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Abstract. The diffusion and convection of vorticity produced by a rotlet inside a circular

cylinder is discussed at low Reynolds numbers by considering a nonlinear approximation

to a complex form of the steady two-dimensional Navier-Stokes equations. An expression

is found for the boundary vorticity and the modifications to the separation of streamlines

are discussed as a function of the Reynolds number.

1. Introduction. The problem of steady convection and diffusion of vorticity in an

incompressible viscous fluid is of long-standing interest in fluid dynamics. Vorticity is

convected by a forced potential flow (e.g. a uniform stream) and in addition there is the

self-convection of diffused vorticity which is expressed through the nonlinearity of the

Navier-Stokes equations. For flow in the presence of a fixed boundary an exact analytic

treatment represents a formidable task and either a numerical method has to be employed

or it is necessary to introduce a simplifying approximation to the equations of motion in

order to determine the desired physical information.

The present paper considers two-dimensional flow and the starting point is a complex

form of the Navier-Stokes equations first given by R. Legendre [1], This complex

equation contains as dependent variables the Earnshaw stream function \p and an

auxiliary function <j>, which Pillow [2] has described as an Airy flux function of momen-

tum. An approximation is described for the complex equation of motion in which the Airy

flux function of momentum, as it occurs in the convective terms of the equation, is

replaced by a harmonic function. In turn this harmonic function is calculated by using the

equations of motion, boundary conditions, and limiting cases. The main advantages of this

new approximation are that the boundary vorticity can be found explicitly in a straight-

forward way and vorticity generated at the boundary is not convected through or around

the boundary as in the cases of the linearizations of Oseen and Burgers. It follows that
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when separation occurs the critical Reynolds number for which the phenomenon first

commences can be predicted more accurately than the corresponding values found from

the linearized Oseen and Burgers equations.

The approximation described here is applied to the specific model of a rotlet (producing

constant torque) inside a cylinder. The resulting flow is qualitatively similar to the flow

between two cylinders in which the inner is rotating with constant angular velocity and the

outer is at rest. This particular flow has an added interest in that for certain positions of

the rotlet there is separation of the streamlines in the Stokes flow and it is possible to

predict how the flow is modified for increasing values of the Reynolds number.

The flow equations. The equations of motion governing the two-dimensional steady flow

of an incompressible viscous fluid are:

(q-V)q=-grad (p/p) + W2<\, (1)

divq = 0, (2)

where q = u(x, y)i + v(x, y)j is the fluid velocity, p the pressure, p the density, and v

the kinematic viscosity. The equation of continuity can be satisfied by introducing an

Earnshaw stream function xp by

0 9 _ 9 , - 3 /o\
u + w — 2id-, 2— = -—f- i, (3)

dz ox ov

and ip is a solution of the complex Navier-Stokes equations, viz.

fe+<^ + ̂ =r(z), (4)

where f(z) is an arbitrary function of z. The real function <p is defined by

-"V 2<t> = p/p + 2\pz\p-z, (5)

where the right-hand side is the Bernoulli function or total head of pressure. The complex

equation (4) was first given by R. Legendre [1] who gave an application to boundary layer

analysis. The author has given a derivation of the equation in [3] and Pillow [2] has

described an interpretation for the function <f> as an Airy flux function of momentum. It is

noted that the complex conjugate of (4) is

- lizz + = f"(z)- (6)

An elimination of <f> yields the usual vorticity equation given in [3]. Also, an alternative

way of displaying equation (4) is given by

Now a complex stream function can be written as £2 = <£ + i\p, in which case equation

(4) can be put in the form

S2 z, = ^(flJ-^)2+/"(z). (8)
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It is customary to linearize or approximate the Navier-Stokes equations with respect to

the stream function \f/ or velocity field (e.g. Oseen, Burgers) for which the forced

convecting field is essentially known through the prescribed boundary conditions. How-

ever, in the present analysis, the approximation is carried out with respect to the function

<j>, for which less is known explicitly, but some of its properties can be inferred through the

equations of motion, boundary conditions, and limiting cases. The function (pz, as it occurs

explicitly on the right-hand side of (8), is replaced by \s where x = g(z) + g(z), so that

equation (8) is replaced by

Sl2l = ±[Sis-g'(z)]2+f"(z). (9)

Now <f> = x, 4* = tpo = F(z) + F(z) is a solution of (9) if

g"(f) + iF(z) + ±{F'(z))2=f"(z) (10)

which also satisfies the exact Navier-Stokes equation expressed by (4). Now ip0 is a

viscosity independent potential flow but does not in general represent explicitly the forced

convection potential for the particular flow under consideration. The functions /, g, F and

their relations to <p, xp will be discussed in more detail at a later stage.

To solve (9) it is convenient to write co = S2 - g(z) and also introduce a function h(z)

satisfying a Riccati type equation expressed by

/"(f) - g"(f) = h"(z) -j-(h'(z))2. (11)

In terms of cc equations (9) and (11) give

<0ZZ- - = h"(z) -yv[h\z)]2, (12)

for which a first integral is given by

coz-h'(z) = L{z)e^u+h('z)\ (13)

where L(z) is for the present arbitrary and is assumed regular analytic in the fluid

domain. A second integration yields

-2ve'^-ha)] = L(z) J eh(S)/"dz + M(z) (14)

where again M(z) is regular analytic in the fluid region but otherwise arbitrary. Equation

(14) is equivalent to

_2ye-f.[0-*W-««l = H(z)L(z) + M{z) (15)

with H'(z) = eh{:)/". At this point it is necessary to consider a specific flow problem in

which the boundary conditions can be formulated so as to determine the functions L(z)

and M{z). The flow takes place interior to the unit circle, zz. = 1, and is forced or stirred

by a rotlet at z = c, 0 < c < 1. If the rotlet strength is K, a Reynolds number can be

defined by R = K/v. The boundary conditions for \p require

\p = ip; = 0, at zz = 1, ip ~ log/?,

as R! = (r2 + c2 - 2rccos0)1/2 —> 0. (16)
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Since the functions g(z) and h(z) are arbitrary, it is possible to impose the additional

boundary conditions

<t> ~ X = <t>s-Xz = on zz = 1. (17)

It will be shown later that these conditions, in addition to partially determining the

arbitrary functions g(z) and /(z), also prevent vorticity from being convected through or

around the boundary. The boundary conditions (16), (17) can be combined in complex

form as follows:

® ~ g(z) ~ g(z) = nz-g'(z) = 0 on zz = 1, (18)

which also imply the condition

S2. — g'(z) = 0 on zz = 1. (19)

From equations (13) and (14) it follows that

L(z) = + —j onzz=l, (20)

//(j)i(z) + M(z) = on zz = 1. (21)

With L(z) and M(z) analytic on zz < 1, the analytic continuations in the unit circle are

provided by Poisson's integral formula [4] viz.,

L(z) , 1) j_L_ _ _l_j (22)

h(i)i(z) + M(z) - (23)

where the integration is taken round the circle |f| = 1. However, in order to determine

basic information concerning the flow picture, it is more straightforward to calculate the

boundary vorticity, which is readily obtained from (13) by differentiation with respect to

z, so that

Qzi ={l'(z) + L(zK*|g^+*(i)l (24)

and on the boundary zz = 1,

fiZ2-= Il'(z) + ^L(z)g'(z)R\e'iR^+h^. (25)

Now from equation (20),

" Nl\g-l*[*(0+A(J)]. (26)
g'(z) - ^zh'[\

z2
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Hence from (25), (20), and (26)

Z z
Mi

z
F'

T

(27)

Now the limit R -» 0 is the Stokes solution which is described with some detail in the

Appendix, and using these results it is found that

K-(TT^- (28)
Integration shows that

and. for arbitrary R,

F(z) = log(z - c) - i-logz (29)

1 1

F'

= /
+ \R

1 1

1 — cz 2 (30)
2 (1 - czf

This expression is derived on the basis that the vorticity agrees with the exact solution of

the Navier-Stokes equations in the limit c -* 0. The imaginary part of equation (27)

expresses the boundary vorticity as

4{He4 ~ 1) + 2c2(l - ccos#)} + 2cR(\ - c2)sin0
f=v^=-^ L 7^— 1 L • (31)

(1 + c — IccosB)

It is clear that the Reynolds number effect produces positive vorticity in the upper

half-plane (0 < 6 < 77) and negative vorticity in the lower half-plane (77 < 6 < 2it). The

Stokes flow separation, which first occurs at 8 = it, for c > -fi — 1 (see Appendix), is

distorted from the symmetric position by forming a larger region of separated flow in the

upper half-plane than in the lower half-plane. Now the boundary vorticity from (31) may

be written in the form

(1 + c2 — 2ccos0)2f = 2(c2 + 2)2 — 10 + [64c6 + 4c2(l — c2)i?2] 1/2cos (# + a)

(32)

where

8c3 . 2c(l - c2)R
COS a =   r—, sina =    77-r. (33)

[64c6 + 4c2(l - c2)V] 7 [64c6 + 4c2(l - c2)R2\1/1

It follows from (32) that separation first occurs at 6 = tt - a when the Reynolds number

R exceeds R* where

1 ( [l0 - 2(<r! + 2)!P I1"

 ? L"64c ' ' (34)
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For 0 < c < ]/2 — 1, separation takes place entirely in the upper half-plane due to

convective Reynolds number effects provided R > R*. For this range of c, there is no

separation in the lower half-plane (see Fig. 4). For c > ]/2 — I, there is Stokes flow

separation which extends into the lower half-plane. For R < R* and 0 < c < \/2 - 1, the

streamlines are closed curves containing the rotlet (see Fig. 3). For c = 0, the streamlines

are concentric circles.

Since the boundary vorticity essentially provides the required physical information, it

remains to discuss the adequacy of the approximate equation (9), particularly in a vicinity

of the boundary. On the boundary zz = 1, equation (9) gives

0„ = fe+i*H = /"(z) (35)

which is consistent with the exact complex Navier-Stokes equation (4). Also, differentia-

tion of (9) with respect to z yields

Vz-z-2 = l(nz-g(z))tizi (36)

so that, using the boundary condition (18), it follows that on zz = 1,

a,„ = fc„+/*,„ = 0. (37)

In terms of the pressure and vorticity distributions, (37) is equivalent to

3 p 3 2, dp d 2 , ,

91 " -"S7V * <38>

where /i is the coefficient of viscosity. Equations (38) are again consistent with exact

Navier-Stokes equations evaluated at the boundary. Vorticity is not convected through or

around the boundary as it is in Oseen or Burgers flow. However, there is an additional

requirement from the exact vorticity equation which is vVlr=i = 0. In the present case

this requires either v2<#>|r«i = 0 or V V|r=i = 0, which in general is not satisfied and may

be regarded as a deficiency of the analysis in approximating the boundary vorticity.

Sketches of the streamlines for various values of the parameters are given below.

Appendix—The Stokes flow. Consider the two-dimensional flow interior to the unit

circle r = 1, which is stirred by a rotlet at r = c, 0 = 0, 0 < c < 1. From (9), the limit

R -* 0 gives the equation

+'*„=/"(*)■ (Al)

Elimination of 4> yields the biharmonic equation

4, A 32 1 3 1 32" v" = ̂  + 757 + 7>W>- ,A2)

The boundary conditions are

ip - log/?! as Rt = (r2 + c2 - 2rccos9)1/2 -> 0, (A3)
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and the conditions of no slip are

t = = 0 at r = 1. (A4)

The stream function is readily found to be

= logRl - log(R2c) +(r2 - 1)
1 (rcosd - 7) 1

c Rl + 2
(A5)

and R2 = (r2 + ^ - v cos0)1/2 is measured from the inverse point (7,0). With z = re'6,

>p can be represented in the complex form

2ip = log(z - c) + log(z - c) - log) z - -) - log(z - -

-21ogc + (zz - 1)

from which it follows that

c

+ — 7- + 1
cz — 1 cz — 1 (A6)

and

2^77 = 1 - 7 3 (A7)
(cz - 1) (cz - 1)

<#>77 + "Pzz = y ~ 7—' -J • (A8)
2 (cz - 1)

It is noted that, in the case c -» 0, the solution for is

v//= log r-^r2, (A9)

which is an exact solution of the Navier-Stokes equations with constant vorticity

v24> = -2, and the streamlines are concentric circles. The vorticity on the boundary is

f = v^-2(^-') + Ml-ccos») (A]0)

(1 + c2 — 2ccos6)

This expression has been discussed in [5] and, for 0 < c < — 1, the flow consists of

closed streamlines containing the rotlet and is qualitatively similar to the potential flow as

shown in Fig. 1. For c > 72—1, separation first occurs at 6 = it and spreads symmetri-

cally about this point in both upper and lower half-planes (see Fig. 2). The torque on the

circle r = 1 is constant and independent of the rotlet position. As the rotlet moves

towards the boundary at r = 1, 8 = 0, the shear stress on the boundary is increased and

the contribution to the torque in this region exceeds the constant value on the circle.

Consequently the torque changes sign which in turn produces the onset of separation at

0 = TT.

Finally, it is noted that the Burgers approximation of the problem is expressed by

R

r 3 M)
= VV (All)
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where, in this case, \p0 is the potential flow for a rotlet inside the circle r = 1 and is given

by

= log^i - log(/?2c). (A12)

The boundary conditions of no slip require

* = -|f = 0, atr=l (A13)

and, as R1 —» 0,

*~log Rv (A14)

An analytic solution for this boundary value problem is virtually impossible and, in any

case, vorticity is convected around the boundary which reduces the accuracy in obtaining

the boundary vorticity.

Sketches of the streamlines for a rotlet

interior to the unit circle

= T —1 I T YXftf I— 0 = 0

Fig. 1. The Stokes flow for 0 < c < yjl - 1. The streamlines are closed curves containing the rotlet and do not

differ qualitatively from the irrotational flow.
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0 = 0

Fig. 2. The Stokes flow for 1 > c > \[2 - 1. Separation occurs in both upper and lower half-planes.

0 = It
0 = 0

Fig. 3. Sketch of the streamlines for R > R* and 0 < c < /2 - 1. The separation occurs entirely in the upper

half-plane.
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= 0

Fig. 4. The streamlines for R > R* and c > \fl — 1. In this ease separation occurs in the lower half-plane but

this is not related to Reynolds number effects.
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