)
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which is valid throughout the channel. Hence, the flow must become two-dimensional (in a

strong approximate sense) as would be expected from the Taylor-Proudman theorem [10].

Since v = U(y)i, it is clear that the fluctuating velocity is of the approximate form

u = u(.x, y, t) (30)

in a rapidly rotating channel flow. It will now be shown that, since there is no mean

forcing along the axis of rotation (i.e., since v, = dP/dz = 0), it follows that

u: = 0. (31)

This result can be easily seen by examining the r-component of the fluctuating momentum

equation (3) which reduces to the form

9w_ —3 u, 3 u. du, , ,

"9t+Ult- -"■""a? " ">W + "V "= (32)

since 3p/dz = 0 (the flow is unforced in the z-direction). Once U, ux, and u are

determined from the x- and j-components of the momentum equations (2) and (3),

equation (32) constitutes a linear partial differential equation for the determination of u:.

This equation has the simple solution u, = 0 when solved subject to the no slip condition

at the channel walls. Hence, the solution

Tvz = uxuz = 0, (33)

t,, = u,uz = 0 (34)

is consistent with the Navier-Stokes equations. It is thus clear that, as a rigorous

consequence of the Navier-Stokes equations, the Reynolds stress tensor in a rapidly

rotating channel flow takes the two-dimensional form

t =

«(j) Tx}(y) 0

Cv(j) Tyy ( V ) 0

0 0 0

(35)

This differs from t for turbulent channel flow in an inertial framework only in that t,z is

zero—a result which is a direct consequence of the Taylor-Proudman reorganization that

occurs in a rapidly rotating framework.

It will now be demonstrated that all existing second-order closure models yield results

that are fundamentally inconsistent with (35) and, hence, are in serious violation of the

Navier-Stokes equations for rotating channel flow. By establishing a one-to-one corre-

spondence between (x, y, z) and (xl,x1,x-i), the general form of second-order closures

given by (13) reduces to the equation

Dt v 17 kmdxm 'mdx

1 3C„kl ,Drki , „ ^ J Sv, 3vk

cm dxm T""dxm

^2 ̂ /c/(T'VT, D, . ; Q»kt\ >>",') -r V 'kl

dxn,

^h(t.Vt,D,/) - ^^(t.D,/) + ^"V2ta.

+ (2 - C1)(e3knTri/ + e3/„T„k) (36)
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where we have made use of the fact that = fik and we have divided through by £2.

Taking the limit of (36) as Q, -* oo, we conclude that all existing second-order closure

models yield the constraint

(2 - Cl)(e3knrnl + e3ln\k) = 0 (37)

for a rapidly rotating channel flow. As noted earlier,

2 - Q * 0 (38)

for all of the existing second-order closures (in fact, Cl — 0 for the Rotta-Kolmogorov

model and Cl < 1 in the Launder models [14]). It is then a simple matter to show that (37)

has the general solution

T*x = Tyy> (39)

Txy = 0. (40)

Hence, all existing second-order closures predict a state of transverse isotropy for

turbulent channel flow in a rapidly rotating framework—a result which is in conflict with

the Navier-Stokes equations as demonstrated earlier. In fact, this constitutes a completely

spurious physical result since it is well known that a turbulent shear flow must be

accompanied by a nonzero turbulent shear stress. Furthermore, since the Coriolis term

vanishes in the zz-component of all existing second-order closures (see Eq. (13)), it is clear

that these models predict that

t22 * 0 (41)

as they do for a turbulent channel flow in an inertial framing. This result is inconsistent

with the Taylor-Proudman theorem for rotating channel flow as discussed earlier. These

inconsistencies arise because all existing second-order closure models violate the principle

of material frame-indifference in the limit of two-dimensional turbulence—a result which

is a rigorous consequence of the Navier-Stokes equations as proven by Speziale [1,17], To

be more specific, the inertial terms in (13) do not vanish in a two-dimensional turbulence

unless it is isotropic. In the next section, it will be shown how these deficiencies can be

remedied.

3. Alternative turbulence models for rotating flows. As a prelude to examining alterations

in existing second-order closure models which can remedy the deficiencies discussed in the

previous section, we will consider the consistency of the simpler K-e or K-l models of

turbulence with the Navier-Stokes equations for rotating channel flow. In the K-e or K-l

models of turbulence, the Reynolds stress tensor takes the form

2 ..rl/2,{ % , 9^/

t/

where

K = \rmm (43)

is the turbulent kinetic energy per unit mass which is obtained from a modeled version of

its transport equation, / is the length scale of turbulence, and a is a dimensionless

constant. For the K-l model of turbulence, I is either specified algebraically or is

■„,-}K>kl-aK^I + (42)
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determined from a modeled transport equation obtained from the contracted form of the

evolution equation for the two-point velocity correlations [13]. In the K-e model, the

length scale is given by

a: 3/2
'-V (44)

where e is the dissipation rate of the turbulence which is obtained from a modeled version

of its transport equation [14]. Since the tensorial dependence of (42) is only on the

Kronecker delta and the symmetric part of the mean velocity gradients which are

frame-indifferent [20], these traditional K-e or K-l models are of the same form in a

rotating frame as in an inertial framing. The only way that the effects of rotation are

accounted for is through a change in the length scale which is usually done with ad hoc

empiricisms (see Howard, Patankar, and Bordynuik [5]). This result (along with the fact

that the mean flow is unidirectional so that the Coriolis acceleration in (2) affects only the

mean pressure [17]) guarantees that the basic structure of the Reynolds stress tensor

predicted by the K-e or K-l models will be the same in an inertial or a rotating frame of

reference. To be more specific, the Reynolds stress tensor obtained from K-e or K-l

models of turbulence will be of the form

t =

Tvx 7xy 0

Txy Tyy 0

0 0 T„

(45)

(where txx = tvv = t„) for rotating channel flow or for channel flow in an inertial

framing. Of course, the specific values of the nonvanishing components of t can be

different in the rotating frame as a result of changes in the length scale. While (45) is not

correct for a turbulent channel flow in a rapidly rotating framework (since r2, ¥= 0), it is

substantially less unphysical than results obtained from existing second-order closures

where t is zero.

More recently, Galmes and Lakshminarayana [6] developed an algebraic model for

rotating flows which is given by

2 k
Tkl = jK8kl — e (l ~ 2^2 )(e/tmn®mTn/ + E/mn® mJn k)

*•(1 - C2)

C,e
iT _(T *!Ll + t 12*
3 mn fix I km ftxm + T""9X„, (46)

where Cx and C2 are dimensionless constants that take on the approximate values of 1.5

and 0.6, respectively. For rotating channel flow where

S2 = ftk

Eq. (46) can be written in the equivalent form

1 _ 2 ** , 1K(. _ lr w ^ ,
J2TA/ .1 kl Qe 2 )yE3knTnl + E3lnTnk)

, ^(1 - C2)
S2C,e

2 d°k
~7""' 9x„ kl T/m9jc„, (47)
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which, in a rapidly rotating framework (i.e., for £2 -> oo), yields the approximate con-

straint

£3 kn\l + £3 iJnk = 0- (48)

Equation (48) requires that txx = t and txv = 0. Hence, the algebraic Reynolds stress

model for rotating flows proposed by Galmes and Lakshminarayana [6] yields the same

spurious result for a rapidly rotating channel flow (i.e., a vanishing Reynolds shear stress

in a turbulent shear flow) as that predicted by existing second-order closure models. This

problem arises since the inertial term in (47) does not vanish for a two-dimensional

turbulence and, hence, (47) is in violation of the principle of material frame-indifference

which is a rigorous consequence of the Navier-Stokes equations in the two-dimensional

limit.

It will now be demonstrated that these problems can be overcome by making a small

modification in the second-order closure recently obtained by Haworth and Pope [11]

from a generalized Langevin model. In this Langevin model, a Reynolds stress closure is

obtained which, in an inertial framing, takes the form

Drkl 9^/ dvk 3 t\ ^ ^ ^ s
+ Tkm 0^- + T/m = - 9^-I UmUkUl ) + Gkm7ml + Gln?mk + C0eSA/ (49)

where C0 is a dimensionless constant and G is a second rank tensor which is assumed to

be of the general functional form

G = G(t, Vv, e). (50)

It should be noted that in this Langevin model it is not necessary to model the triple

velocity correlation uuu; this term is closed since it arises from the convection in physical

space of the joint probability density function which is obtained from a separate transport

equation. Haworth and Pope [11] arrived at a model for G of the form

Gkl = (2 + ft)^ - + Hk,{t,D, e) (51)

where is a dimensionless constant and H is a frame-indifferent function since it

depends only on the frame-indifferent quantities t, D, and e. Hence the Langevin model

(49) is, in an inertial framing, given by the equation

Drk, 3v, dvk _ 3 , ,
~dT ~ Ta"'3^ ~ T/m 3Z~(

Pll *m3*m /mdxm) 2K\dxmm""' dxm m" "k

+ HkmTml + HlmTmk + Q)£^A/ (^2)
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where the reader is referred to Haworth and Pope [11] for the precise form of H. It is a

simple matter to show that in a rotating framework (with angular velocity 12 = £2k), Eq.

(52) is given by

Drkl 3 D/ dvk 3 , ,
-  t,„-— = - ( umuku,)

Dt km 0.x- , ' dx„, dxH

dv, dvk \ / dvk dv,

■ all+ T/"'aZ" ~ 2* dZT""'T"' + 07"

+ Hkn7ml + HlrSmk + COe8kl

—
1

^3Im^km 2.K ^^km^mn^nl ^'ilm^mn^nk) • (53)

Haworth and Pope [11] proved that the inertial term in (53) vanishes for a two-dimen-

sional turbulence and, hence, this Langevin model satisfies the principle of material

frame-indifference in the two-dimensional limit unlike all other existing second-order

closures. However, these authors also showed that this model does not give rise to a

Taylor-Proudman reorganization in a rapidly rotating framework. In fact, it can be

shown that for a turbulent channel flow in a rapidly rotating framework, (53) yields a

stress tensor of the form (45). While this is a substantial improvement over what is

predicted by all other existing second-order closures, it is still not completely correct in

that t.. should vanish in the limit as S2 —> oo.

It will now be demonstrated that by making a small modification in the model for the

tensor G proposed by Haworth and Pope [11], a second-order closure can be obtained that

gives rise to a Taylor-Proudman reorganization in rapidly rotating turbulent flows, thus

alleviating the problems discussed above. This proposed modification to (51) is as follows:

Gk! = Wm,WnpTpm - KWmnWnm |1/28kl

0 — -j g —
+ (2 + Pi)-£r - TpPizT-Tni + Hk<(^ D,e) (54)

— 1 I dvt dv, , .

where

2 \ dxj dxk

and /?2 is a dimensionless constant (for fi2 = 0, this model reduces to that of Haworth and

Pope). Since the new term containing the coefficient vanishes in a two-dimensional

turbulence, it follows that this model also satisfies the principle of material frame-indif-

ference in the limit of two-dimensional turbulence. In a rotating framework with an

angular velocity £2 = S2k, this modified expression for G gives rise to a Langevin model of
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the form

Drki dvi dvk 9 ( \

Dt Tkm'dx„, T""dx„, dx„}UmUkU'>

+ B\r ^ + t T +i^T j
Pi *«0v ,mdxm 2K\ dx„, dx„ m" "k

' HkmTml + H,mTmk + C0e8kl

/?! *rMm~k m ^ 3 A m^m 1 iy ' ^"ikm^mn^nl ^3 Im^mn^nk)2 K

+ ~i\{Wmn - e3nnQ)(Wnp - e3npa)rpm

~K{Wmn - e3m„Q){Wnm - e3„m^)|1/2^/- (56)

If we consider the case of a rapidly rotating framework (i.e., the limit as -> oo), Eq. (56)

yields the constraint

-fix
1

^3lnirkm ^3knJ"lm 2 Km^m n^n I ^Zlm^mn^nk)

2& I v |1/2 n Hi\
AT1/2 Tpm 3»l«£3nm| Tkl~[J- \-> 1)

A straightforward, although somewhat tedious, calculation shows that (57) is satisfied if

and only if the Reynolds stress tensor takes the two-dimensional form

T T 0xx xy w

T*y Tyy 0

0 0 0

(58)

The key result that r„ must be zero can easily be seen by examining the zz-component of

(57) which reduces to1

2%t:3/2 = 0. (59)
Ky/2

It is thus clear that with just one minor modification, the Langevin second-order closure

of Haworth and Pope yields a turbulence model that is consistent with the Taylor- Proud-

man theorem and is, thus, suitable for the description of rapidly rotating turbulent flows

unlike all other existing turbulence models.

4. Conclusion. It has been proven that all existing second-order closure models are

fundamentally inconsistent with the Navier-Stokes equations in a rapidly rotating frame-

work. In particular, it was demonstrated that, for the test problem of fully-developed

'No constraint is placed on txx, txv, and tvv since Eq. (57) automatically vanishes for a two-dimensional

turbulence.
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turbulent channel flow subjected to a rapid spanwise rotation, all existing second-order

closures yield the spurious physical result of a vanishing Reynolds shear stress and are

inconsistent with the Taylor-Proudman theorem. The type of results predicted for this

problem by these second-order closures are, in fact, substantially more unphysical than

those obtained from the simpler K-e or K-l models of turbulence as indicated in Sec. 3. By

adding one term to the second-order closure of Haworth and Pope obtained from a

Langevin model, it was demonstrated that these problems can be overcome. This modified

Langevin model appears to yield the first Reynolds stress closure that is generally

consistent with the Navier-Stokes equations in a rapidly rotating framework.

Future calculations should be conducted on rotating turbulent flows with this modified

Langevin model. This is quite important since the closure model for G given in (54) is not

the most general and, hence, there may be other terms which could have been overlooked.

Unfortunately, such a computational study is quite involved and is beyond the scope of

the present paper. Future research is also needed on the effect of rotations on the

evolution of the joint probability density function since such evolution equations play an

important role in all Langevin models. Few, if any, studies along these lines appear to

have been reported.

With some additional refinements, turbulent closure models can be developed that

apply to rotating flows for a wide range of rotation rates without the need for ad hoc

empiricisms. Such a development could have a profound effect on the analysis of a wide

variety of turbulent flows that are of interest to engineers and geophysicists.
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