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1. Introduction. When strong fibers are used to reinforce a weaker matrix the resulting

composite may be highly anisotropic. Stress analysis in anisotropic elasticity, especially for

bodies with finite boundaries and undergoing dynamic fracture, is more difficult than that

for corresponding isotropic problems. Simplified models for fiber-reinforced materials

have therefore been developed. The model used here is known as the idealized theory; it is

described by Pipkin [1] and will be discussed in Sec. 2.

This paper concerns the dynamic fracture of a beam of idealized material with its upper

and lower faces under compression; the beam is described in Sec. 3. The equation of

motion is found from momentum balance in Sec. 4; since this equation is to be solved on

an initially unknown interval it is put in characteristic form.

To complete the formulation of the problem a fracture criterion must be specified. The

commonly used energy release rate is calculated in the context of the present problem in

Sec. 5. In Sec. 6, the fracture criterion is combined with the method of characteristics to

obtain a differential equation for the crack speed in a special case; this differential

equation is analyzed in Sec. 7. The results are discussed in Sec. 8.

2. The idealized theory. The idealized theory is based on the assumptions that the fibers

are inextensible and continuously distributed. The material contains two orthogonal

families of straight, parallel fibers and the axes of a system of Cartesian coordinates (x, y)

coincide with the fiber directions. Suppose that the material undergoes small deformation

under plane stress conditions. Fiber inextensibility then shows that

u = u(y,t), v = v(x,t), (1)

where u and v are displacement components parallel to the x and y axes respectively. The

shearing behaviour is linear elastic so that the shear stress ax v is

+ ".*)■ (2)

* Received September 29. 1986.

©1987 Brown University

713



714 LUKE F. MANNION

In Eq. (2), ju, is a shear modulus; a comma followed by a subscript denotes a partial

derivative.

Equations of motion for displacement components are normally obtained by using

stress-strain laws to eliminate the stresses from momentum equations such as

°xx>x + °xy,y = P»,«- (3)

In the idealized material, however, the normal stresses axx and a are reactions to the

inextensibility contraints and are found after the deformation is known; equations of

motion are therefore found directly from momentum balance.

For bodies containing cracks in static equilibrium, it has been shown ([1], [2]) that the

idealized theory correctly predicts the overall features, including stress intensity factors, of

more exact solutions within anisotropic elasticity; the same correspondence should hold in

dynamic problems.

3. Beam geometry. An idealized beam of length L and height 2 h contains a crack of

time-dependent length l(t) along its center line (Fig. 1.) The beam is initially undeformed

and contains a crack of length /0. The origin of coordinates is at the middle of the

left-hand end. The edges at y = ±h are subjected to equal and opposite tractions T(x, t).

The beam is clamped at x = L and the beam arms are given equal and opposite

displacements at x = 0; symmetry allows us to concentrate on the upper half of the beam.

Since the end x = L is fixed, symmetry and inextensibility together imply that u and v

are both zero ahead of the crack tip. In what follows, only the situation in which the crack

remains straight is considered; the only displacement component to be found is therefore

v(x, t) in 0 < x < /(?).

T(x,t)

TT
h
J •l(t) >\ I

Fig. 1. Cracked beam under traction.
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4. Momentum balance and characteristics. In this section the equation of motion for

v(x, t) is found using momentum balance. Consider the part of the beam in (x, x + Ax)

where x < lit). The tractions on this material are the shear stresses on the vertical faces

and T(x, t) on y = h. The resultant force in the >'-direction is found using Eq. (2) with

u = 0 and integrating from y = 0 to y = h. Equating rate of momentum change with

resultant force yields

ph P+Aa v,tl(£,t)d£ = ixh[v,x(x + Ax,t) - v,x(x,t)\ + P + Aa T(£,t)d£. (4)
X J X

Dividing by ph Ax and letting Ax -* 0 we obtain a nonhomogeneous wave equation

c2v,xx - v,„ = -~T(x,t), 0 <x<l(t), (5)

where c = (/i/p)1/2 is the shear wave speed. In taking the limit to obtain Eq. (5) it is

assumed that T(x,t) contains no point forces. At the crack tip,

v(l(t),t) = 0 (6)

while initial conditions are

u(x,0) = u,,(x,0) = 0, 0 < x < L. (7)

Equation (5) is unusual in that the applied traction T(x, t) appears in a position normally

occupied by a body force term. This may be regarded as another consequence of fiber

inextensibility—the effect of tractions at a fiber end is felt without attenuation at all

interior points on that fiber. This is in line with the results of Everstine and Pipkin [3].

Since Eq. (5) is to be solved on (0,/(/)) it is now written in characteristic form. The

beam slope and speed are denoted respectively by

q(x,t) = v,x(x,t), s(x,t) = v,,(x,t). (8)

Then Eq. (5) becomes

c2q,x ~ s,, = -j^T(x,t), (9)

while compatibility of derivatives in (8) gives

q,,-s,x = 0. (10)

Combining (9) and (10) we find

7,{'i-s)•-ThT{x-') on$"c- (11)

+ <12>

When (6) is differentiated with respect to t the result in the present notation is

q(l(t),t)i(t) +s(l(t),t) = 0, (13)

where a superimposed dot denotes a time-derivative.
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5. Energy release rate. The equation of motion and side conditions described so far

provide exactly enough information to solve a problem on a fixed interval. To compensate

for the extra unknown /(?) a fracture criterion must be used, to specify the conditions

under which a crack will propagate. A commonly used criterion is based on the energy

release rate where is the energy released per unit length of new crack. The simple

deformation in the present case makes it possible to calculate <$ directly.

Energy balance during fracture is expressed as

P = T + W + (14)

where T, W, and P are respectively the total kinetic and strain energy, P is the rate of

working of applied tractions and is the time rate of energy flow into the crack tip; all

quantities are per unit thickness and include both beam arms. The expressions for T, W,

and P are

T = phi s2(x,t)dx, W = [ih f q2(x,t)dx (15)

and

P = l( s(x,t)T(x, t) dx - 2nhq(0, t)s(0,t). (16)
Jo

Also, by definition of & and 9,

&= m. (17)

Differentiating the integrals in Eq. (15) and combining gives

T + W = [ih/(l + l2/c2)q2(l, t) 4- 2h f (jaqq,, + pss,,) dx, (18)
Jo

where (13) has been used. When (10) is used for q,, and (9) for su in the integrand in (18)

it may be written as (qs),x + (l/h)T(x, t). Integrating, using (13) again and recalling (16)

gives

f + W = Hh{\ - i2/c2)q2(l,t) + P. (19)

Solving for 'S from Eqs. (14), (17), and (19) we find

& = fih(l - l2/c2)q2(l, t). (20)

If @c is the critical value of ^ required for crack propagation, i.e., (SC is the fracture

toughness, the condition for fracture may be written as

c2Vc/(nh) = (c2-i2)q2(l,t). (21)

By setting / = 0 in (21) the critical magnitude of the tip slope required for crack motion is

• (22)

6. Fracture under uniform compression. Crack motion is now discussed in the case where

the initially cracked portion of the beam is free of traction on y — ±h and uniform

compression of magnitude T0 is applied for x > /0; this is expressed by

T(x,t) = -T0H(x - /„), 0 <x<L, (23)
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where T0 > 0 and H( ) is the unit step function. Beginning at t = 0 the beam arms are

wedged apart at constant speed V so that

j(0,r)=F, t > 0. (24)

While the crack tip remains stationary a simple use of the characteristics shows that the

size of the tip slope jumps by 2V/c after each time interval of length /0/c; in particular,

+) = ~2V/c, s(x,l0/c +) = V, 0 < x < l0. (25)

Let \q\ in (25), be large enough to cause crack propagation; by (22) this requires

r>t( §P (26>

A differential equation for l(t) may be found using Fig. 2. From Fig. 2, the first

expression found for l(t) will be valid at most on the part AC of the tip path, i.e., until the

first shear wave generated by crack motion at A overtakes the moving tip at C after

reflection at x = 0. In this time interval, PQ, QS, and JK are typical characteristic

segments and S is (/(/), /).

At t = l0/c, qP = - V/c and sP = V so that using (12) and (23) on PQ gives qQ = - V/c.

Then, using (11) and (23) on QS gives

(c?-J)s=f^)(/-/R)-2K. (27)

0

Fig. 2. Characteristic diagram for the crack speed.
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Since R and S lie on a line with dx/dt = c, t - tR = (l(t) - /0)/c; using this in (27)

together with (13) and dropping the subscript S gives

<?(U) = (^)eew„)-2|/ (c + iy\ (28)

From Fig. 2, Eq. (28) holds, provided / > 0, until t = tc, i.e., until l(t) = ct - 210. (The

argument above shows only that (28) holds on BC; use of Eq. (11) on JK shows that it

holds on AB.) Squaring in (28) and combining with (21) yields

H h
(c-i)(c + ;)"'■ (29)

While solving for / in (29), make the substitutions

L(t) = l(t)-l0-(2pch/T0), k = (nh«?c)1/2/T0. (30)

With this notation, (29) gives

dL/dt = c(L2 - k2)/(L2 + k2), (31)

where, by Eq. (30)l5 dl/dt = dL/dt. The behaviour of / may be extracted from (31).

7. Analysis of the crack speed. Letting l(t) = /0 in (30)j, Eq. (31) gives the initial speed

/(IJc + ) as U, where

U ~ T^)/ll + 7-^1 (32)
4 phV2 4 phV

Note that (26) guarantees that U > 0; also, U is independent of T0. If T0 is set equal to

zero in (29) the same speed U is obtained but in that case it holds on all of AC in Fig. 2.

The model therefore predicts that the crack speed will be piecewise constant if the beam is

traction free on y — ±h. In connection with the last result see the review by Burridge and

Keller [4],

Any realistic model should predict that a sufficiently large compression will arrest

fracture. From (31), / = 0 iff L2 = k2 or L = -k, where the minus sign is chosen as it

corresponds to the earliest stopping time; from (30) this gives

l(t) = l0 + [2pchV-(^c)1/2\/T0. (33)

The tip acceleration is found by differentiating (31); the result is

d2l/dt2 = [4 ck2/(L2 + k2)2\Ll. (34)

Equation (34) shows that the tip decelerates as long as L < 0, i.e., until /(/) = /0 +

2pchV/T0, which occurs later than (33). Combining (33) and (34) we have that, given T0

large enough, the crack decelerates from its initial speed U to rest, all within the part AC

of the tip path in Fig. 2. (If and when I = 0, however, the analysis based on Fig. 2

becomes invalid and the problem must be reexamined.)
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Finally, (31) can actually be integrated to give l(t) implicitly in terms of t. Inverting

both sides of (31) gives

t - lo/c = (1/c)fL°) {f-+ k2)(t2 - k2yl d£. (35)
JmoA)

On integrating and simplifying using (30) we obtain

/ = (lA)[/(f) + *ln|A-(L(/)-fc)/(L(0 + *)l]> (36)

where

K = [(iih9c)1/2 - 2pchv]/[(fih&c)1/2 + Ipchv]. (37)

8. Discussion. The solution of the present problem in orthotropic elasticity involves two

coupled wave equations complicated further by the moving crack. The idealized theory

reduces the problem to a single wave equation which, in conjunction with the fracture

criterion, leads to an ordinary differential equation for the crack speed.

Other fracture criteria may be used with the model. For example, the discontinuous

shear across the "singular fiber" at x = /(/) is balanced by a finite concentrated force in

that fiber. The magnitude of that force at the crack tip is calculated in [5] as G(t) = ju/i(l

- i2/c2)q(l,t). If fracture is regarded as successive breaking of fibers this suggests a

critical force criterion, with fracture occurring while the tip force is maintained at a critical

level Gc. This criterion may be used to eliminate q(l,t) from (28) and the analysis parallels

that for the energy criterion.
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