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1. Introduction. Thomas [13] and Fermi [5] independently studied the nonlinear second-

order differential equation

/' = *- vy/2 (i.i)

when they were working on potentials and charge densities in atoms. The boundary

conditions in investigating

(a) the neutral atom with Bohr radius b are given by

j(0) = 1, by'(b) - y(b) = 0- (1.2)

(b) the isolated neutral atom are given by

v(0) = 1, lim y(x) = 0; (1.3)
X~* 00

(c) the ionized atom are given by

y( 0) = 1, y(a) = 0. (1.4)

The boundary value problem (1.1) and (1.2) was studied by Luning [7], who showed

that for certain values of b, a sequence of functions obtained from the solutions of a

related linear eigenvalue problem converges uniformly on the interval [0, b] to the

solution. Approximate solutions of the problem (1.1) and (1.3) were given, for example, by

Bush and Caldwell [3], Sommerfeld [12], Ramnath [10], and more recently by Anderson

and Arthurs [1], and Burrows and Core [2] using the variational approach. The case of the

ionized atom given by (1.1) subject to (1.4) was studied by Mooney [8] using monotone

methods with both (modified) Picard and Newton algorithms, and recently by Chan and

Du [4],

In this paper, we generalize (1.1) to the form

y" +(b/x)y' = cx'y", (1.5)
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where b, c, p, and q are constants such that 0 ^ b < 1, c > 0, p > — 2, and q > 1. We

study it under the boundary condition (1.4). In Sec. 2, we use modified Bessel functions of

the first kind and the second kind to construct Green's function of a linear problem,

which is used in each successive approximation to the problem (1.5) and (1.4). In contrast

to using modified Bessel functions of the first kind in the paper of Chan and Du, the use

of the modified Bessel function of the second kind here enables us to consider also the

case when its order is an integer. In Sec. 3, we construct a sequence of lower bounds as

well as a sequence of upper bounds, and prove that each sequence converges to obtain

existence of a nonnegative solution. Although we use the monotone method, our proof is

self-contained, and is different from that of Mooney. Based on the Lebesgue Convergence

Theorem (cf. Royden [11, p. 88]), it is due to Keller and Cohen [6] in their study of a

nonlinear eigenvalue problem. Uniqueness then follows from the maximum principle (cf.

Protter and Weinberger [9, p. 6]). Finally, we establish the dependence of the solution on

the size of the interval [0, a]; this gives a generalization of a result of Mooney, and a

different proof. For illustrations, we apply, in Sec. 4, the above constructive method to the

problem (1.5) and (1.4) with b = \ and b = 0, respectively, for a = 1, c = 1, p = —

and q = §. For each problem, we use the computer to compute the successive lower

bounds as well as the successive upper bounds, and show that they converge to the same

numerical solution. The case b = 0 deals with the Thomas-Fermi equation, for which

Mooney stated that there were no known analytic solutions (cf. problems (6.1) and (6.3) of

his paper) to the iterates. Here, we derive new analytic solutions to all iterates for the more

general problem (1.5) and (1.4).

2. Nonhomogeneous linear problem. In this section, we use modified Bessel functions of

the first and second kinds to construct Green's function G(x\ £), which gives a representa-

tion formula for the solution of the following nonhomogeneous problem:

Lv = f(x), t>(0) = 0 = v(a), (2.1)

where Lv denotes

With

the homogeneous equation,

can be written as

(jcV)' - cqxp + hv.

a = 2( cq)l/2i/( p + 2),

j8=(/> + 2)/2,

, = (1 -b)/(p + 2),

Lw = 0, (2.2)

xh w» + l MjLw> + a2p2x^~lh
x

= 0,

whose general solution (cf. Watson [14, p. 97]) is given by

w(x) = k^ix) + k2w2(x), (2.3)
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where A:, and k2 are arbitrary constants,

Wy (A") = x^1~h)/2I,,(\a\x/i),

with I v denoting the modified Bessel function of the first kind of order v,

w2(x) = xa~h)/2K„( | a ),

with Kv denoting the modified Bessel function of the second kind of order v. Since b < 1

and p > -2, we have 0 < v < oo. It follows from (2.3) that the homogeneous equation

(2.2) subject to u>(0) = 0 = w(a) has the trivial solution only. Hence, the nonhomoge-

neous problem (2.1) has a unique solution. Using the properties of determinants, and the

fact that the Wronskian (cf. Watson [14. p. 80]) of /„(z) and Ku(z) is — 1 /z, we obtain

Green's function,

G(x;{)=

where

^iWK'iU) _ kw2(£)\/(kfi), 0 < x < £,

wi(£)[wi(*) ~ kw2(x)\/(kfi), £ < x < a,

k = Iv(\a\afi)/Kv(\a\ap) > 0.

Although the maximum principle can be used to show that Green's function is negative,

we give a more elementary proof here.

Lemma 1. For x and £ in the interval (0, a), G(x\ £) < 0.

Proof. To prove the lemma, it is sufficient to show that

/„(|a|jc^) — kKv{\a\x^) < 0 for0<;t<a. (2.4)

It follows from the value of the Wronskian that

d_

dx

\a\x ')
= ^[K^alx11)}/2 > 0 for 0 < a- < a.

Thus, /,,( )/AT„( I^Ijc^) is an increasing function, and we have

I„{\a\x^)/Kv(\a\x^) < k for 0 < x < a,

from which (2.4) follows. Thus, the lemma is proved.

The solution of the nonhomogeneous problem (2.1) is given by

v(x)= F G(x-,i)f(Z)d£. (2.5)
•'o

From this and Lemma 1, we have the following positivity result.

Lemma 2. If / is continuous, nontrivial, and nonpositive, then v > 0 for 0 < x < a.

3. Existence, uniqueness, and dependence on the interval. If the problem (1.5) and (1.4)

has a solution y that is negative somewhere, say at x0, in the interval (0, a), and if q is

such that [ v(x0)]'' < 0, then there exists a subinterval (a15 x2) containing x0 such that the

right-hand side of (1.5) is negative, and >'(x1) = 0 = y(x2). Since the coefficient b/x of

y' in (1.5) is bounded on every closed subinterval interior to (0, a), we may apply the

maximum principle to arrive at a contradiction. Thus, to show that the problem (1.5) and
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(1.4) has a nonnegative solution only, it is sufficient to consider the case where yq > 0 for

any solution y since the left-hand side of (1.5) is real.

We note that for any solution y such that yq > 0, if y attains its maximum M

somewhere in the interval (0, a), then it follows from the maximum principle that y = M

in (0, a), and we have a contradiction. Thus, y cannot attain its maximum inside the

interval. Since y(0) = 1, and y(a) = 0, it follows from (1.5) with b > 0 and c > 0 that the

graph of y is concave upwards. Therefore, y < 1 — x/a for 0 < a- < a. Let

u = 1 — x/a — y. (3.1)

From (1.5) and (1.4), we have, respectively,

{xhu')' = -cxp+h(\ - x/a - u)q-(b/a)xh-\ w(0) = 0 = u(a). (3.2)

Let us construct a sequence {Un} as follows:

U0 = 1 — x/a forO < x ^ a\ (3.3)

for n = 0,1,2, ■ • ■,

LUn + 1 = -x" + h[c( 1 - | -U„y + cqUn + h-x"<* + »

t/n+1(0) = 0 = Un+1(a).

To establish an existence result, let us state the following lemma, whose proof follows

immediately from the fact that the derivative of the function with respect to z is negative

for q > 1.

Lemma 3. For 0 < z ^ 1 - x/a, where 0 < x < a, the function

- [(1 — x/a — z)q + qz\

is decreasing with respect to 2.

The following result gives lower bounds and existence of a unique nonnegative solution

constructively.

Theorem 1. The problem (1.5) and (1.4) has a unique solution y (> 0 for 0 < jc < a), to

which the sequence (1 — x/a — Un} converges monotonically upwards.

Proof. Since Green's function G(x; £) corresponding to (3.4) exists, the function Un + l is

well defined (provided 0 < Un < 1 — x/a). From (3.3) and (3.4),

L(U0- t/i) = 0, Uo(0) - 17,(0) = 1, U0(a)-U1(a) = 0. (3.5)

It follows from (2.2), (2.3), and T()T( 1 - v) = 77/(sin vn) that

Ua{x) - Ux(x) = y [w2(x) - wx(x)/k], (3.6)

where r(c) is the gamma function, which is positive since v > 0. By (2.4), U0(x) > Ux(x)

for 0 < x < a. From (3.4) (with b > 0, c > 0, and q > 1) and Lemma 2, Ux(x) > 0 for

0 < x < a.

Let us assume that for a particular value of n, say j,

UJ_1 > Uj > 0 forO < x < a.
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From (3.4), and Lemma 3,

L{Uj-Uj+1)< 0.

It follows from Lemma 2 that for 0 < x < a, Uj > UJ + l, and UJ+1 > 0. By the principle of

mathematical induction,

0 < Un+1(x)< U„(x) for 0 < x < a, n = 0,1,2, • ■ • .

Since the sequence {Un} is monotonically decreasing, and is bounded above and below,

there exists a function U(x) such that lim,,^^^, = U. To show that U is a solution of

(3.2), let us rewrite the iteration scheme (3.4) equivalently as

1 < q _|_ -t~(p + 1)

a

+ cq[UnU)-Un + 1tt)}}dt,

where

G0(x\£) =
'xi-h^i-h _ ar-by{ai-b^ _ ft)],o < x < £,

^-b(xi-b _ _ ft)], £ < x < a,

is Green's function corresponding to (xhw')' = 0 with homogeneous first boundary

conditions. The integrand of the above integral is bounded by

_G0(x; £)£
p + b

^ + ~t(p+1) + cqU0U)

which is integrable. As n tends to infinity, it follows from the Lebesgue Convergence

Theorem that the limit and integration processes can be interchanged so that

U(x)= -/oaG0(x;£)P+A(c[l £/(€)]' + dl

This implies that U is a solution of the problem (3.2), and hence by (3.1), y is a solution

of the problem (1.5) and (1.4). Thus, we have existence of a solution y (>0 for

0 < x < a), to which the sequence {1 — x/a — Un} converges monotonically upwards.

From the maximum principle, we have exactly one solution.

We can also construct a sequence {un} as follows:

m0 = 0 for 0 < a- < a\

for n = 0,1,2, ■ ■ •,

£«« + ! = -X" + h C(] Un) 1 + CClUn + ^x-(p + 1)

w„ + i(0) = 0 = +

We state without proof the following result since its proof is similar to that of Theorem 1

(3.7)
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Theorem 2. The problem (1.5) and (1.4) has a unique solution y (> 0 for 0 < x < a), to

which the sequence {1 — x/a — «„} converges monotonically downwards; furthermore,

for n = 0,1,2, • • •,

un < un+ i < Un for 0 < x < a.

Let x = at, and f(f) = _y(aO- Then, (1.5) and (1.4) become

r + ^' = ca'+2tnq for 0 < r < 1,

?(o) = i, m) = 0.
From Theorem 1 or 2, the problem (3.8) has a unique solution which is positive for

0 < t < 1.

The following result generalizes the first part of Theorem 5.2 of Mooney. Its proof is

different from his.

Theorem 3. If 0 < r < s, and £r(t) and Hs(t) are solutions of the problem (3.8) with a

equal to r and 5, respectively, then £r(t) > £s(t) for 0 < t < 1.

Proof. From (3.8),

a - u" + fa - s,y = cf(r^xv - sp+x), (3.9)

U0)"?,(0) = 0 = rr(l)-?,(!)■
If somewhere in the interval (0,1), then from (3.9), and the positivity of £r and

there exists a subinterval (t^ t2) such that the right-hand side of (3.9) is nonpositive, and

~ attains its nonpositive minimum m somewhere there. By the maximum principle,

lr — — m for t1 < t < t2. It follows that tl = 0, t2 = 1, and m = 0 by continuity. This

contradicts the fact that the solutions £r and f, are unique. Thus, the theorem is proved.

4. Numerical solutions. In this section, we apply our constructive method to obtain

lower bounds, upper bounds, and the solution of the problem (1.5) and (1.4). Each

successive approximation is given explicitly by an analytic solution.

With yl = 1 - x/a - Ul, it follows from (3.4) that

A>'i = 0. ^i(0) = 1, v,(a) = 0.

From (3.5) and (3.6), we obtain

7i(*)= r^) f ~ t4-1)

which gives a lower bound of the problem (1.5) and (1.4). From (3.4) and (2.5),

t/„ + i(*)= -/0OG(x;^)P+fc{c[l -1- UnU)}q + cqUnU) + V(p+1)}^

for n = 1,2, 3, • • • . Hence, lower bounds of the solution are given by

i-!-(/„<{)yn+\(x) = 1 - T" + /a j0 {

+ cqUM) + ~i~(p+1))di, (4.2)

where y„+1 = 1 - x/a - t/„ + 1.
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For n = 0,1,2, ■ • ■, let Yn= I — x/a — un. It follows from (3.7) and (2.5) that the

upper bounds of the solution are given by

Yn+l(x) = \-~+ f G(x;i)i
a j a

p + b

1 - f-«„(£)

+ cquM) + -a^ip+l))dl (4.3)

The calculations for the following two examples (with a = 1, c = 1, p = — 5, and q

= 4) are done on Honeywell 68/80 Multics computer system. We divide the interval fO, 1]

into ten equal subintervals.

In our first example, we let b = \. This yields v = |a| = (f)1/2, and /? = f. To

compute the second lower bound y1 numerically from (4.1), we use subroutines from the

IMSL Library: MGAMAD (= DGAMMA to evaluate the gamma function of a double

precision argument), MMBSIR (to compute, to double precision, a modified Bessel

function of the first kind of nonnegative real order for real positive arguments with

exponential scaling option), and MMBSKR (to compute, to double precision, a modified

Bessel function of the second kind of nonnegative real fractional order for real positive

arguments scaled by exp(arg)). To obtain the second upper bound Y1 numerically from

(4.3), we use subroutines MGAMAD, MMBSIR, MMBSKR, and DCADRE (for numeri-

cal integration, to single precision, of a function using cautious adaptive Romberg

extrapolation). To compute yn + l and Yn+1, respectively, from (4.2) and (4.3) for n =

1,2,3, • • •, we use subroutines ICSCCU (to perform, to single precision, a cubic spline

interpolation), MMBSIR, MMBSKR, ICSEVU (to evaluate, to single precision, a cubic

spline) and DCADRE. We find that y6(x) = Y6(x) to five decimal digits. Hence, either

one of these rounded to five decimal digits can be taken to be the solution y. The results

for Vj, yi( and y are given in Table 1.

Table 1

ioxa=\,b = \,c=\, p = — 2. <7 = I

*  )>i_ Ji y_
0.00000 1.00000 1.00000 1.00000

0.10000 0.72460 0.77089 0.76615

0.20000 0.57331 0.63714 0.62946

0.30000 0.45940 0.53023 0.52056

0.40000 0.36709 0.43799 0.42727

0.50000 0.28898 0.35487 0.34405

0.60000 0.22074 0.27776 0.26775

0.70000 0.15953 0.20471 0.19635

0.80000 0.10330 0.13452 0.12850

0.90000 0.05053 0.06641 0.06326

1.00000 0.00000 0.00000 0.00000
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In our second example, we let b = 0. This is the case of an ionized atom described by

the Thomas-Fermi equation (1.1) subject to the boundary conditions (1.4). Here v = f,

M = (f)1/2- and ft = 4- We use the same IMSL subroutines as in the last example to do

the numerical computations. We compute the lower bound y1 and the upper bound Yl

from (4.1) and (4.3), respectively. Their values (given in Table 2) are the same as Mooney's

results (cf. his Table 3), which are obtained in the form of power series expanded about

the origin. Using (4.2) and (4.3), we find that ys(x) = 75(x) to five decimal digits. Again,

either one of these rounded to five decimal digits gives the solution y. The results are

given in Table 2.

Table 2

for a = 1, b = 0, c = 1, p = —\,q = f

* Vj Yl y

0.00000 1.00000 1.00000 1.00000

0.10000 0.81634 0.85072 0.84947

0.20000 0.67664 0.72962 0.72723

0.30000 0.56026 0.62261 0.61929

0.40000 0.45947 0.52433 0.52041

0.50000 0.36968 0.43169 0.42755

0.60000 0.28780 0.34265 0.33869

0.70000 0.21154 0.25580 0.25240

0.80000 0.13909 0.17014 0.16765

0.90000 0.06899 0.08501 0.08369

1.00000 0.00000 0.00000 0.00000
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