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1. Dynamics of coherent structures. Following the methods presented in [1] and [2], it is

now assumed that we have a complete set of vector eigenfunctions {V,,} of the correlation

matrix operator K. These functions fit the boundary conditions of the problem and if the

flow is incompressible they also each satisfy the continuity equation. We can therefore

expand the flow v in this set,

00

v = E a„(t)V„(x), (1.1)
n= I

and substitute into the Navier-Stokes equations, written symbolically as

9v
3, =°(v)- (1-2)

When this is projected along the eigenfunctions, V„,

V*' i/V ~ D(v)j = 0, k = 1,2,..., (1.3)

we obtain the ordinary differential equations,

da, , .
~~=Fk( a), k = 1,2,..., (1.4)

where Fk is at most quadratic in the coefficients a. If the infinite system (1.4) is truncated

after say k = N and all coefficients ak are set to zero for k > N, the resulting finite

system yields the Galerkin approximation to (1.2), to order N. Equivalently we can write

N

E ak\k (1.5)
k= 1

* Received October 1, 1986.

©1987 Brown University

583



584 LAWRENCE SIROVICH

and instead of (1.3) consider

V*,^-D(v„)) = 0, k = 1,2—, N. (1.6)

This then furnishes the outline of a practical procedure for following the turbulent

evolution of a flow. However, a good deal of important detail has been sacrificed in giving

the above bare bones treatment. First we observe that the ordering of the eigenfunctions

plays a role and in the absence of other considerations (some of which will be mentioned

later) we take them to be ordered according to the eigenvalues,

A, > A2 > A3 >

In this way we maximize the fraction of retained energy

' N \ oo \

<(vAr,VAr)>/((v,v)> = £ /I E A, . (1.7)
U-l / \ k = \

Next we point out the ambiguity in whether the expansion (1.1) is in the total flow

quantities or the fluctuation from the mean quantities or some other representation of the

flow. As the set {V„} is complete, we have the liberty to make a variety of choices. (For

open flows with nonzero mean at infinity some obvious modifications are required.) Since

only a finite set of basis functions, {Vn}, is to be retained, a question of importance in

regard to the first suggestion is how well fit the mean flow will be by the truncated set of

eigenfunctions. At the stage of the development at which the coherent structures are

determined, the mean flow is known to us from either numerical or physical experiments.

Since it is known that the fluctuations away from the mean are well fit by the eigenfunc-

tions, this strongly suggests that we expand only the fluctuations.

This then leads naturally to the next issue, which is the effect on the eigenfunctions of

changes in physical parameters such as Reynolds number, Rayleigh number, Taylor

number, etc. (These we denote generically by the vector R.) As a basic point of reference it

should be noted that

V„ = V„(x; R0) = V„° (1.8)

where R0 represents the specific values at which the calculation of coherent structures was

performed. If R # R0 the set {V„0} are no longer, in general, the coherent structures of the

flow. In particular (akat), for k ¥= /, is in general zero only if R = R0. However, {V„0}

still form a complete, orthonormal set satisfying the boundary conditions, and if the flow is

incompressible they also satisfy the incompressibility condition. The calculated set {V„0}

might therefore be expected to be useful over a range of parameter space, R. This was the

case for the Ginzburg-Landau equation where the method under discussion was applied

[3], In that case a relatively large region of the parameter space (which is three-dimen-

sional) was very well described by a small set of eigenfunctions calculated for one

particular set of parameters.

2. Channel flow. In order to make these notions more concrete we consider in some

detail the specific example of channel flow. We explore, in particular, the solution

strategies available to us. The geometry of this flow and the various symmetries have been
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discussed in [II: Sec. 2], In brief, the flow is governed by

V ■ U = 0, ^ = E[U] = -U • V U — VP + V 2U (2.1)
at Ke

with homogeneous boundary conditions at x3 = + H. The spanwise boundary conditions,

which in practice are homogeneous or periodic, do not enter into our deliberations.

For channel flow, in our notation, v = u, the fluctuation velocity field itself. The total

velocity is expressed as

U = Ue1 + u (2-2)

where U = (U) = U(x3) is the mean flow field which is in the jc ̂ direction. This, when

inserted into (2.1), yields

3 3 9 3 3
V -u-0, jj.,+ £lSa + —„luJ+—(p+p)

" Vl't/S, + „, ) (2.3)

with [1:26]

and

3   1 32-
^ + ̂ u""'kJTiu (2A>

P + uj = P0(Xl). (2.5)

The pressure field at the wall ^(^i) is linear and we take

<2-6)

This corresponds to a spatial scaling based on the half width of the channel and a velocity

scaling based on the friction velocity

f ,27)
where k is the dimensional pressure gradient and H is the half channel width. Equation

(2.4) may now be integrated twice to give

U(x3) = Rei~ Y2^- + U1U3 dx3^j- (2-8)

The coherent structures {Vn} have been obtained at a particular reference value of the

Reynolds number Re = R°e. To underline this point we write

{V„°} = {Vn(x;jR«)}. (2.9)

More emphatically, if we expand u,

u = £ a°n\n°, (2.10)
n = 0
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substitute in (2.3), with U = U° = U(R°e), then the resulting system corresponding to

(1.4) should produce statistically the same system used to generate (2.9). In particular, we

should find the coefficients {a®} uncorrected,

KV> = \kskl, (2.11)

and also that (2.8) is self-consistently satisfied. When Re ¥= R°e this picture is altered and

the possible approaches in this instance deserve some discussion.

3. Solution strategies. Perhaps the most straightforward approach to dealing with off

reference values of jRe, is to directly expand U in terms of the set {V„°}. Thus we write

U * U„ = £ An(t)\n° (3.1)
n=1

and apply the Galerkin procedure to (2.1),

=0, j=\,...,N. (3.2)

Since the set {Vn°} is complete, the solution to the problem can in general be obtained in

this way. However, a problem with this approach is that the mean flow U will not be well

fit unless care is taken in selecting the Vn° which will accomplish this. Specifically, the

choice of a set from {Vn°} to be used in the Galerkin procedure can not be based solely on

the ordering of eigenvalues indicated in Sec. 1, since the eigenfunctions needed to fit

U(x3) will almost certainly correspond to relatively small eigenvalues.

As a modification to this approach we can instead expand as follows:

U = U°el + £ (3.3)

i.e., use the known mean flow determined at reference conditions to expand about. After

applying the Galerkin procedure (3.2) this also leads to just evolutionary equations.

However, in this instance,

AU = U - U° (3.4)

will require fewer functions to fit it and, at least for relatively small departures from the

reference case, R°e, this should work well.

For the hoped for success in wider departures from R°e we consider a third approach

which is basically an extension of the previous strategy. For this purpose we re-express

(2.3) as

- -~(P + p) - + ~V2u: + L^U = G,[uM] (3.5)

where Lt is an operator, at most linear in u, which acts on U. Following the outline in Sec.

1, the Galerkin approximation is obtained by projecting u onto the first N eigenfunctions

",v= E an\n° (3-6)
n= 1
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and performing a corresponding projection on (3.6),

V^^) = ^=(F°,G[u„,I/]) = /■*(»; Re). (3.7)

Since U is unknown we take U° to be the initial guess, i.e., we take

Fk = {\°,G[uN,U0]). (3.8)

At this state the development is exactly the same as that which follows from (3.3). This

solution is followed until say the turbulent shear stress

•T

T Tco •'o

JrT
ul(t)u3(t)dt (3.9)

n

settles down. (The symmetry conditions in [II: Sec. 2] should substantially speed up the

convergence of (3.9).) At this point the mean flow U can be computed from (2.8). When

substituted into (3.8) instead of U° a new dynamical system results. This then forms the

basis of an iterative procedure. It is worth noting that this procedure does not require any

special choice of Vn° to fit the mean flow. In a real sense these are generated in the

product of WjU3 which occurs in (3.9). Another point worth commenting on is that the

system (3.7) is actually cubic in the aks. To see this observe that the driving term of Fk is

(Vk°,L(uN)U)

which from (3.9) and (2.8) is seen to be cubic.

Finally, it is important to note that for incompressible flows the calculation of pressure

is avoidable. The advantage in having a complete vector set of orthogonal incompressible

expansion functions has been pointed out by several authors [4], [5], In practice such a

representation is difficult to find, but, as we see, it results in a natural way from the

procedure presented here. (Note that pressure can also be avoided in the convection

problem since the mechanical part of the flow is incompressible.) For channel flow, since

P0 is linear in x1, a contribution actually does appear. To see this we substitute (2.5) and

(2.6) into the pressure portion of Fk, (3.1), to obtain

(V°,V(P +p)) = [V°,v(P0 + u] +p)\ = [V,VP0] = -f Vfdx, (3.10)

where V® is the x-component of V°. This follows from (1:2.22) where it is shown that

divergence free vector fields satisfying admissible boundary conditions are orthogonal to

the space of vectors which can be expressed as gradients. [If we write u ■ Vu = <o A u +

V(w2/2), the latter term will also drop from (3.10).] If a spectral expansion in xx and

is used, the integral in (3.10) becomes one-dimensional, i.e., in the x3-direction.

4. Off reference coherent structures. As has been mentioned several times, when the

parameters of the problem are not at their reference values, R ¥= R°, the basis functions no

longer have the interpretation of being the coherent structures of the flow field. In terms

of the expansion (1.1) the ensemble average of the correlation is

<vv> = L CJm°V„° (4.1)
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with

Cmn = <ama„>. (4.2)

Only when R = R°can we expect that Cmn is diagonal.

Within this framework, however, it is straightforward to generate the new coherent

structures. The matrix C is Hermitian and may be put in diagonal form under similarity

C = L_1AL (4.3)

where the rows of L are the orthonormal eigenvectors of C and A is the diagonal matrix

of eigenvalues. Specifically we denote the eigenvectors of C by I and the corresponding

eigenvalues by A so that

Cla> = XkVk). (4.4)

From this it follows that if we define

W, = I ev„° (4.5)
n

then

<vv> = £ W,AaWa (4.6)
k

so that {WA} are the coherent structures appropriate to the new values of the parameters

R. Naturally in any practical case we are dealing with approximate forms of the coherent

structures, just as {V,,} are themselves approximate forms when R = R°.

5. Discussion. A point of some interest which was discussed briefly in the Introduction

in Pt. 1 concerns data compression or reduction. In a typical numerical simulation of the

Navier-Stokes equations, the equations are integrated forward in time and the results

saved at appropriate time steps. The eigenfunction approach serves as an alternate method

for archiving data of this sort. What is being suggested is that, after collection, the data

may be processed to determine the eigenfunctions of the correlation matrix. The data may

then be represented in terms of these standard vectors. As an indication of the types of

savings achieved in this way we mention an application of this method to the convection

problem. A grid of (32)3 points was considered, and since four quantities (u. 6) are

calculated at each point, 0(105) numbers are stored for each time frame. Our analysis

however indicates that 95% of the flow based on energy can be accurately captured by

retaining 0(102) modes. Thus by this reasonable criterion the data storage is reduced by a

factor of 0(103).

The recalculation of the coherent structures discussed in Sec. 4 also bears on this point.

For it was shown in Pt. II that at any value of the parameters, R, the optimal fit to the

data is given by the coherent structures. Thus the recalculation given in Sec. 4 also serves

as a basis for an efficient method of data compression.

6. Final remarks. To close this series of papers we make some general remarks on

coherent structures and their use as a basis system.

We have, throughout this series of papers, associated a coherent structure with the

eigenfunctions of the correlation operator. This is both a rational and objective definition

but may not be what is observed in the laboratory. What is reported to be a coherent
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structure can have a very subjective slant, and as a result differences of opinion can be

expected. In certain cases, however, there is a general agreement about what is a coherent

structure. A particular example is the hairpin vortices found in transitional and turbulent

boundary layers. These have been observed both in experiment [6,7] and in numerical

calculations [8,9],

It is reasonably obvious that hairpin vortices will not emerge as coherent structures as

defined here. The basis for this assertion is that the eigenfunction dependence in the

spanwise direction (for example as in [8,9]) are single sinusoids and it is clear that the

hairpin vortices have a richer structure in the spanwise direction than one harmonic. A

similar set of remarks holds for the steamwise dependence which is also sinusoidal. As we

saw in [2] this sinusoidal dependence is a consequence of translational invariance. Lumley

[1: 4,5,13] introduces a shot noise hypothesis to deal with homogeneous directions. From

this starting point he develops an elegant construction of a coherent structure as an

appropriate superposition of eigenfunctions. Higher-order statistics enter in the calcula-

tion of the coefficients. Since hairpin vortices evolve in time it is not clear that such a

treatment is appropriate. Rather it is more likely that the eigenfunctions are basic modes

having roughly the same time course, that interact in time (they are uncorrected for

longer times) and thus make up the genuine coherent structure. If this speculation proves

valid, it in no way detracts from the basic nature of the eigenfunctions. It has been shown,

that in a statistical sense, they are persistent structures. For long times they only weakly

interact with other such structures (at least to within second-order statistics). On short

time scales intense interaction is entirely possible.

Another basic property of the derived eigenfunctions is their efficiency as a basis set in

describing a flow. This was mentioned in the previous section and we now continue this

discussion. We can ask why the eigenfunctions are so good at representing the flow or,

what is equivalent, why is the straightforward approach of choosing, say sinusoids, so poor

at fitting a flow? To attempt an answer to this we recall Landau's estimate [10] on the

degrees of freedom present in a given flow. Using the Kolmogorov scale as an estimate of

the smallest relevant scale he arrived at (R/Rc)9/4 degrees of freedom, where Rc is the

critical Reynolds number. The use of sinusoids is essentially an attempt to meet the

requirement of matching the number of degrees of freedom. While on this topic, we also

mention the estimate given by Constantin et al [I; 19] for the dimension of the attractor,

viz (R/Rc)3. This estimate, which is less optimistic than Landau's, essentially arrived at

without intuitive physical arguments, makes use of the Stoke's eigenfunctions. These are

the eigenfunctions of the spatial operator of the fluid equations in the limit R 10. Since

the interest is in the opposite limit, R too, it is easy to imagine that these could be a

limitingly poor way in which to measure out the dimension of the attractor set, which is

generated for R T oo.

The eigenfunctions which have been considered here are in a very specific way

generated to fit the statistical features of the flow at relatively high value of (R/R(.).

Unlike Landau's calculation, (which does not attempt to compute dimension), and that of

Constantin et al [I; 19] the effect of correlations is now included. This is apparent from

the form of the coherent structures which were derived in [I; 20, 25]. In general these
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included a wide range of scales. Thus the effect of correlations appears to be significant in

reducing the number of dimensions needed to describe the system, and we conjecture that

the attractor dimension will be considerably less than 0([R/Rc]9/A) in real problems.

The approach taken in these papers made no direct attempt to parametrize the

underlying attractor in a problem. In a sense the only role played by the attractor was in

providing an inspiration for seeking a low-dimensional description. A simple characteriza-

tion of our method is that it finds a principal axes representation of the correlation

operator and then ignores directions that are flat enough (i.e., small eigenvalues). Thus the

attractor can be viewed as being encapsulated by a finite ellipsoid in function space (with

axes proportional to the roots of the eigenvalues). If not much of the attractor leaks out of

the ellipsoid, the approximation can be expected to succeed.

Note added in proof. In a recent very interesting report, Aubry et al [11] consider a

finite-dimensional description of the wall region of a turbulent flow. The approach taken

by these authors, although different in many ways, parallels that given here for the

dynamical description of coherent structures.
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