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THE UNSTEADY BOUNDARY LAYER ON A CYLINDER

DUE TO SMALL TRANSVERSE OSCILLATIONS*

By
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Abstract. This paper deals with the response of an incompressible laminar boundary

layer on a circular cylinder due to small periodic velocity fluctuations. These fluctuations

may arise from the motion of the cylinder or be contained within the free stream. A

perturbation solution employing the method of matched asymptotic expansions is given

for the case of high reduced frequencies. These results are compared to a numerical

solution valid for any frequency. In addition, the solution is compared to the classical

result of Glauert [7] valid only at the stagnation point.

1. Introduction. In unsteady flow, potential theory has been used quite successfully to

describe many important aerodynamic characteristics. However, the inviscid approach is

inadequate for describing detailed features and basic mechanisms present in many

unsteady flows. In these cases, time-dependent boundary-layer theory must be employed

to describe a number of unsteady viscous effects such as temporal and spatial phase

differences, nonlinear streaming, separation delay and viscous damping. A physical

description of the phenomena which characterize unsteady boundary layers and the

related mathematical analysis can be found in the excellent review articles of Riley [12]

and McCroskey [11].

Most theoretical studies of unsteady boundary layers have been concerned with the

response of laminar incompressible boundary layers to small periodic fluctuations in the

free stream. The first substantial efforts were due to Lighthill [9] and Lin [10]. With few

exceptions, the analysis has concentrated on the flow past a semi-infinite flat plate or in

the vicinity of a two-dimensional stagnation point. Among the first rigorous treatments,

which demonstrated the asymptotic structure of the unsteady boundary layer, is the

analysis of Ackerberg and Phillips [1].
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When the free stream approaches normal to an infinite flat plate with oscillations in its

own plane, the Navier-Stokes equations admit an "exact" solution. This was first

recognized independently in the seminal papers of Glauert [7] and Rott [13]. The infinite

and planar geometry allows the flow to be split into a steady and unsteady part, which is

dependent only on the normal coordinate and time. Subsequent investigations of stagna-

tion point oscillations appear to be influenced by this feature in seeking solutions in the

neighborhood of a stagnation point. For example, Ishigaki [8] assumes an imposed

velocity distribution of the form

Ue(x,t) = Ax( 1 + ee,u")

Ghoshal and Ghoshal [6] use a similar assumption for a three-dimensional stagnation

point. Although the mathematical analysis is sound, this distribution is not physically

realistic for transverse oscillations in the neighborhood of a bluff body.

The purpose of this paper is to investigate the behavior of an incompressible laminar

boundary layer on a circular cylinder subjected to small periodic fluctuations. The

formulation provides the flexibility to model arbitrary oscillations of the free stream and

cylinder; however, results are presented only for the case of transverse oscillations.

The solution is accomplished by first expanding the stream function in terms of £,

where e is the ratio of the transverse velocity component to the undisturbed free stream

velocity. The resulting equations are then solved by an asymptotic expansion in terms of

the reduced frequency. Due to the singular nature of the perturbation problem, an inner

and outer region are defined and the method of matched asymptotic expansions is

employed. The result is compared to a numerical solution valid for all frequencies.

The analysis is intended to represent the unsteady flow over a cylinder, based upon the

following implicit assumptions. First, the influence of fluctuations inherent in the un-

steady wake must be small compared to the influence of the imposed oscillation. This

interaction between the wake and the inviscid flow, which is usually ignored, was studied

by Dwyer and McCroskey [11], Their investigation of these self-induced oscillations, at a

Re = 1.06 X 105, shows only a small deviation of wall shear stress in the neighborhood of

the stagnation point. The second assumption, which is consistent with the mathematical

restrictions, is that the imposed oscillation does not significantly alter the wake. It is well

known that an oscillating cylinder can control the instability mechanism which leads to

the vortex shedding. However, this effect, as discussed by Bearman [2], is not significant

for small amplitude oscillations which are consistent with the restrictions of the perturba-

tion analysis.

2. Mathematical formulation. The problem considered in this investigation is that of an

unsteady incompressible flow over an infinite circular cylinder. The unsteady component

may originate from free stream or cylinder oscillations provided that the unsteady velocity

is small when compared to the free stream velocity.

For the case of an infinite cylinder, the flow will be two-dimensional. The usual

boundary-layer coordinates are adopted, where x denotes the coordinate along the surface

and v is the coordinate normal to the surface. Curvature can be neglected in the analysis

through first order as discussed by Gersten [5] and Van Dyke [15].
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Defining the stream function, \p, as

dxp d\b
u = — and v = --r—

d y ox

allows the boundary layer equations to be written as

d2\p dip d2\p d\p d2xp _ dUe We

3ydt 9y dxdy dx sy2 9t e 9* a/'

The boundary conditions are simply

« ,-0 (2)

and

|y - Ue(x,t) as y -* oo. (3)

In Equations (1) and (3), Ue represents the velocity at the edge of the boundary layer

which will be determined from potential theory.

Outside the boundary layer, the flow is irrotational and the equation of motion is

simply

V2^ = 0. (4)

The surface boundary condition for the case of a cylinder undergoing arbitrary transla-

tions, as shown in Fig. 1, is given by

1 3*
vr{R,0) = -- -qq ^ = X0CosO + yoSin0. (5)

The stream function with respect to the laboratory system then becomes

= ^Costf - ^^Sin0 - ujr-— Wn0. (6)

Using (6), the velocity on the surface in terms of boundary layer coordinates can be

readily obtained. Taking the coordinate system fixed on the cylinder and considering only

vertical translations yields

Ue(x,t) = zUx Sin(x//?) - 2K0Cos(x/R )Cos ut. (7)

For the second case of a transversely oscillating free stream approaching a fixed

cylinder, the edge velocity is also given by

Ue{x,t) = 2UxSm(x/R) - 2V0Cos(x/R)Cosut. (8)

This flow is representative of a wind tunnel with periodic transpiration at the walls. The

actual flow is somewhat complicated and depends upon the transpiration length, tunnel

height, and body geometry.
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Fig. 1. Oscillating cylinder in a uniform flow.

2.1. Nondimensional equations. The flow in the boundary layer is characterized by two

different viscous length scales. They are denoted by 8S and SB, where Ss ~ {v/u)l/2 is the

unsteady Stokes layer and dB ~ (v/c)l/2 is the steady boundary layer or Heimenz layer.

The parameter, c, represents the characteristic convection time scale given by 4Vx/D. The

Stokes layer is a measure of diffusion due to the fluctuating component of the flow. When

a steady mean flow is present and co/c = 0(1), the two layers are of comparable thickness

and the resulting flow is quite complex. However, when the frequency is "large" such that

Ss/SB « 1, the fluctuations are confined to a thin layer near the wall. This feature is

exploited in the perturbation analysis to produce a significant simplification in the

resulting equations. With this in mind, the initial set of nondimensional variables and

parameters are defined below:

^ Us TTT' v^ — Re1/2, (9)

Re =

(2vUxR)l/'2'

UXD _ UD __ V0

4 Ux' U0

Substituting (9) into (1) through (3) yields

d2t 3^ 32^ dxp 92^ 93^ dU dUe
+ = Ue~aF I10)3rj9r 3rj 9rj9f 9f 3^2 0T,3 3t e 9f

with boundary conditions given by

,=0 an
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and

as V -> co. (12)

The velocity at the edge of the boundary layer for the transversely oscillating cylinder

becomes

Uetf,r) = Sinf - eCosfCosr. (13)

The two nondimensional parameters which explicitly appear in the boundary layer

equations characterize the unsteady flow. The perturbation parameter, e, is a measure of

the unsteadiness, and the reduced frequency, a, is a measure of the steady to unsteady

diffusion of vorticity in the boundary layer.

2.2. Small fluctuation equations. A solution to (10)-(12) is sought for situations when the

transverse oscillations of the cylinder or free stream are small with respect to Ux. This

ratio, which appears in (13), is taken as the perturbation parameter. The edge velocity can

then be written as

t>ca,T)= Uoin+eU.i^r) (14)

where t) represents the general unsteady component. Writing the stream function as

^(f,Tj,r; a, e) = %(£,!]) + , tj, t; a) + 0(e2) (15)

and substituting into (10)—(12) yields the following system of equations:1

9io9^ _ = fydUo , ,
9t, 3£3tj 3J 3tj2 3l)3 ° ^ '

32^ , » 32^ , . 3^i , 3^! 7 3^ 33<h
+ ^o.r,arxn + Vo.i . _2 V'o 3"drjdr Y0«dSd-n Y0^ 0T7 d7j2 dr]

+ jj dJk
a 3t 0 0f 1 d$ '

(17)

When e = 0, the problem reduces to steady uniform flow past a circular cylinder as

expected, subject to the following boundary conditions:

f-f = 0 a, , = 0. (I,,

^ -> U0(n as rj —> cc.

The notation \p0 denotes differentiation with respect to r), etc.
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The fluctuating component \p1 can then be found by solving (17) subject to

dip, dip,
at "-0-

9 lis, a.

-g^- ^ Ui(£,t) as 7] > cc. (19)

Before proceeding, it is important to discuss the limitations inherent in the potential

flow/boundary-layer formulation and how they relate to the unsteady perturbation

analysis.

To insure that the predominant perturbation to the flow is due to the unsteady

fluctuations and not higher-order boundary-layer effects, some constraint on the steady

Reynolds number must be given. The two important second-order effects are due to the

displacement thickness and curvature. Applying the method of matched asymptotic

expansions to the Navier-Stokes equations, it can be shown, Gersten [5], that both

curvature and displacement effects are 0( Re~l/1) relative to the first-order boundary-layer

theory. Therefore, we must require that e » Re 1/2, which does not pose any serious

limitation for realistic values of the Reynolds number. However, this second-order

curvature effect applies only for steady flow and should be modified accordingly for

unsteady flows. Writing the inviscid normal pressure gradient as

1 dp _ V2 30

p dn R + ^ dt

and nondimensionalizing, yields

3P 1 1 772
— 1 V + aeV—
3n Re1/2 \ 3t ,

This condition implies that ae < 1 or that the upper bound of the reduced frequency be

limited by a = 0( 1/e).

3. High frequency solutions. In this section, a solution to (17) valid for high reduced

frequencies is obtained. Formally, this implies that a > 1. However, for (17) to be valid,

we must also required a/D = 0(e), where a is the oscillation amplitude. This insures that

the unsteady pressure term in (17) be of proper order, and implies that the amplitude of

oscillation be inversely proportional to the frequency. Under these conditions, a straight-

forward asymptotic expansion in terms of 1 /a leads to the following equation describing

the leading behavior:

32^ _ a

drjdr 3t

The solution, subject to Equation (19), is

h = (C(S)-vC osf)e'T,

and it is obvious that the boundary condition at the wall cannot be satisfied. This is a

classical hallmark of singular perturbation problems and is due mathematically to a

reduction in the order of the differential equation. Physically, the situation is explained by
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the existence of a thin layer near the wall where the viscous effects are concentrated and

the major part of the boundary layer reacts as if it were effectively inviscid.

The problem is readily resolved by employing a matched asymptotic expansion. The

equations, which are properly scaled to represent the physics in the outer region, are

solved subject to the boundary conditions at the edge of the boundary layer. In the inner

region the equations must be rewritten with respect to the new inner variables. This

solution is then matched with the outer solution to form a composite solution. A sketch of

the inner and outer region is given in Fig. 2. Also shown in this figure is the region about

the mean stagnation point for which the analysis is valid.

Before proceeding with the high-frequency expansion, a final and somewhat subtle

point should be made. It is known, Stuart [14], that in the absence of an external flow, an

oscillating cylinder induces a steady streaming motion, the magnitude of which is

proportional to V^/(uD). In order that the high-frequency expansion remain valid in

comparison to the imposed oscillation requires that V0/(uD) « 1, or simply that a/D «

1. This requirement has already been stated and thus introduces no additional restriction.

Inner variables: £,n

Outer variables: J,n

Fig. 2. Flow structure and coordinates
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4.1. Outer solution. The nonhomogeneous term in (17) implies that tj, t) can be

written as

= x(f,ij)e,T. (20)

Using (20) in (17) yields the following equation

. Cosf -/8^-Cos2f ++o,0 ++0>„|

_/ _ i M . f^x\ con
°-r> d£dt] ^ dv dV3 )'

Similarly, the boundary conditions can be written as

|f = |f = 0 at t, = 0 (22)

and

0V
-» Cosf as r] -> oo. (23)

In these equations, the unsteady velocity term, U1, has been taken to represent the case

of a transversely oscillating cylinder. Also, in (21), the parameter, 5, has been introduced;

it represents the ratio of the Stokes layer to the Hiemenz layer and is defined as

(24)
v/c

Expanding x(£. v) in terms of S according to

+ (25)
n = 0

and then substituting into (21) yields the following equations for <pn:

= -Cost, (26)

j?" »• <27>

d(t>2 •/ r Tt- , 7 d2(Po , 7 d(t> 0
— _ |-Cos2f +

7 ^ + ^o\
^°-Sr> 3rj dy3 f'
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2a 3a a 2a
d(t>n ./? 9 <#>„_2 , T 9<^-2 7 9 <#>„'« ■ I rn — Z , I Tfl — Z I

r)-n I ^0,w ^0,r/

~^0.

91? \ °'f 3tj2 ro•,',, 9£ ro'" 3?97)

9^„-2 , d\-2
I,SI]

(29)

9i) 9rj3

These equations are subject to the outer boundary conditions given below:

-Cosf as t) -> oo (30)
9^0

3rj

and

U-0 as 7) -» oo. (31)

The solutions to the first two equations which clearly satisfy the outer boundary condition

are given by

*„ = -ii Cos £ + C0(?) (32)

and

4>i = C,tt). (33)

The unknown functions of integration, i.e., C„(f)> must be found by matching with the

inner solution. Using these two solutions, the equations for <J>2 and <p3 become

^ = /{Sinf(^0i, - - io,Sr,Cos£

+ Cos2f+C0'a)^o,„}- (34)

and

^=-'{^0,^)}. (35)

The solutions are then

<#>2 = /{Sinf(2^0 - v4*0,v) ~

+ uCos2f+ C2(f) + ^o.,Q'(0} (36)

and

*3 = -iKrFid!) + C3(n- (37)

The fact that these solutions also satisfy the outer boundary condition can be shown by

noting that i//0 l) -> Sin f^ -> 0, and -> Cosf as rj -> oo.

Higher-order solutions are conceptually straightforward; however, they become quite

lengthy and in general must be written in terms of closed form integral expressions. For

n ^ 4, the solution for the stream function becomes

<t>n = | ^o, A + + <#v, -2^/ ■
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Complete solutions in terms of the stream function are given only to 0(S4). However,

solutions for the ^-component of velocity are found to 0(86) in Sec. 4.3.

4.2. Inner solution. In the inner region, it is important that both the stream function and

the normal coordinate be stretched. Using the Stokes layer as the appropriate scale, the

following nondimensional variables are defined:

^ , /\./2=T>/S.
(r/a)

\js = — — = i^/S, f = T. (38)

2UX(V/U)

Using these variables, (17) is transformed to the following equation valid in the inner

region.

d2^ 93^ dU1 fj d2^

df)dr a?)3 \ °'f 3t)2

+ X2lfjWo+ Wl , Mil +*3 fl Ml
\ 0 a? 1 a? ^°'"9far, *0^ avj a?

(39)

As before, the stream function may be written as

j*i(t>y>T) = x(^v)e'r, (40)

and can be expanded in terms of S as

xU.v)= E «"*„(?.??) + 0(8N + 1). (41)
« = o

However, before these results are substituted into Equation (39), the coefficients, >pol, etc.,

must be rewritten in terms of the inner variables. In doing this, it is important to

remember that the inner solution is obtained by letting 5 —> 0 with tj fixed, but the

coefficients are functions of tj where tj = 5tj. Therefore, the coefficients should be

expanded for small tj and rewritten in terms of St). This procedure is outlined next.

The steady state solution, ip0, is first expanded using the Howarth series as

'l'o(^v) =fo(y)S + a2fi(y)^ +{a4f4(v) + a 2/22(1)) t5 + ■■■ .

This expansion, when substituted into (16), produces a series of coupled boundary value

problems given by (A.3) through (A.11). A local expansion near tj = 0 is then determined

from these equations. The result for the stagnation point is well known and is given by

fo(l) = /V/2! - V/3! + A)V/5! + 0(tj6). (42)

The local behavior for the remaining equations must be generated by a series expansion

in powers of tj. This series is substituted into each of the remaining equations, (A.4)-(A.ll).
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Then using the boundary condition at 17 = 0, the constants are determined. This straight-

forward but lengthy procedure yields the following results through 0(rj6):

fi(v) = &r/2! - V/3! + /y?2775/5! + 0(v6), (43)

Mv) = /34t?2/2! - 6t)3/3! + /30j34tj5/5! + 0(176), (44)

f22(v) = fer/2! - 3rj3/3! + (/?0/?22 + 3fii)Vs/5l + 0(y6), (45)

where

j80 = 1.23259, /32 = 2.8978,

p4 = 3.8082, f}22 = 0.7150.

The local expansion for \p0 through 0(q5) and 0(|"5) is given below:

'Po(^v) =
1 I n u . @2 y3 , I @4 . &22

r

+ +J;rvir + T)3 + 0(tj5). (46)
3! \ 3!J \ 5! 2(3!)

In terms of inner variables, (46) becomes

= 82F2(£)f + 83F}(£)r)3 + 0(S5ij5) (47)

where F2( f) and F3(f) are the terms in brackets in (46).

The stream function equation in terms of inner variables can now be written by

substituting (40) and (47) into equation (39). The result to 0(£5) and 0(rj5) is given by:

/^-^ = -/Cosf-62{Cos2f}
drj

f M + j,2Fi^X _2~ f^2L_ 2
23f V 2 rV2 V 2d{dr, ZV'2 dr,

+S'{6V'W + -3iWff} + 0(8,)- (48)

The boundary conditions are given by

M =
drj

= M = 0, ij = 0, (49)

and the matching condition is

lim (3x/3rj) = lim (3x/3tj). (50)
T) —» OO T)—>0
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Finally, using (41), we obtain the following set of complementary equations for

through third order:

03$o .9*o=.Cosf) (51)
0t)3 dv

03<D, .aOj
I-

dij3 dy

a3$2 0$2

0, (52)

= (53)

S'*' ■ i'P - - 2f,^" - . (54)
dfi3 dy 9r? 0£ 3f)2

The boundary conditions at the surface are simply

aoyar, = 3$„/af = o.

To find the boundary conditions as ?) -> oo, we must use (50), along with the solutions for

the outer region. Noting that \f/0 and -* 0 as tj -» 0 implies the following

asymptotic behavior:

9$0/9t) —> -Cosf, 9<I>j/37) —> 0,

0$2/3ij -» /Cos 2?, 0<3>3/0Tj

The solutions to this system of linear partial differential equations are given below:

$0 = Cosf [-T» + j*(1 - e"*Tj)], (55)

<*>, = 0, (56)

$2 = Cos2f[i7j - j(l - e-'*)], (57)

= 2F2Sinf

+ F{ Cos f

~(e~sfl - 1) + sri +|'-J + s^T)]e-1,i

13 (1 - e~s") - ir,2 +f J-- /frj2 -4 v 7 ' 6 s 4 (58)

where s = (1 + /)/ 72 and ss* = 1. As expected, the first term in the expansion, O0,

represents a Stokes wave solution in response to the unsteady pressure term and the

second term, $2, represents a Stokes wave solution to the quasi-steady pressure term.

4.3. Composite solution. To determine the unknown constants in the outer solution, we

will apply the matching principle given below:

lim x°(f, rj) = lim x'(^,v) where x'= <5x'.
7)—*0 TJ —* OO

This simply states that the inner expansion of (the outer expansion) equals the outer

expansion of (the inner expansion).
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Neglecting exponentially small terms, the inner expansion can be written in outer

variables as

(x')° ~ Cosf + 8 (s* Cos£) + S2[it] Cos 2£ — iij2/^' Cos£)

-8}(s Cos2£ - /t/2F2'Cosf)

+ S4(ifis'Cosf-^F2Sinf) + 0(S5). (59)
4 2

Similarly, the outer expansion can be expanded as rj -> 0 as

(X°)'~ -r,Cosf + Qtn + ^Cjtt))

+ S2(-/t)2F2'C os£ + zijCos2£ + z'C2(?))

-83(i2C;(nF2-C3(n) + 0(8'). (60)

The unknown functions, obtained by matching the two expansions, are given below:

Co = 0, C1 = s* Cosf, C2 = 0, C3 = -j1 Cos . (61)

The composite expansion can now be written as

r = x' + x0-(x')0- (62)

Using (x')°, given by (59), the composite solution can be written as:

X' = S$0 + S2{/Sinf(2i£0 - tit0 „) - f Cosf}

+ S3{$2 + Sin?} + S^FjSinfj/'^ + e'^

+ F{CosfJ^j - i~v2 - -JST? + (63)

In (63), the terms neglected are 0(84) in the outer region. However, due to the scaling

employed in the inner region, the terms neglected are 0(85). Noting that 9/3tj = 5(9/8tj),

and differentiating (63) with respect to 17 yields the time independent, ^-component of the

velocity given by

ML = _(1 _ e-.*)Cosf

+ /62{(1 - e"si,)Cos2f +(to,v ~ vto,vv)Sin£ ~ tosvCos^}

+ 8: ^o,w~sl1+s^fl-'ji2F2e'sfl Sin £

+ F2'Cosd ijy + is7 f - -rf + 0(S4). (64)

Notice that (64) satisfies the boundary conditions at the wall and the edge of the boundary

layer. This can be shown by noting that -» Sinf and to.ir, Cosf as t] -» 00. Thus,

the terms of 0(82) and 0(83) asymptotically go to zero.
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An expression for the nondimensional wall shear stress can also be obtained by

differentiating (64) and using >p0 v(£, 0) = 2F2'. The result is

32X'

3 7]2
= --^Cosf + isS Cos 2^

0
7) = 0

-isI\f2 Sin? + |f2'Cos?) + 0(S3). (65)

The primary reason for not extending the perturbation solution to higher order is due to

the difficulty of obtaining solutions to the stream function in the outer region. Although

(29) is a linear first-order equation, the proliferation of the nonhomogeneous terms and

the difficulty associated with integrating these terms dictates the order of the perturbation

expansion for the stream function. However, two additional terms can readily be added to

the perturbation expansion for the ^-component of velocity and thus the shear stress. This

is possible since the S4 and 85 velocity expressions are given explicitly by (29). Using the

(p2 and <f>3 solutions along with (16), the results after simplifying become

= ~{3<70t/0f + 4^0iW)}Sinr + {2^„ - 2^0 j)))}Sin2?

— ̂ 0,1) + (AA>r)f }c°sf — ̂ osv ̂ os ^+ ■

and

^-=-iC3Whw (67)

The corresponding solution in the inner region is easily found by solving the following two

equations:

03<E>4 33>4 , 823>0 , ,33>0 a$0 , 32<Dn . ,
—T - + 3?) F3 -j—^ - 6r- r,%' (68)
3r/3 3rj 3f3r) 3rj 3 3? 3 3ij2 v 7

334>5 3$, 32$, 302 3$, , 32$,
 i= 27)F2 + 2r//s — 2F2^rf- - t]2F2 —. (69)
df) 3tj 23?3tj 2 3tj 2 3? ' 2 3t,2 7

Requiring that 3<J>H/S7j be zero at the surface and finite as r\ —> oc yields the following

two solutions:

304
~^=3F"fflnf

3 3 1
2(e~si> — 1) + 2sr] — if)2 — 5*1 i—T) + is — rf — — r)3

+ 3F3' Cos f

W^-'4F^

— iF{ Cos £

4 ' 6

"2(1-<-")++

j - s|i +

• I . 3 _ . 3, T)3
-i2rj + i-r, + - —

(70)

(71)
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The composite velocity is then determined by using these results along with the previous

solution through 0(§3) and applying the matching principle given by

lim (Sx0/^1?) = lim (dx'/dr]).
7}—>0 7] CC

Neglecting the exponentially small terms and using both (16) and (47),

lbj~) = (ibr) ~ "C°sf + '52(Cos2f " 2F2'tjCosf - Sinf

-3T)2F3'Cosf} +^53{2F2Sinf + 6F3TjSinf}

-<54{6F3Sin£ + 6F3'Cosf + 27]F2'Cos2£}

+ j*55{4F2Sin2f } + 0(S6). (72)

The composite velocity can then be written as

3x707) = dx°/dri + dx'/dy -(dx'/dt])°.

Using (72) and introducing the new variable rj = stj and 8 = 8/s, the composite velocity

expansion becomes

= _(i _ e-,)Cosf

-<52{(1 - e^)Cos2f - io^Cost + («£o,„ - 17^'o.TJT7)Sinf}

-53{(«V„„ - 2F2P,)Sin ^ + F2'F2 Cosf} (73)

-S4{<J>4,, + 3F3(2e"^-P2) Sinf + 3F/(2e"* + P3)Cosf}

+ 65{(2^ - 4F2F1)Sin2f - F2'P2Cos2f } + <9(S6),

where

pi = I1 + ̂

p2 = I f ̂  + f r + y
, - _ 3 7)3 7)4

= | fi T? + g ■1 +J+24

Finally, the nondimensional wall shear stress can be written through 0(54)as

32Xf

9t)2 7) = 0

C°sf SCos2£ + S2(|f2'Cos£ - |F2Sinf

+ S3( ̂ F3Sinf + ^F/Cosf) + 54( ̂ F2'Cos2f + F2Sin2f). (74)
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The nondimensional shear stress and typical velocity distributions are given in Sec. 5

along with a comparison to the numerical solution. However, before presenting these

results, it is useful to compare these solutions to Glauert's classical result valid as f -» 0.

4. Stagnation point solutions. The high-frequency solution given in the previous section

is valid to 0(f7) in a region about the mean stagnation point. If we now consider the case

of an oscillating flow approaching a flat plate, the solution given by (73) can be compared

to the well-known solution given by Glauert [7]. Under these conditions, the free stream

velocity is given by

UM, r) = f-e'T. (75)

Alternatively, this can be taken to represent the case of a transversely oscillating free

stream approaching a fixed cylinder where terms of 0(f3) and 0(e£2) have been

neglected. Comparing (75) with (14), we see that t/0(f) = f and ^(t) = -e'T.

Under these conditions, terms involving Sin f in (73) vanish, XoCf'1)) " f/o(T))> an^

x(f<v) ' X(1?)- Equation (73) then becomes

-s1ri + r>I + T2'!

-4
r + ra + n)'",+°(S6)- (76)

In obtaining (76), the following results are used:

~ /o>

F2'U) - P0/2,

and

F3W - -1/6.

In order to show that this result agrees with the flat plate solution, the essential details

of Glauert's analysis will be outlined in terms of the nondimensional variables employed

in this analysis. Letting the subscript, G, denote variables in Glauert's analysis yields the

following relations.

Expanding the stream function as

= f/0(rj) - exc(y)e'T (77)

and substituting (77) into (10) yields

/o'"+/o/o"-/o'2= 1 (78)

and

Xc + foXc ~ foXc ~ '«Xc = ~>a ~ !• (79)
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The boundary conditions for (79) are

Xc(°) = Xc(°) = 0 and Xciv -> oo) -> 1. (80)

To be consistent with Glauert's solution, the following transformation is introduced:

, fo ~ <ac + la(A; /B1x
Xc 1 - iaG ' ^ '

Substituting this into (79) and (80) yields

&G fo^G ~ fcfiG ~~ '°"Pg = (82)

<£c(0) = 1, and <j>G(7j -> oo) -> 1. (83)

The high-frequency solution is then obtained by expanding <#>c in terms of aG as

<#>c = £ <<p„(rG) + o(«£+1). (84)
n = 0

The result is given by

Xg(yg) = (! - <Po) + ac(l ~ <Po~fo) + «c(-«P3)

+ ac(1 _ fo ~ <Po ~ <P*) + «c(-')[,3) + 0{a6c), (85)

where

<Po = e~Yc' (86)

<P3 = "A>( f YC + l Vg + ^3) (87)12

and

*<-{T6Y° + hYt + \YZ + hYiYro- <88>
Comparing (76) with (85) we find that the results agree exactly as expected. The difference

in sign is due to the minus sign in (77).

It can also be shown by taking the limit as f -> 0 that the unsteady wall shear stress

given by (65) agrees exactly with the results given by Glauert [7],

Several observations should be made regarding the special case when curvature is

absent. First, e becomes arbitrary, since the unsteady solution is no longer a function of

the ^-coordinate, and the unsteady component represents an "exact" solution. Thus, there

are no higher or lower time harmonics present as would occur in the present analysis if the

expansion in e were continued to second order.

Another interesting feature is that the high-frequency expansion for the flat plate can be

obtained without the use of an inner and outer expansion. Although the high-frequency

expansion is singular, a simple (Stokes layer) coordinate stretching given by Yc = rj/ac is

sufficient to remove the singularity. This fundamental difference between the two prob-

lems can be explained from the nonhomogeneous terms in (17) or the transformed version

given by (39). For the cylinder, the quasi-steady pressure gradient produces spatial

harmonics, i.e., Cos 2f, which are explicitly present in equation (48). In addition, the

convective acceleration terms, which represent the interaction between the mean steady

flow and the unsteady flow, produce additional harmonics. These appear as the Sinf



618 D. E. WILSON

terms in (58). This interaction continues; for example, the <p4 solution contains

Cosf Cos2f interaction terms. It is impossible for this spatial variation to satisfy the

boundary condition at the edge of the boundary layer. Consequently, from a mathematical

perspective, an inner region must be defined to accommodate this behavior. This is

consistent with the physics of the problem, since the oscillations are known to exist only in

a thin layer adjacent to the cylinder for high reduced frequencies.

Applying higher-order boundary layer theory to account for the displacement thickness

does not alter these differences. Since the displacement thickness is constant for the

infinite flat plate, there is no mechanism present to produce a spatial variation in the

unsteady pressure gradient.

From these observations, it can be concluded that there is a fundamental difference

between these two geometries in the response of the boundary layer to oscillations.

The similarity of the unsteady velocity and shear stress holds only at the stagnation

point. Differences between the two flows occur quite rapidly along the surface of the

cylinder. Consequently, interpreting unsteady effects in the neighborhood of the cylinder

by extrapolating results from the flat plate is not reasonable as Glauert [7] among others

has suggested.

5. Results and discussion. The unsteady response of a laminar incompressible boundary

layer described by (17) and (19) has been solved by the method of matched asymptotic

expansions. The time-independent component of the stream function given by (63) is valid

for high reduced frequencies to 0(S5). In addition, it is formally accurate to 0(f7) in a

region about the mean stagnation point. The time-independent composite expansions for

the velocity and wall shear stress given by (73) and (74) are valid to 0(86) and 0(S5),

respectively. These solutions have been shown to agree exactly with Glauert's planar

stagnation point solution as 5 -» 0. In order to validate the asymptotic solution for

nonzero values of f, it is necessary to solve (16) and (17) numerically.

The nonsimilar boundary-layer equation given by (16) can be solved by a variety of

methods as discussed by Cebeci and Bradshaw [3], However, to be consistent with the

perturbation analysis, (16) was solved by the Howarth type expansion. In addition, this

classical approach yields very accurate solutions for bluff bodies with minimal computa-

tional effort in a region about the mean stagnation point where comparisons with the

asymptotic expansion are desired.

When solving the disturbance equation given by (17) it is important that the numerical

algorithm be able to accurately resolve the fine scale structure near the wall. This is

especially true when computing values of the wall shear stress. For this reason, special

attention was given to the numerical solution of this equation. The equation was solved

for arbitrary frequencies by two different methods.

The techniques were sufficiently unique to warrant discussion, and the details are

outlined in the Appendix. The only similarity was that both methods involved variable

computational points in the 17-direction which were determined by a specified error

tolerance. The numerical results presented in this paper are based upon the solution of

equations (A.17)-(A.20) which result from the Howarth type expansion. The convergence

of this solution was carefully tested by comparing the three-term expansion, i.e., 4>0, <f>2,

and <p4 equations, with the four-term expansion which includes the <f>6 equation. The
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convergence criteria was based upon the relative error in the wall shear stress between the

three- and four-term expansion. Calculations were made for 0 < a < 50 and 5 < 1.0 As

expected, the maximum relative error occured at £ = 1.0. The error was a weak function

of a and varied from 1.3% at a = 1 to less than 1.0% for a > 10.0. Based upon these

results and calculations using the semi-discrete method, the numerical solution can be

taken as a benchmark for comparisons with the perturbation solution.

The results, which show the most interesting features of the unsteady flow, are velocity

profiles and wall shear stress. Because of the exponential time factor, e'T, used in

obtaining the asymptotic and numerical solutions, these results are given by the real and

imaginary parts of xn(£- V) and xvv(^ ^)- Due to the physical limitations inherent in the

model, results are given only for f < 1.

x!l

5.0
 ANALYTICAL
  NUMERICAL

a = 3.0

£ = 0.0
4.0

- 1.0 -0.5 0.0 0.5

Fig. 3. Comparison of real and imaginary parts of xcv vs. V-

— ANALYTICAL
-- NUMERICAL

a = 3.0

C = 0-5

■1.0 - 0.5 0.0 0.5 1 1.0 -1.0 - 0.5 0 0 0.5

5.0 T50
 ANALYTICAL  ANALYTICAL

  NUMERICAL   NUMERICAL

a - 3.0 a = 3.0

£ = 0.75 £ - 1.0
4.0 - - 4.0
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5.0
 ANALYTICAL
  NUMERICAL

a - 5 0

£ -0.0

5.0
 ANALYTICAL
  NUMERICAL

a - 5 0

£ ■= 0.75

i r

-t-5.0  ANALYTICAL

  NUMERICAL

a - 5 0

- - 4.0 5-0.5

10 - 0.5 0.0 0 5 1.0 10 . 05 0 0 0 5

-r 5.0 — ANALYTICAL
-- NUMERICAL

a - 5.0

C - 10

• 1.0 -0.5 0 0 0 5 10 -10 -0.5 0 0 0 5 10

Fig. 4. Comparison of real and imaginary parts of xj vs. tj.



UNSTEADY BOUNDARY LAYER ON A CYLINDER 621

5.0
 ANALYTICAL
 NUMERICAL

a - 10.0

C = 0.0
4 0

5.0
 ANALYTICAL

  NUMERICAL

a - 10.0

£ - 0.75

T 50  ANALYTICAL
 NUMERICAL

a - 100

^ -0.5
4- 4.0

-05 0.0 0.5 1.0 -10 .05 0.0 05 "! C

T-5.0

- -4.0

— ANALYTICAL
-• NUMERICAL

a - 10.0
; -i.o

■1.0 -0.5 0.0 0.5 10 "10 - 0.5 0.0 0.5 10

Fig. 5. Comparison of real and imaginary parts of x!j vs. rj.
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Typical "velocity" profiles shown in Figs. 3 through 5 represent the real and imaginary

parts of equation (64) for various reduced frequencies. For values of a > 3, there is no

discernible difference between the numerical and perturbation solution provided f < 0.5,

where for a > 5, the two solutions agree up to f < 1.0 within the resolution provided by

the plots. This f dependency, which is more clearly seen in the wall shear stress, was

unexpected. However, the reason for this behavior becomes apparent by examining the

perturbation solution given by (73). In obtaining this composite expansion, the steady

mean flow was approximated by a local expansion in both r) and £ given by (47). This

expansion was used in the inner region to represent the coefficients in (39). As f -> 0, the

contributions from these steady-unsteady convective interaction terms become increas-

ingly less important. In fact, at f = 0, only two interaction terms remain, as seen in (76).

Now, as a —> 1, the thickness of the unsteady inner region becomes comparable to the

steady boundary layer. Not only does the perturbation expansion in a break down, but

also the local expansion for the steady flow in r) begins to fail. This effect becomes more

pronounced as f -> 1.0, hence the reason for the small departures in the velocity profiles

shown in Fig. 3. This breakdown is even more apparent for a = 2 as shown in Fig. 6 for

£ = .25 and f = 1.0. However, when a > 5, the agreement for 0 < f < 1 is excellent, as

demonstrated by both velocity profiles and wall shear stress comparisons.

It should be noted that the velocity profiles shown in Figs. 3 through 6 are based upon a

four-term expansion, although the solution given by (73) contains five terms. The reason

for this is that even-term expansions, i.e., two and four, vs. odd-term, i.e., three and five,

generally provided better agreement with the numerical solution. An explanation for this

behavior can be offered by investigating each individual term in the perturbation

expansion. In the inner solution, each consecutive term represents a viscous wave which

responds to a particular harmonic, i.e., Cos£, Cos2f, etc., in the ^-direction. In addition,

each wave has its own unique phase shift in the 17-direction due to the complex form of Px,

— ANALYTICAL

- NUMERICAL

a . 2.0

£ - 0.25

- 0.5 0 0 0 5 10

— ANALYTICAL
•• NUMERICAL

O - 2.0

5 - 1.0

Fig. 6. Comparison of real and imaginary parts of x!, vs. V-
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£ = 0.50

' I ' ' I I
0.0 1.0 2.0 3.0 4.0 5.0 6.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

Fig. 7. Comparison of real and imaginary parts of x!,>,(0, f) vs. a. (— Analytical, —Numerical)

P2, P3. The overall effect is quite complicated; however, a numerical investigation of each

term in the perturbation expansion provided some insight into the manifestation of this

phenomenon. The numerical study indicated that the general trend at a constant -q for

each consecutive term is one of alternating sign. This suggests that an expansion which

contains an even number of harmonics is preferable. This a posteriori explanation is not

conclusive; in fact, on occasion, the five-term expansion gave slightly better agreement

than the four-term expansion. Nevertheless, the results for the perturbation expansion

shown in Figs. 3 through 7 are based upon the four-term expansion exclusively.

Fig. 7 shows the real and imaginary values of x^(f, 0) vs. a for various values of f. In

general, both components have a monotonic increase in magnitude with increasing a. The

variation of the phase advance of the shear stress relative to the velocity fluctuation is also

seen to steadily increase from 0 to 77/4 as a increases. This effect is a strong function of

position and is most pronounced at f = w/4. At this location, the phase advance is almost

independent of a for a > 1. It is interesting that this effect can be predicted by

considering only the first two terms in (65). Using s = (1 + /)/ \/2, the nondimensional

shear stress becomes

3rj2
= -^{(^ - 5Cosj + + SCos2f)J + 0(62).
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Setting f = 7t/4, we find that the phase advance is exactly 77/4 to 0(S2) which agrees

quite well with the numerical solution.

In conclusion, perturbation analysis, and in particular the method of matched asymp-

totic expansions, has provided a useful technique for investigating the unsteady behavior

of boundary layers. It not only resolves the fine scale structure near the wall but provides

valuable insight into the physical mechanisms responsible for this structure. In addition,

the formulation provides the flexibility to investigate not only vertical but also arbitrary

translations of the cylinder. For this case, the inviscid stream function given by (6) would

be used to determine a new edge velocity. The subsequent perturbation analysis for the

unsteady boundary layer is altered only by the boundary condition and the nonhomoge-

neous pressure gradient term. Rotational oscillations could be superimposed to obtain yet

another inviscid stream function. This latter case could be useful in determining the wall

shear stress and subsequent heat transfer coefficients for whirling oscillations encountered

by cylindrical tube heat exchangers subjected to cross flow.

Appendix. Numerical solution for arbitrary frequencies. In order to verify the matched

asymptotic expansion, a numerical solution to equations (16) and (17) was obtained. To be

consistent with the perturbation analysis, (16) was solved by an expansion in terms of the

^-coordinate. Equation (17) was solved by a similar type expansion and also by a

semi-discrete method. The notation and the coefficients employed in solving (16) differ

from those usually given for the Blasius series. Consequently, the details for this solution

are outlined along with those for the unsteady solution.

The form of the pressure gradient given in (16) suggests the following expansion for

totf'V) = fo(v)t + a2f2(rl)t3 +[«4 AC1?) + a\f12{n)]^

+ ["efeiv) + a2aAfA2U) + a\f222{ rj)]f7 + • • • . (A.l)

The constants in this equation are obtained by matching the edge boundary condition, i.e.,

dip0/dri —> t/0(f) as 77 * 00, and requiring that /„'(tj —> 00) -» 1 while the remaining

functions of 17 must vanish. This yields the following relations for the constants:

a2 = -1/3!, a4 = 1/5!, a6 = -1/7!, etc. (A.2)

Finally, substituting (A.l) into (16) and collecting equal powers of yields the following

coupled boundary value problems:

/o"'+/o/o"-/o'2=-l, (A.3)

fi' + /0/2" - 4/0/2' + 3/o"/2 = -4, (A.4)

//" + /0/4" - 6/o74' + 5/o"/4 = -6, (A.5)

/«" + fofe' - 8/oy« + 7/o7« = "8, (A-6)

where

fM =/„'(0) = 0 and /„'(T) -» 00) - 1, (A.7)

fn + 1"of22 ~ 6/0/22 + 5/0 f22 = -3 + 3(/2 — f2f2 ), (A.8)

/«" + /0/42 - 8/o'/42 + 7/o"/42 = -8 + (8/27; - 5f{% - 3/2/4"), (A.9)
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fl22 + /0/222 — 8/0/222 + 7/o fill = (8/2/22 ~~ 5/2 /22 ~ 3/2/22)' (A.10)

where

/(0) = /'(0) and /'(17 -> 00) —> 0. (A.11)

The same methodology can be applied to (17), after first separating the time behavior

by writing 1tj, t) = x(f, The unsteady disturbance equation can then be written

as

L2||+Li||= -iaCosf-Cos2^ (A.12)

where

and

0 02
L2 = ia + ^o.fii " ^ (A-!3)

0
^1 ~ ^0,1) 3^" _ $o.yy• (A.14)

The nonhomogeneous term suggests the following expansion for x(f, tj):

x(?,T?) = Vo(l) + b2<t>2(v)£2 + b4(f>4(ri)f4 + b6<j>6(r))t6 + ■■■ . (A.15)

As before, the constants are determined by matching the edge boundary condition. Using

c)x/07j -> -Cosf, for the case of an oscillating cylinder, yields the following relations:

b0 = -1, b2 = 1/2!, b4 = 1/4!, = 1/6! • • • . (A.16)

Finally, using the expansion given by (A.15) and expanding the nonhomogeneous term

in a Taylor series yields the following boundary value problems:

4>o + fo't'o ~ /o^o — ia<t>o = -1 — (A.17)

$2 /o^2 — 3/o<?>2 — iatf>2 + 2/0 <^2 = -4 — (a + /2<#>0 ~~ > (A.18)

<#>4" + /o^i' — 5/0'*; — /a<#>4 + 4/0"<£4 = -16 — ta

+ (/; + ~/22)<#>0 - (/4 + y/22)^' - 4/2>2 + IO/2V2 - 6/24/2',

(A.19)

^6 /o^6 — 7/0^6 — 'a<f)6 + 6/0 <p6 = -64 — ta

+ ( A + 7/42 + ~T~ /222 ) 00 — ( /6 + 7/4.2 + ~T" y*222 ) 00

-2(3/;' + 10/22)<#>2 + 7(3/; + 10/22) ̂ >2 - 5(3/4 + 10/22H2

-20/2"^ + 35/2'^; - 15M', (A.20)

<f,„(0) = ^(0) = 0 and £(t,-» oo)-» 1. (A.21)

The entire set of BVP's were then solved by a variable step size Runge-Kutta integrator

with a relative tolerance of 10~6. Shooting, using Newton's iteration, was used for the

nonlinear equation given by (A.4).
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Equation (A.12) was also solved by a semi-discrete method. Noting that (A.12) is

parabolic in dx/drj, the equation was then finite differenced only in the ^-direction. This

then yields a BVP in the Tj-direction at each ^-location with an additional nonhomoge-

neous term from the previous step. Using backward differencing, i.e., 3x/3f = (x' -

Xl_1)/Af, the resulting BVP at each is

L2|^ + Lix/Afj = (LJiXz-i/A? - z'aCosf - Cos2f. (A.22)

This equation was then solved by a general purpose spline collocation code. The

accuracy is effectively controlled by the step size, Af, since the relative error tolerance for

the rj-integration was 10 "6.

This procedure is a variation of the method of lines concept and has been used by the

author on similar unsteady boundary layer problems. Its advantages over a full finite-dif-

ference formulation are the enhanced resolution of the unsteadiness in the ^-direction and

the fact that the finite difference characteristics approach the continuum characteristics as

Af - 0.
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