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Abstract. A small parameter technique is used to derive Reynolds' lubrication equation

from the Stokes equation. The error associated with the approximation is estimated in

suitable norms.

1. Introduction. In a classical paper [9], O. Reynolds formulated a differential equation

which gives an asymptotic approximation of the Navier-Stokes equation. In the one-di-

mensional case this equation reads as follows:

(H3P')' = 611VH'. (1.1)

P is the pressure in a thin film of a viscous fluid of constant density, thickness H and

viscosity \i. V is the A^-component of the moving surface. Equation (1.1) applies when the

height of the fluid is very small compared to the span and the length. The justifications

given in the literature for the transition from the full Navier-Stokes equations to (1.1) are

mainly heuristic; we quote in particular the papers of Elrod [3] and Wannier [10].

A possible approach to the Reynolds equation, and thus to the theory of lubrication, is

to suppose true the expressions of the Couette-Poiseuille flow,

1 r)P -
= 2^ ~H)+ V{H ~ X*)/H<

even when H is not a constant. In the first part of this paper (Sees. 2 and 3) we examine in

detail the asymptotic validity of this assumption of the theory.

In Sec. 4 we develop a formal expansion which gives in the first term the Reynolds

equation. Various rigorous estimates of the remainder are proved. In this paper we limit

ourselves to the two-dimensional linear case (i.e., we consider as "exact" the solution given

by the linear Stokes equations).

The transition from the Stokes equations to the Reynolds equation in the three-dimen-

sional case (but only to the first order) is studied in a paper by G. Bayada and M.
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Chambat [11], which recently appeared and which we saw after completing the present

work. No use is made in [11] of the technique of the stream function on which this paper

is largely based.

2. Generalized Couette-Poiseuille flow. Let H( A\) e C°°( R1) be a periodic function of

period L such that HM > H ^ Hm > 0. Define

S = X2); -oo < Xx < oo, 0 < X2 < H(X2)},

£2 = {(^, X2); 0 < X1 < L,0 < X2 < W(JTj)}.

First of all we study the following.

Problem 1. To find V = (Fj, V2) such that

juAV = VP in S, (2.1)

V • V = 0, (2.2)

V1 = V,V2 = 0 on X2 = 0, V = 0onl2 = H( XY), (2.3)

V( Xx + L, X2) = V( Xx, X2), L > 0 a given constant. (2.4)

V is the velocity of the plane flow we discuss, P the pressure, ju the (constant) viscosity

and V a given constant. If H = Hm the solution of Problem 1 is of course the well-known

Couette-Poiseuille formula

V = V(C) + V(P) (2.5)

where

vr=v(l -X2/Hm), F2<c>=0, vr-0.

(2.6)

P = jXu (2.7)

with K an arbitrary constant. Hence in this elementary case (a) the solution of Problem 1

is unique when K is assigned or if

rll.
C = ( m Vl(X2)dX2

is prescribed. The one-to-one correspondence between C and K is easily computed:

-KHj Hj

\2Lfi 2 "

Moreover (b) the pressure is periodic only if K = 0 and in this case V = V(/>). We are

going to show that properties (a) and (b) remain true when H is an arbitrary periodic

function. If V is a regular solution of Problem 1 then Px is periodic with respect to Xt;

thus

P(XUX2) = G(X1,X2)+A{X2)Xl + B(X2)
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where G{ A',, X2) is L-periodic in Xv Hence

P(X1 + L, X2) - P(X1, X2) = A(X2)L.

But Px is also periodic in A\; thus A is constant. Defining K = AL we have

P(X1 + L,X2)-P(Xl,X2) = K. (2.8)

We give now a weak formulation of Problem 1 in which the constant K appears

explicitly following the standard functional approach (see e.g. [6]).

Let J(S) be the set of all sufficiently smooth solenoidal two-dimensional vectors

vanishing near 3.S' which are L-periodic in X}. In J(S) we introduce the scalar product1

[U,V] = /Jq.
Ux • Vx dX, dX = dXx dX-2

- &£

and the norm
||U||= [U,U]1/2. (2.9)

Denote by H(S) the completion of j(S) with respect to (2.9). Multiplying (2.1) by

4> e H and integrating by parts over S2 we have, recalling (2.8),

-m[V,$] = K [H(0) <M0, X2) dX2, (2.10)
Jo

for all $ e H. The integral on the right-hand side of (2.10) makes sense since e L2(9fi).

Let A be any smooth solenoidal vector field which satisfies (2.3) and (2.4). If we define

U = V — A we can write (2.10) in the form

rfi(O)
U H, -ii[U,*] = K( ( ]<i>^,X2)dX2-[A,(2.11)

■'o

The right-hand side in (2.11) defines a linear functional in H(S). Thus by the Riesz

representation theorem we have

Theorem 2.1. For every ^eR1 there exists one and only one solution of Problem (2.10).

The regularity of the solution together with other properties, is better obtained using a

stream function <fr(X1, X2) defined by

*x2 = Vv = -r2. (2.12)

In terms of Problem 1 becomes

Problem 2. To find ^ such that

A2* = 0 in S, (2.13)

* = 0, ^X2=V on X2 = 0, (2.14)

/V\I/
* = = 0 on X1 = H(X1), (2.15)

4'(X1 + L,X2) = >]>(^1,^2). (2.16)

d/dn is the normal derivative along 35. We note that the stream function is constant on

9S by the boundary conditions imposed on V. Thus we can assume t = 0 on X2 = 0;

however, since 35 consists of two disjunct arcs, we have ^ = C on X2 = H(Xx) and in

'Use is made of the summation convention.
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general C # 0. The physical meaning of C is readily seen. Indeed

r"<°) .T. /„ „ x ["(°)

■>o
C = r0) ^2(0, *2) <tf2 = ///(0> Fj(0, *2) dX2.

•>n ' •'n

With C prescribed, the theory of linear boundary value problems applies to (2.13)-(2.16)

with the minor changes required by the condition of periodicity. Hence the solution of

Problem 2 exists, is unique and of class C00^) since we suppose H e C00(5) and

9S e Cx. In the following theorem we show that the formulations of Problems 1 and 2

are perfectly equivalent. This, in particular, proves the Cx regularity of the solution of

Problem 1.

Theorem 2.2. The correspondence C = F(K) is one-to-one from R1 on R1.

Proof. Let K e R1. By Theorem 2.1 there exists one and only one solution of Problem 1;

thus

fH( 0)
C = F(K) = ( () Vx(Q,X2)dX2

Jc\

is well-defined. We say that F is one-to-one. Let V1 and V2 be the solutions of Problem 1

corresponding to Kx and K2 with Kx # K2. Suppose by contradiction Cl = C2 and

define W = V1 - V2. From (2.10) we have

-M[w,$] = (A-J - K2) fH<0) ̂ (0,X2)dX2.

With $ = W we get

-Ju||W||2w=(A1-A2)(C1-C2) = 0

and this cannot be since HWH^ =£ 0.

To prove that F(R1) = R1 we pick Ce R1 and let ^ be the corresponding unique

solution of Problem 2. Now V = (^ , -^a,) 's a solution to Problem 1. Let P be related

pressure. Since VP is periodic in Xx there exists a constant K such that

P(Xl + L, X2) - P(Xl, X2) = K

and clearly C = F(K). □

In analogy with the case H = Hm we call \{P) the solution to Problem 1 when K = 0.

If K is arbitrary and V the corresponding solution we put

y(0 = v _ yC)i

Theorem 2.3. The pressure is periodic with respect to Xl (i.e., K = 0) if and only if

f'm Fi(0, X2) dX2 = fH(0) V<p>(0, X2) dX2. (2.17)
Jo Jo

Proof. If K = 0 then (2.17) follows by definition. Vice versa suppose (2.17) holds. We have

f'm F/C)(0, X2)dX2 = 0. (2.18)
Jo

Now V(C> satisfies

AV<C) = VP(C), V • V(C) = 0 in S, (2.19)
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V(C) = 0 on 35, V(C)(Ar1 + L, X2) = V(C)(ZX, X2) in 5. (2.20)

Multiplying (2.19)! by V(C> we obtain from (2.19)2 and (2.18)

||V<C>||„ = 0.

Hence V(C> = 0. This implies K = 0. * □

3. Asymptotic properties of the generalized Couette-Poiseuille flow. In this section we

reformulate Problems 1 and 2 in the variable domain:

5e= {(X1,X2) e R2, |^|< oo, 0 < X2 < eHiX^}

and then let e -» 0. Since e is a small parameter we prefer to work with nondimensional

variables. Thus we define

* = (*i. x2), x1 = XJL, x2 = X2/Hm, h{xx) = H{Lxl)/Hm, v = V/F, v = (vlt v2),

PL , KHl C , * . ./ x .
P = —, k = , c = ——, \p = ——, hm> h(xl) > hm,

txV nVL VHm VHm

se= {(jCj, jc2); |xx|< co, 0 < x2 < eA(x1)},

oe = {(jCi, x2)', 0 < *i < 1, 0 c x2 < e/i(jci)},

e a nondimensional parameter. Problems 1 and 2 become

Problem Y. To find v such that

Av = Vp, V • v = 0 in se, (3.1)

vx = 1, v2 = 0 on x2 = 0, v = 0 on x2 = eh(x1), (3.2)

v(*! + l,x2) = v(jcx, x2). (3.3)

Problem 2'. To find such that

A2xp = 0 in se, (3.4)

= 0, \pX2 = 1 on x2 — 0, \p = c, ^ = 0 on x2 = eh(xl), (3.5)

t(x1 + 1, x2) = i//(jcj,x2). (3.6)

The Couette-Poiseuille solution corresponding to h(xl) = 1 is, in this notation,

v1 (x2) = v[P) + v[c\ v2 = 0, (3.7)

where

v[C) = - < i(x2~e), v[P) = (e - x2)/e.2 2\ 2

We are interested in solutions of Problems V for which v[C) does not vanish and does not

diverge as e —> 0. Of course this is equivalent to saying that k = k0/e2. This is the case in

the theory of lubrication and hereafter we will always make this assumption. We easily
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verify, when k = k0/e2 in (3.7),

II vi IU'(ot) = Cj£, (3.8)

IKIL'k) = CpE1/p, 1 <p < oo, (3.9)

II ̂1 llz.=°(o.) = Coo ' (3-10)

IIV^L^Ce-172. (3.11)

Moreover, if k = k0/e2 in (3.7), then

c = c0e, c0 = ~k0/\2 + 1/2. (3.12)

In terms of c0, (3.7) becomes

v\(xi) = 3(1 ~ 2c0)x2/e2 + 2(3c0 — 2)x2/e + 1. (3.13)

The basic idea of the theory of lubrication is to consider (3.13) still valid when h depends

on Xj and e is very small. To make this point precise we prove that the estimates

(3.8)—(3.12) remain valid for the generalized Couette-Poiseuille flow and that the exact

solution of Problem 1' converges in suitable norms to the flow of the theory of lubrication.

Let Hp0(se) be the completion with respect to the norm

,2 '1/2

u\\h'p0 = I J |Vm| dx\ , dx = dxxdx

of the C°°-functions vanishing near 3if and 1-periodic in xl. For the proof of the

following Poincare-like lemma compare also [6], p. 8.

Lemma 3.1. Suppose u e Hlpt). We have

\\u\\l2"(o,) < C( /?)e1/-p|| Vw||z.2<o,)

where (3.14)

c(p) = (hM(p\)2/2"-iy/p, i^P< oo.

Proof. It suffices to prove (3.14) when u e C°°(ie) vanishes near 3jf and is 1-periodic in

Xj. For p = 1 (3.14) certainly holds. Now

f u2(p+1)dx ̂  (p + l)2J \upuXi\dxf \upuXi\dx
°f °r °t

< \(p + l)2||w||/.2"||vw||2z.2. (3.15)

Suppose (3.14). Then by (3.15)

IMU2c + " < (ehM(p + 1)!/2/')1/</' + 1I||Vm|U2.

Hence by induction the result follows. □

In the following three lemmas we recall various "a priori" estimates for the solutions of

harmonic and biharmonic problems.
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Lemma 3.2. (C. Miranda [7]) Let S2 be an open, bounded, and connected subset of R2 with

a regular boundary (e.g. 312 e C2). Suppose v e CL(S2) n C4(S2) and

A2f = 0 in S2, v = 0 on 3£2.

Then

\Vv\ < (56)1/2max \dv/dn\.

Take £2 as in Lemma 3.2. Let Bx(rt), (Bx(re)) be the greatest open disk of radius ri (re)

internally (externally) tangent to 3£2 in x, i.e., Bx(rt) c £2 (Bx(re) n £2 = 0). Define

5, = inf{r,(x), x g 9S2}, 8e = inf{ ̂ (x), ^ e 3£2}, § = min{5,,}.

Since 3£2 e C2 we have S > 0.

Lemma 3.3. (G. Adler [1]) If v e n C2(J2) is harmonic we have

max | Vi> I < C,4 max | v(s) I + C,max I«'(^) I + C,6max |i/'(s) I
£2 O 3S2 80 an

where s is the arc length along 3£2 and Cx, C2, C3 are absolute constants.

Lemma 3.4. (D. Gilbarg and N. S. Trudinger [4], p. 37) Let v e C°(£2) n C2(Q) and /

bounded in £2. If Av = f we have

^(x)|vt>(x)|< C sup|+ sup d2(x)\f(x)\
^ a £2

where d(x) = dist{jc,8S2}.

The conclusions of the above lemmas remain true if and the function v is

1-periodic in x,. This can be seen quite easily if we modify the proofs, reasoning in of and

treating points like (0, x2), (1, x2) as coincident interior points. In particular, we can take

8 = e/hM in Lemma 3.3.

Define now in se the function xp0(xlf x2) with the problem

d4ip0/dx2 = 0 in se, (3.16)

\p0 = 0, dip0/dx2 = 1 on x2 = 0, *Po = eco> ̂ xPo/^x2 = ® on x2 =

We find

(h — 2c0)xl (3c0 — 2 h)x
*o(xi,x2)-1 I7J^+ °, 2 +^2- (3.17)

eh eh

We may regard \p0 as the stream function of the theory of lubrication. Indeed, let

i;0] = 3^0/3x2; we have

3(h - 2c0)x2 2(3c0-2h)x2
uoi - 771— + n  1 (3.18)

eh eh

and this is precisely the (nondimensional) Xj-component of the velocity given by the

theory of lubrication.
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Theorem 3.1. Suppose c = c0e in Problem 2'. If v is the corresponding velocity and k(e)

is given by

p(x1 + l,x2) ~p(x1,x2) = k,

then we have2

Ce'l/1, ||Vo2IUa(o.) < C> (3-19)

II vi \\i."(o,) < Ce1/P, \\v2\\LP(oe) < Ce2/P, 2 < p < cc, (3.20)

|k(e) | < Ce'2. (3.21)

Proof. Define tj = xp - \p0 where ip is the solution of Problem 2' and xf/0 is given by (3.17).

v satisfies

A2ti = fi/e2 + f2/e + f„ (3.22)

r) = 0, dri/dn = 0 on 0sE, (3.23)

with /,, /2, and /3 functions not depending on e. Multiplying (3.22) by tj and integrating

by parts over oe we get, recalling that q is 1-periodic in xv

llwJlk) + 2II^Jlk) + II^Jlk)<f"^"^). (3-24)
By the Poincare inequality we have

Mk2K)< Ce||r/X2||L2(0t), h,2llt2(o>)< Ce\\j]XiXi\\lHoS

Thus

||ti||l»k)< Ce2\\Vx2X2\\lHoS

Hence by (3.24),

2 2 2

II JCiJCi II L2(of) + II Z.2(ot) + II "^^2*2 II Z.2(0ir) ^ C\\Vx2x2 ll^2(oB)-

It follows that

||VTJV11|^2 +||vt},J2l2 < c, (3.25)

\\vXl\\L2 < Ce, hx2\\L2 < Ce, ||t)||l2 < Ce2. (3.26)

Moreover, we have

||v«JL2 = ||v^2||l2 <||vtjX2||l2 + |v^0j,2||l2.

l|vj;2||L2 = ||v^1||i2<||vT,Xi||i.1 + ||v*0JLJ,

and by direct computation

||v*oX < Ce_1/2' ||v^oJ|L2 < Ce1/1.

Hence (3.19) holds true. By Lemma 3.1 and (3.25) we have

N Xl\\L,<Ce2", hJL,<Ce2". (3.27)

: The various C's denote constants generally different, not depending on e.
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Thus the estimates (3.20) follow if we note that

IKJL- < Cel+1/'- IK.L« Cl'"-

Finally we prove (3.21). Take c = ec0 and c = 2ec0 in Problem 2' and let v and v be the

corresponding velocities. Letting <|> = v — v in the integral identity

feh( 0)

we obtain

Since, by (3.19),

we get as a result

-[v,4>] = k(e) ( ' (0, x2) dx2
Jo

2
ec0k(e) = -[v,v] + || v || //.

I v ||// < Qe"172, || v ||// < C2e~1/2,

c0| A:(e) | < Ce 2. □

Theorem 3.2. Suppose again c = ec0 in Problem 2' and let v be the corresponding

velocity. Then

IMIl-«C. (3.28)

Proof. Let co(jc,, x2) be harmonic, 1-periodic in xx and such that u = \p on 3.v(:. By

Lemma 3.3, which is applicable in the present case, |Vw| remains bounded as e -» 0.

Defining f = ip - u we have

A2f = 0 in sc, f = 0 on 9sE.

Hence by Lemma 3.2,

| V? | < ]/56 max 18f/9n | < /:56 ( max |6^/9n | + max |9w/9n |j.
V dse 3 se /

Since |9^/9«| < 1 and |v«| is bounded, we get |vf | < C. It follows that

||v^|U» < C,

which implies (3.28). □

In the following theorem we derive an interior pointwise estimate.

Theorem 3.3. Let ip be the solution of Problem T when c = e0 and let xp0 be given by

(3.17). Define tj = ip — \p0. Then

d(x)\\7r](x) | < Ce2 (3.29)

where d(x) = dist{x, 9^}.

Proof. The function 17 satisfies (3.22) and (3.23). Let a be the solution of the problem

A a =/2/e2 + A/e +/o in se, a = 0 on 9se, a(x1 + 1, x2) = a(xx, x2)

(3.30)

with fl as in (3.22). Define aB = 3Nx2(ehM — x2)/(le2), 0 < x2 < ehM where the

constant TV is a pointwise bound for |/(| (i = 1,2,3). By the maximum principle we have
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|a| < aB in se when e < 1. Hence

|a|<M, M=Wh2M/%. (3.31)

Suppose /i is defined by

AjS = a in se, ft = 0 on dse, fS(xx + 1, x2) = P(x1, x2)

and let fiB = Mx2(ehM - x2)/l, 0 < x2 < ehM. Using again a comparison argument we

find 1/J | < fiB\ hence

|y8|< M/j^e2/8. (3.32)

Assume for the moment

13/8/3/71 < Ce. (3.33)

Since d(x) < ehM and A/S = a, we have by Lemma 3.4, recalling (3.31) and (3.32),

d\ Vfi | < Cj| sup | y81 + sup d2\a\ j < C2e2. (3.34)
se se

Define y = tj - (1. We have

A2y = 0 in y = 0 on 3if.

Thus we get, by Lemma 3.2 and taking into account (3.23),

I Vy | max |3y/3« | = J56 max 13)8/9n \. (3.35)
3sf 9sf

On the other hand, by (3.33), (3.34), and (3.35), we obtain

d\vy\ < d| Vy | + tf|vj8|< Ce2.

It remains to verify (3.33). Let 8 be given by

A5 = M in st, 5 = 0 on 3 se, 5(xt + 1, x2) = 5(x1? x2). (3.36)

By (3.31) and the maximum principle we get |/?| < S. On the other hand /? = 5 on 3sf;

consequently

|3)S/9« | < |35/3« | on 9sf. (3.37)

To estimate |36/3«| we transform (3.36) in a harmonic problem by letting £ = 5 - fiB.

We have

A£ = 0 in se,

£(xlt0) = 0. i(xi,eh(x2)) = e2Mh(x2)(h(x2) - hM)/2,

and by Lemma 3.3, |v£| < C3e. Taking into account that |V)3B| < C4e it follows that

|v8| < C5e. Thus |3S/3«| < C5e on 3se. This by (3.37) implies (3.33). □

From (3.29) we deduce the estimates

d(x)jv1 - vm | < Ce2. (3.38)

4. A perturbation technique. In this section we develop a perturbation scheme in e for

Problem 2'. Since we prefer to work in a fixed domain we introduce the new variables

y\ = *i. = xi/e- (4-1)
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In this way se and oE become, respectively,

5 = {(jwz); -°o < < °°,o <yi < Hyi)},

°= {(y^yi)'0 <yi < M <yi < h(yi)}-

Hereafter we use for partial differentiation the notation

Dlqif=d«f/^yldq>y2, q = q1 + q2-

Moreover, we put

VE = (eZ)J0, D^), AE = e2D20 + Dq2-

Problem 2' can be rewritten as

Problem 3. To find <j> such that

A2cf> = 0 in s, (4.2)

<t> = 0, D01<f> = e on y2 = 0, (4.3)

<f> = ec0, D01 <t> = 0 on y2 = h{yx), (4.4)

(f> is 1-periodic in yx, (4.5)

where of course <j)(y1, y2) = ^(yi, ey2). Let ul(y1, y2) = vi(y1, ey2). Recalling the defini-

tion of stream function we have

u\ = ~Dqi <f>, u2 = (4.6)

Furthermore, for the pressure gradient, we get from (3.1) and (4.6)

,oP D2\<§> + 3Do3<#>, (4-7)
e e

~D0,lP = ~^3,0 $ 2^1.2 (f>- (4-8)
6 e~

Lemma 4.1. The solution <pe of Problem 3 is odd with respect to e.

Proof. Because AE = A_E and A2E = A2_E, -<j>_e satisfies Problem 3. Thus by the uniqueness

of the solution we infer <j>e = □

By (4.6) ux is even with respect to e and u2 is odd. Moreover, from (4.7) and (4.8), we

see that p is an even function of e.

Set formally

<t> = <j>(0) + e<^(1) + e2<p(2) + eV3) + • • • . (4.9)

Substituting (4.9) into Problem 3 and equating like powers of e we obtain, in agreement

with Lemma 4.1,

<p(2n = 0, / = 0,1,.... (4.10)
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The coefficients of the odd powers of e satisfy the following hierarchy of boundary value

problems:

D*a4>(1) = 0 in (4.11)

<p(1) = 0, D01<t>(1> = 1 on y2 = 0, <J>(1) = c0, D0l(|>(1) = 0 on y2 = h(hl),

(4.12)

= -2 0242<f>(1) m 5, (4.13)

<j>(3) = 0, D01<j><3> = 0 on y2 = 0 and y2 = hiy^, (4.14)

4>>(2>+1) = -^4><2y'"3) - 2j = 2,3,..., (4.15)

4><2>+1> = 0, D0l<t>aj+1) = 0 on j>2 = Oand = A(^). (4.16)

Problem (4.11)—(4.12) can be solved easily. We get (cf. (3.17))

<P(1> = (Mji) - 2c0)j23A3(ji) +(3c0 - 2h{yl))y^/h2{yx) +y2. (4.17)

Recalling (4.10) we solve problems (4.13)-(4.14) and (4.15)-(4.16) recursively. We are led

to the following formal expansion of <p in odd powers of e:

00

«#> = £ e2>+y2>+i). (4.18)

j=0

Define

By (4.6) we have

«{2» = D^+1\ m<2>+1) = (4.19)

= £ e2j,w{27), u2~ H e2J+1ufJ+1). (4.20)
j-o y=o

Next we consider for p an expansion of the form

P= £ eV*'. (4-21)
k = -2

Putting (4.21) into (4.7) and (4.8) we have:

*W(2>+1)-0, D01p^+l) = 0, 7 — -1,0,1,..., (4.22)

Z)},o/?(-2)=i)o3,3<»<1), (4-23)

V=^W+1) + flp/'+3). 7 = 0,1,2,..., (4.24)

Dq,iP(2) = 0, (4.25)

^o.iP(2y) = -£3>(27-1) - ^iV2>+1)- (4-26)

By (4.22), v/>(2j/+1) = 0; therefore, apart from an inessential constant, we arrive at the

formal expansion

00

p= L e2jp(2j). (4.27)

7 = -1
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Let us examine in greater detail the first term of (4.20)!. From (4.17), we obtain (cf.

(3-18)):

«P = 3{h(yi) - 2co)yl/h3(yi) + 2(3c0 - 2h(yl))y2/h2(yl) + 1. (4.28)

Furthermore, by (4.25)1; p('2) does not depend on y2 and from (4.23) we have:

dp^2)/dy1 = 6(h(y1) - 2c0)//i3(.y1). (4.29)

We arrive, in conclusion, at the classical one-dimensional Reynolds equation:

d[h,dj±l\ = 6d*L (4.30)
dy i\ dy 1 J dyx

Moreover, from (4.28) and (4.29) we deduce:

"i°> = \^dyTyi^yi ~ +(h(yi) ~y2)/h(yi)- (4-31)

Our goal is now to give a rigorous justification of the formal expansions (4.18), (4.20), and

(4.21).

Lemma 4.2. Define

r(n) = <p — £ £2j+1<#><27 + 1). (4-32)

7 = 0

We have

llA.oK'O II LHo) < Ce2n+3, II A>.iK«) y{0) < Ce2" + \ (4.33)

||^22-/./(«)||^(0)< Ce2n + 3, / = 0,1,2. (4.34)

Proof. By (4.2)

We claim that

where

aM«) = - £ £2>+1a2</»(2>+1>.
7 = 0

A2/{n) = e2n + 3F(yl, y2; e,n), (4.35)

F(ylt y2, e,n) = ~[D^2-» + 2Z)2><2"+1) + £^4/"+1>] •

The proof is by induction. For n = 1, (4.35) is true. Suppose (4.35) with n arbitrary; then

Ay(n + 1) = A]r(n) - e2" + 3A>(2" + 3)

= -e2" + 3[£>440<#)<2""1) + 2D22<j>(2n + 1) + Z)044<#><2"+3)]

-e2n+5[ A,V><2"+1) + 2£>242<£<2n + 3) + e2D4V(2" + 3)] •

The first term in square brackets in the left-hand side vanishes by (4.15); thus (4.35)

follows. We conclude that F(yv y2, e, n) is bounded pointwise by a constant not depend-

ing on e. Because r(n), r , and r vanish on 3s, we have

||A/(»)||t2< Ce2n+\ (4.36)

On the other hand,

II A/II]} = £4||02V||2L2 + 2e2|| D2Ar || ,i + |l>022r ||L2.
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Hence

II DLur(n)\\L2^Ce2"+3-<2-,\ i = 0,1,2. (4.37)

Now (4.37) holds for every n and

r{n) = r(n + 1) + e2"+Y2n+3\

Inequality (4.34) follows because

\\D2-iA")y <\\D2-tAn + l)b + cie2n+3 < Ce2n+3-

On the other hand,

||bi,o'-(»)||l> < C\\Dlir(n)\\L2, ||0o,1r(«)|z» < C\\D0,2r(n)\y>

thus (4.33) holds. □

Let

p(ux\n) = ul - £ e2ju[2j), p(u2; n) = u2— £ e2j+lufj+1\

7=0 j=o

Since

P("i; n) = ~A),ir(")> p("2; ") = -•Di1,o'"(")'

we have the following as an immediate consequence of Lemma 4.1.

Theorem 4.1. The following estimates for p^; n) and p(w2; n) hold true:

l|p(Mi"> llz.2 < Ce2" + 2, ||p(w2; «) 11^2 < Ce2n + 3, (4.38)

||£>i1-,\/P("i;n)|k2 < Ce2" + 2, |-D}-;,/P(n) ||l2 < Ce2n + 3, i = 0,1.(4.39)

Remark 4.1. The classical theory of lubrication deals with u[0) and u'2l>. For these terms

we have, in particular,

II"i - Ml0)|k2 ^ C£2' II u2 ~ eM21)||z.2 ^ Ce3.

An interior estimate for the L2-norms of higher-order derivatives of the stream function

<p is given in the following.

Lemma 4.3. Let f be a C°° function vanishing near 9s and 1-periodic in yv Define

g = A?r(n), N = 1,2, —

Then we have

l|veUg)|L2<Ce2"+3, (4.40)

l|Ae(fg)|L2 < Ce2n+3. (4.41)

Proof. Let N = 1. We have

&M&) = + 2Vcf • Veg + gAJf)

= f 2gAeg + fg2'AS + 2gv£f • V.tfg) - Vlvjf- (4-42)



THE REYNOLDS EQUATION 641

By (4.35) and (4.36) we get

||g||L2 < Ce2" + \ || AEg||L2 < Ce2" + 3. (4.43)

Integrating by parts in the left-hand side of (4.42) we get, taking into account (4.43),

l|ve(fg)||2L2 <-Ce2" + 3(e2"+3 +||v,(?g)||Ll).

Hence (4.40) holds when N = 1. In particular, we have from (4.40),

II^UII,2 < Ce2n+2, ll^gll^ < Ce2n + 3. (4.44)

To prove (4.41) we note that:

£gA2e(£g) = fg{£A2g + 4Vff • Ve(Aeg) + 2AJAeg

+ [4(£2VEI>I,0f • VeDl 0g + J ■ VAag) + 4Vfg ' VE(Aef)] + gA2f}.

(4.45)

Recalling (4.35) we have

II Ve( Aeg) ||L2 ̂  Ce2" + 3. (4.46)

Hence by (4.43) and (4.46) the only terms in (4.45) which cannot be immediately

estimated are those in square brackets. On the other hand, we can write

&V,g • Ve(AJf) = (gv.(fg) - g2Vef) ■ ve(Aef);

thus we estimate this term using (4.40) and (4.43)j. Since the other terms in square

brackets in (4.45) can be similarly treated, we obtain (4.41) after integrating by parts in

the left-hand side of (4.45). A suitable induction argument yields (4.40) and (4.41) when N

is arbitrary. □

Lemma 4.4. Let f be as in Lemma 4.3. We have, for q > 2 and /' = 0,1   q,

||^-/./(«)||L2< Ce2n+\ (4.47)

Proof. We first prove by induction

Ce2" + 3-(«-0 (4.48)

when 2 < q < 2n + 3 and i = 0,1,..., q. Inequality (4.48) holds when q = 2 by (4.37).

Suppose (4.48) true for q = 3,..., 2TV. We claim, for i = 0,1,..., 2N + 1,

IIWfltl-iA") lltf < Ce2" + 3-<2"+1-<>. (4.49)

Let

J - A><»)-£ (4,50)
* = 0

We want to rewrite (4.40) after collecting in the left-hand side all terms like

'(»)■ (4-51)
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We have

IID!.»({«) Ill'-/ Z [(r)eJ",-*>C.1J(fOiiX-»«'-(»))]
° k,h = 0

X [{h)£2(N~h)D\fi(W™N-h),2hr{n))\ dyidy2. (4.52)

Let

^\,o{^2(N-k),2kr(n)) = 2(N-\) + l,2kr(n) ak

where by the induction hypothesis

||«J|L2 < Ce2n + i-2(N'k). (4.53)

The diagonal terms in (4.52) can be estimated as follows:

\\D\AZD™N-k)2kr("))(L2>\SDt(N-\) + l,2kr(")\\L2 - 2ll«Jlz.-||^22(^-i),2^(")|z.2-

(4.54)

For the off-diagonal terms in (4.52), we put

^l,o{^2(N-k),2kr(n)) = ^2(N+-\)+l,2k(^r(n)) + fik (4.55)

where

llAJL2 < C£2n + 3-2(N-k)_ (4>56)

Using (4.55) we have, with successive integrations by parts,

f ^\.o{^2(N~k),2kr(n)) X ^\,o{^2(N-h),2hr(n)) (fy\(fy2
J o

= J {^2N+\-h-k,h + k(^r)) d)>2 + j fih D\ %-k) + 1,2k ( ?'r ) 4)^2

+ f PkD2(N-\) + l,2h{$r)dy1dy2 + f PhPkdy1dy2. (4.57)
J o o

To transform further the first term in the right-hand side of (4.57), we let

r\2N+l (y \ y2/V + l ,
u2N+\-h-k,h + k\l>r > *u2N+l-h-k,h+kr ^ <

where

||y ||£2 < Ce2n+3-(2N+1-h-k). (4.58)

Thus

||^22W-A-t.A + *K«)||l' <||^2)v+11-A-*.* + *(?',)||2£.» + AyWAW^tl-h-k.h + jWlo.

(4.59)

Let us repeat the same calculations from (4.52) to (4.59) but starting with

We finally obtain

->/V+l 2 I 2/V+1 \

1=0 \ 1=0



THE REYNOLDS EQUATION 643

Hence (4.49) follows. Let now (4.48) be true for q = 3,...,2N + 1. We claim, for

i = 0,1,..., IN + 2,

|WlStl-iAn) y < Ce2" + 3-(2"+2-". (4.60)

Proceed now in a way similar to the first part of the proof, starting from (4.41). This

inequality can be written as

A\D2iM)to + 2e2||^iil(?g) 1^2 + |-D<),2(?£) ||l2 < Ce4n + e (4.61)

where g is given again by (4.50). Our goal is to put in evidence and collect in the left-hand

side of inequality (4.61) the L2-norms of all terms like

Wisti-i ,/(")•

This can be done with estimates similar to those of the first part of the induction

argument. As final result we obtain

2N + 2 2N + 2

,=0 (=0

Thus (4.60) follows. This completes the proof by induction of (4.48).

Take now m such that 2 m > q and note that

n + m

r(n) = r(n + m) + ^ £2-/ + 1<J>(2-' + 1>. (4-62)

j = n+ 1

Since (4.48) holds for every n we have, for i = 0,1,..., q,

II^-mK")!^ <||^-(./(« + «)|L2 + e2"+W+3)lkJ
< C(e2<" + m) + 3~('?~'> + e2" + 3)

< Ce2n + \

This completes the proof of (4.47). □

By the definitions of p(«1, n) and p(u2, n) we have, for i = 0,1,..., m,

WZ-iAun «) = \&Z-u+A«), ») = !,/(«)•

Therefore, as an immediate consequence of Lemma 4.3, we obtain

Theorem 4.2. For m > 2 and i = 0,..., m,

IIW-,-./P(«i.")IL»< Ce2" + 2, (4.63)

I|W-,,P(«2,«)||^< Ce2" + 3. (4.64)

Now we have, for k = 1,2,

||SDZ_uP(uk, n) ||c.(5) < ||fDr-V+u+iP(«*. «) IU

Furthermore, the right-hand side in (4.63) and (4.64) does not depend on m. Thus we

obtain, for / = 0,1,..., m,

||rA^,-.,P(«1,«)|lco(8)< Ce2" + 2, IIW—/./P(«2,«)|lc°(B)< Ce2" + 3.
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To estimate the error associated with the pressure we define

t(n) = p — XI elkp(2k)-

k = -\

By (4.7), (4.8), and (4.23)-(4.26), we have

_1 ^ . 1
E

and

D[.0r{n) = —Dl^r{n + 1) + -Z>|ar(/i)
J c

do.it(") = ~eDlor(n ~ 1) - \D\iV(")-

Therefore we obtain, by (4.47) for m > 1 and i = 0,1

IIW-(,/t(«)IL2< Ce2" + 2.
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