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Abstract. The governing equations in the Reissner-Mindlin theory may be written in a

form such that a small parameter e is involved. This parameter e depends on a

combination of the shear modulus and the plate thickness. The governing equations are

singularly perturbed with respect to e. However, as e -* 0 one does recover the biharmonic

equation of the classical plate theory. In a previous work of ours [1] the behavior of

solutions for clamped Reissner-Mindlin plates as e -> 0 was studied and it was shown

there that these solutions tend continuously, in various functional norms, to their

corresponding solutions in the classical plate theory. This paper deals with two specific

questions concerning the detailed dependence of these solutions on e as e -> 0. We shall

show the nonexistence of regular asymptotic expansions of the solutions in integral powers

of e for general clamped Reissner-Mindlin plates. We shall also construct an exact

solution for a circular plate which exhibits dependence on fractional powers of e. This

latter solution shows a boundary layer phenomenon, decaying away from the boundary,

often encountered in singular perturbation problems.

1. Introduction. We consider a clamped plate of uniform thickness and constant

material properties occupying a closed, bounded, and connected region £2 of the xy-plane.

We denote the interior of the region by 12 and its boundary by 3S2, which is assumed

sufficiently smooth or polygonal.

In [1] the governing equations in the Reissner-Mindlin plate theory [2,3] have been

written in the form

|[(1 - -(1 + M)V(V ■ +)] -e"1^ + Vw) = 0

e^(v2w + V • ̂ ) =

(1.1a)
in D, ) ;

(1.1b)
D
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where w is the transverse deflection, \J/ = (ipx, \py) is the vector whose components are the

(negative of, for convenience) plate rotations in the directions of the coordinate axes, fi is

Poisson's ratio, p is the transverse load, and D is the plate modulus, e above is a

parameter defined by

h2
£ = — t, (1.2)

6(1 — iu)k

where hQ is the plate thickness and k2 is a constant introduced by Mindlin [3] in the

definition of the "modified" shear modulus G' = k2G.

To equations (1.1) we add the clamped edge boundary conditions

w = = 0 on 312. (1-3)

We shall not be concerned with other types of boundary conditions here. The existence of

a unique solution of the problem described by (1.1) and (1.3) above for each e > 0 is

established in [1]. We are interested in the behavior of the solutions as e -» 0.

We observe that the system (1.1) is "singularly perturbed" with respect to e since the

latter is multiplied to the highest-order derivatives in the equations. As e -> 0, equations

(1.1) imply

\J/ + Vw = 0; V2w + V • \|> = 0. (1.4)

Taking the divergence of (1.1a) and using (1.1b) yields

V4w = ^, (1.5)

which is the biharmonic equation in the classical plate theory. From the first of (1.4) we

have

\px = -dw/dx, xpv - -dw/dy. (1-6)

Thus on the boundary 9fl,

w = -0W/0.X = -dw/dy = 0, (1.7)

which are the classical clamped plate boundary conditions. Denoting by w0 the solution in

the classical plate theory, we are led to expect, as e -* 0,

w -> w0, -» -dw0/dx, —> -dw0/dy (1-8)

in some appropriate sense.

The above convergence was studied in [1]. More specifically, letting

U0 = (-dw0/dx, -dw0/dy, w0), (1.9a)

Ut=(^,^,w)) (1.9b)

we established in [1]

||Uf-U0||1<Ce1/2||v(v2w0)||0, (1.10)

where C is a constant, and the norms || • ||() and || ■ ||j above denote the appropriate norms

in the Sobolev spaces and respectively. It was pointed out in [1] that for
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p/D G the expression 11V(V2w0)110 on the right of (1.10) is finite. Thus Ue —> U0

as e —> 0 in the || • ||j norm. This also implies UE -» U0 pointwise provided that these

solutions have enough smoothness.

In this paper we are concerned with the detailed dependence of U£ on e in the limit as

e —> 0. This is also related to the sharpness of the power e1/2 in (1.10) which is open to

question. In particular, one would like to improve this power from e1/2 to e, say, so that

analyticity of Ue at e = 0 might be concluded.

We shall show in the next section the nonexistence of regular asymptotic expansions of

Uf in integral powers of e, ruling out the analyticity of Ue at e = 0 except in special cases.

In Section 3 we shall present an exact solution for a circular plate for which

l|Uf _ U0||j = 0(e3/4>. (1.11)

The result in (1.11) shows that improvement of the power in (1.10) from e1/2 to e is not

possible in general. This explicit solution also exhibits a boundary layer phenomenon near

the clamped edge that decays rapidly away from the boundary.

2. The nonexistence of a regular asymptotic expansion for Ue. For the boundary value

problems in (1.1) and (1.3) let us seek solutions for 4" and w in the following form:

00

* = E (2-la)
/ = 0

oo

w = £ e'wi, (2.1b)
1 = 0

valid for small e, with

4, = 0, wi = 0 on 312 for all i. (2.2)

Substituting (2.1) into (1.1) and collecting like powers of e yields

i + Vtv0 = 0, (2.3a)

V2w0 + V • 4*0 = 0, (2.3b)

+ VW! = i[(l -m)v2vh,+(l +M)V(V •+„)],

+ (2-4b)

(2.4a)

^2+ Vw2 = 'y [(1 -m)v2^j +(1 +M)V(V •+!)], (2.5a)

(2.5b)
2

^ V2w2 + V -^2 = 0,

Equations (2.3a) and (2.3b) are consistent but do not determine x|/0 and w0 at this order.

Taking the divergence of (2.4a) and comparing with (2.4b) yields

V2(V ■ 40 = (2-6)
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which upon using (2.3b) becomes

V4w0 = ^ (2.7)

showing w0 is indeed the solution in the classical plate theory.

Next we take the divergence of (2.5a) and compare with (2.5b). This yields

v2(v ■ xpi) = 0. (2.8)

Taking the Laplacian of (2.4b) and using (2.8) then leads to

V4Wj = (2-9)

However, we observe that the problem for vpj and w1 from (2.4) is overdetermined in

general. To see this we rewrite (2.4a), with the aid of (2.3), as

^ + Vif) = v(v2w0). (2.10)

On the boundary 312, the left-hand side of (2.10) as a vector is normal to 312 since ^ and

Wj both vanish there. However, the vector V(V2w0) on 312 in general will have both

normal and tangential components. Thus and wl cannot meet the boundary conditions,

and the regular asymptotic expansion breaks down.

We note that the tangential component of V(V2w0) is related to the transverse shear

force on vertical planes normal to the boundary. This tangential component of v( V 2w0)

vanishes along 312, for example, in the case of a circular plate under an axisymmetric

loading.

On the other hand, the difficulty in meeting the boundary conditions by regular

asymptotic expansions along with the singular perturbation nature of the governing

equations suggests the possibility of the existence of boundary layer phenomena in the

solutions. That this is indeed the case is studied in the next section.

3. Solutions for a clamped circular plate. We consider a clamped circular plate with unit

radius. It is convenient to work in the polar coordinates (r, 6). To this end we write v[/ as

vj/ = «//rf + ^0 (3.1)

where ipr and xpe are the (negative of) plate rotations in the r- and ^-directions

respectively. Equations (1.1) now become

d2i/v 1 J_9^_ J_ , 3_ J_ 3
3r2 r 3r 2r2 302 r2 r 2r2 $6 2r drdO

( 1 d2\pr , 1 3^ , 1 j aw\_

M 2r2 de2 2r2 M 2r drdej * 3r J °' (3"2a)
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1 d2ie 1 die 1  Li 3 djr 1 d2jr

2 gr2 2r 3r r2 g#2 2r2 ° 2r2 9$ 2r 9r9#

4^+ + -«-(*. + i^)-0. 0.2b)
2 gr2 2r 9/- 2r 2r 2r 9/-90 J \ r ad /

e.,/S^;i^ + ^3^ + ^V+l _i (32c)
y 0r2 r 9r r2 g$2 dr rr r dO J D

and the boundary conditions in (1.1) become

w = </v = is = 0, at r = 1. (3.3)

For axisymmetric solutions \pe = 0, and \pr and w are functions of r only. The

equations (3.1) degenerate into

+ £)-«. (3"«)
dr2 r dr r2 \ r dr J

1( d2w 1 dw dipr 1 \ _ p
s ■, +-~r +-J1 +-ir\ =--t;- (3.4b)

dr2 r dr dr r r D

In the simplest case we take p/D = 1. The boundary value problem above has the

following solution:

w = ^(1 - r2)2 + |(l - r2), (3.5a)

^ = T6(1~r2)- (3"5b)

We note that the corresponding problem in the classical plate theory for vv0 = w0(r):

V4w0 = 1, r < 1 (3-6)

W° = = °' at r = ^3'7-*

has the solution

Thus

wo = ^~r2)2- (3-8)

w = + 4 (1 - r2), (3-9a)

(3.%)

and the difference Ue - U0 involves integral powers of e only. The same is to be expected

for more general axisymmetric load p = p(r), but we shall not pursue this here further.

We now consider the nonaxisymmetric load p/D = cos 6. For this case the solution in

the classical plate theory may be obtained by assuming a form w0 = R(r)cos0. This
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separation of variables leads to

W° = ~ r^2r + 1)cos0' (3.10a)

^=-^(l-r)(8r2-r-l)cos0, (3.10b)

^ = -c^qO - rf(2r + l)sinfl. (3.10c)

With p/D = cos 6, the solutions of the problem described by (3.2) and (3.3) are rather

complicated. We present these solutions below with their detailed derivations given in the

Appendix:

W = ~ r^2r + ^ + ~ r)(a(r + !) ~ ^)}cos(?- (3-lla)

,3w II 11 - 30a I^ar) 2r 4

^ + ̂  = W-y + is

+ x(^£r17^~1 + 3^cos<?- (3-llb)

i i 1 9vv _ / i/2 & 30a - 11 I0(ar)
\p0 -r —ip

— e

r m \ 15 /,(«)

30a - 11 I^ar) 5r - 4

15 r /j(a) 15

|(l-3a)e3/2_^L^°^
3 y/l — n A(a)

+ |~(l-3a)e2| ^ j + l|}sinfl, (3.11c)

where

, iu , 2 I0{a) ( 11 8 ,
--a e - — a 'e2 + 77-f — e + -e2

1 5 3 /,(a) \ 15 3

(3.12a)

a = - —    , (3.12b)

(2 + 8e)-^—r- — 2a'1 — 16a_1e
M«)

and /0 and Ix denote modified Bessel functions [4],

We note that the solutions in (3.11) also depend on e through a and a. When e is small,

a is large. Expansions of Bessel functions for large arguments are known:

p
/,(*)"

_ 4y2 - 1 (4v2 - 1)(4p2 - 9)

8* + 2!(8jc )2
(3.13)
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From this we obtain

1 + °(A)- (3-14)
A(x) 2x 8x \x I

Using (3.12a) along with (3.14) in (3.12b) then yields

1
a ~ 30 „ _ _ ,f88 + abi!

\/2
+ 0(e3/2). (3.15)

With the help of (3.15) and (3.10a) we can rewrite (3.11a) as

w = w0 + ~(1 - r)(r + 11) + 0(e3/2). (3.16a)

Likewise, with the help of (3.10b), (3.10c), and (3.16a) we can rewrite (3.11b) and (3.11c)

as

-'"J"'

. I G
+ ^V1 P ' t Lost + 0(c"2), (3.16b)

1 3 w0 e

+ ^(3 - r2)sine + 0(e3/2). (3.16c)

It is seen from the above that the leading terms in w — w0, \pr + dw0/dr, and

\pg + (1 /r)(dwQ/dd) are of the order O(e). However, this is not the case of the radial

derivative of (3.16c). More specifically, using the identity Iq(x) = Ii(x) we obtain from

(3.16c)

/

+ = ~ T*  -^sin0 + O(e), (3.17)
arlv» r se! 15/1^7 ft 1/2

7l ]fi~ZrpE

l/2" -1/2
-e ' r

and the first term on the right is of the order 0(e1/2). This can be seen by using (3.13) to

expand the ratio of the Bessel functions for r bounded away from zero, resulting in

AM 3(1 - r) 3(l-r)(llr+5) \

7X(«) ~ r1/2 \ 8«' 128«2r2 )' { '
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This indicates that for large a

/
i/2 __1/2 I n

\
, € ' r\ exp< - —==

V1 - J I \ V1 - m
l/2r exp< -r I/2(l - r)

& _-1/2 ^
7l1

= 0(e°), (3.19)

and indeed the first term on the right of (3.17) is the dominant term for small e.

Furthermore, the result above shows this dominant term decays exponentially as r moves

away from the boundary and is significant only over a region of length 0(e1/2) near r = 1.

Based on these considerations and carrying out the necessary differentiations in Cartesian

coordinates, it is easy to verify that

l|U£ — U0||j = 0(e3/4)

as we stated in (1.11).

4. Discussions and concluding remarks. There exist various plate theories in the

engineering mechanics literature resulting from the theory of elasticity using different

approximation schemes. This paper concerns two such theories: the classical plate theory

that neglects shear deformation and the Reissner Mindlin plate theory in which shear

deformation is incorporated. Some general discussions on the relative smoothness of

solutions of the governing equations in these two theories, without the consideration of

boundary conditions, are given in [5], Our equation (A.l) in the Appendix also reveals

some of the same information. Our primary interest, however, is in the properties of

solutions of boundary value problems under clamped edge conditions.

It is seen in the Introduction that a small parameter e may be introduced in the

Reissner-Mindlin theory such that as e -> 0 the governing equations go over to the

biharmonic equation of the classical plate theory. From equation (1.2) it is seen that the

limit e -» 0 may be achieved either by letting G' (or k2) -» 00, thereby making the plate

infinitely rigid with respect to shear deformation, or by letting h0 -» 0, i.e., by making the

plate infinitely thin. It should be borne in mind in the latter case, however, that the plate

rigidity D also depends on h0 and provisions must be made so that D remains finite (not

going to zero) and the plate does not become a membrane.

We may refer to the mathematical problem for e > 0 as the P£-problem and the

corresponding problem in the classical plate theory as the /^-problem. We are specifically

interested in the manner in which solutions of the /^-problem tend to those of the

/^-problem. The estimate given in (1.10) that was derived in [1] shows this convergence in

the || • || j norm but leaves the question of the detailed dependence of the solutions of the

/^-problems on e as e -» 0 unanswered. Our results in Sections 2 and 3 above, which we

alluded to in [1], suggest that such dependence on e as e -> 0 indeed may be rather

complicated.

It is interesting to note that our investigation in [1] was motivated by an earlier work by

Westbrook [6], who arrived at the same Reissner-Mindlin equations as the basis for

justifying a penalty function finite element method for treating clamped plate problems in

the classical plate theory. We have also pursued the analysis of this penalty function finite

element method in [7], Because of the singular perturbation nature of the ^-problem,
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accurate numerical solutions for small e require the use of small mesh size h. Due to the

limitations on the use of arbitrarily small mesh sizes h on the computers some extrapola-

tions to e = 0 become inevitable. The success of the extrapolations depends heavily on our

knowledge of how the solutions depend on e as e -> 0, as illustrated by the example in [7].

We have seen in Section 2 that the nonvanishing of the tangential component of

V(V2w0) on the boundary prevented the construction of regular asymptotic series

solution for the /^-problem. We mention also that both the dependence on fractional

powers of e and the boundary layer phenomenon in Section 3 for the circular plate under

the load p/D = cos 6 are associated with the radial derivative of <p0 + (1 /r)(dw0/dr). In

particular, i)xpe/dr is related to the twisting moment in the plate. It appears that for all

geometries of clamped plates, and for all loads, with the exception of a circular plate with

axisymmetric load, some twisting moment is expected, along with transverse shear force in

vertical planes perpendicular to the boundary. Thus boundary layer phenomena are

inevitable in the solutions of such /^-problems.

It is known (see [8] and the references contained therein) that an asymptotic sequence of

equations, in terms of a small thickness parameter, may be developed from the equations

of elastostatics. The leading term in this sequence is the classical plate theory. There lies

the difficulty, however, in deriving appropriate boundary conditions for the various

asymptotic plate theories. Gregory and Wan in [8] have recently devised a general scheme,

based on an application of the Betti-Rayleigh reciprocal theorem, that enables the

derivation of correct boundary conditions for the classical as well as the higher-order plate

theories for general admissible edge data. They considered in [8], in particular, the

problem of axisymmetric bending of a simply-supported circular plate. The results in [8]

seem to suggest that the e1/2 dependence even occurs in the axisymmetric case as the true

plate solution approaches the classical plate solution for simply-supported edges and

similar conclusions may hold for other types of boundary conditions. If this is indeed the

case our results obtained here would be in variance with those in [8] and this would rule

out the Reissner-Mindlin theory being a legitimate asymptotic plate theory. A detailed

comparison based on the respective explicit solutions is beyond the scope of the paper.

Acknowledgment. We wish to thank the referee for bringing Reference [8] to our

attention.

Appendix. Derivations of the solutions in (3.11). To find solutions for \pr, \pe, and w,

with p/D = cos 6, of equations (3.2) it is useful to observe that it is possible to eliminate

4> from (1.1a) and (1.1b) and obtain

V4w = ^-£V2^. (A.l)

We seek solution for w, in polar coordinates, in the form

w = /-C(r)cos0, (A.2)

along with the boundary condition w = 0 at r = 1. This results in

C(r) = (r— 1) -a(r + 1) + jjj(r - l)(2r + 1) + y (A.3)

where a is an undetermined constant since only one boundary condition at r = 1 is given.
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We substitute this w into (3.2), make the changes of dependent variables,

£cos 6 = ^r + ~, (A.4a)

ij sm6 = ipe + (A.4b)

and obtain the following set of ordinary differential equations:

r2ii" + rt'+ | -f + f - £ + ~2^n' + 2T^V

= r2(C + rC')" + r(C + rC')' - 2rC', (A.5a)

V + i^£r,- +(£^l _ _ i±Jt,£, + JLzlj

= -r2C" - 3rC', (A.5b)

/•£' + £ + tj = -sr. (A.5c)

From (A.5c) we have

t) = -/•£' - | - £r. (A.6)

Eq. (A.5a) thus reduces to

2e"V2
r2*" + 3ri' -

I /X

2

M

We set

i> = /"I (A.8)

and

p = ar, (A.9)

where a = ^2 e~1/2/ y'l — ju, and regard /' as a function of p. Eq. (A.7) then becomes the

nonhomogeneous Bessel equation

[/-2(C + rC')" + r(C + rC')' - 2rC -(1 - ju)er]. (A.7)
1 /X

P2P" + pi" -(1 + p2)p

. (A.10)ep2 i^e„2 + 8(_a _ _L + |) /i^8l/!p

A general solution to (A.10) is given as a general solution to the homogeneous equation,

PHom> plus a particular solution, i^R-p,

P = ^HOM + -fpART" (A.ll)

PHOM is of the form

Phom = AI1(p) + BK.ip), (A.12)
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where A and B are arbitrary constants and /, and K1 are modified Bessel functions. A

particular solution is

^PART = -|«"2ep2 - - 3^" + f )«~V (A.13)

Thus

f(r)= ^[^/1(«r)+^1(«r) + i>PART]. (A.14)

Since (1 /r)Kl(ar) is singular at the origin we must set 5 = 0. Next by the condition

\pr = 0 at r = 1, it follows from (A.4a) that

{(l) = -2a+|. (A.15)

Thus from (A.13) we have

11 8 2
-8 ae + — e + — e —2a

A =  ^ . (A.16)
A(«)

We can now substitute £(r) into (A.6) to determine 7](r), where the condition \pg = 0,

at r = 1 serves to determine the constant a. The solutions for |(r) and rj(r) are then to be

substituted into (A.5b) to ensure all three equations (A.5) are satisfied. Now with 4>o = 0

at r = 1 we have i]( 1) = 0. From (A.6) it follows that

° = - -(-2a - Ue + —e + 3e")«7^y + 8e(-« ~ 30 + j)- (A-l7)

Using the Bessel function identity

I{{x) = I0(x) - £/,(*) (A.18)

and solving for a from (A.17) we finally have

4 _! 16 _! 2 /o(a)/n 8 3

_ 5 " 3" 8 /i(q) 115 £ + 3 6

(2 + 8e) \ — 2a"1 — 16a"1e
A(«)

(A.19)

Now defining a by

a = e_1a, (A.20)

we obtain the solutions for \pr, ipe, and w given in (3.11).
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