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1. Introduction. The accurate determination of coherent structures depends upon having

a sufficiently large database. As we will see in this part, symmetry considerations can

considerably extend the amount of available data. In addition, a priori consideration of

symmetries can be significant in designing numerical or physical experiments. In the

following we outline, on a case by case basis, and sometimes only in brief, the effect of

such deliberations for a number of standard geometries. We then show how such data can

be transformed for use in related geometries.

2. Plane Poiseuille (channel) flow. We consider incompressible flow governed by

(1:2.1)1. The direction of mean flow is denoted by x, the spanwise direction by y and the

vertical by z. If v,n)(x) is a flow realization or snapshot at some instant, then the

transformations

Tx\y{n) -» v(n)(x + /„ y,z), Ty:\{n) -» v(")(x, y + l2,z) (2.1)

also give admissible flows for any values of lx and /2. Thus, as part of the ensemble

average determining K, we can average over all translations of the form (2.1). To

accomplish this consider, for example, the effect of averaging over Tx,

/^,;(x,x') = J ut(x + I, y,z)Uj(x'+ I, y',z') dl, (2.2)

which under the variable change I + x' = s yields

Ku(\,\') = f w,(x - x' + s, y,z)Uj(s, y',z') ds = Kij(x - x', y, z, y', z').

* Received October 1, 1986.

'We will use I to refer to Pt. I. [1], both in regard to equations and to references.

©1987 Brown University
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Limits of integration have not been specified since, in the two cases of interest, periodic

and infinite boundary conditions, they play no role in the analysis. A similar averaging

over Tr results in a translation kernel in y. It therefore follows that averaging over the

groups (2.1) implies

K(x, x') = K(x — x', y — y',z,z'), (2.3)

i.e., the two point correlation is translationally invariant or homogeneous in the horizontal

directions.2

In typical numerical experiments [I: 35-37] the flow is taken to be periodic in the x and

y directions. We denote by 1LX and 2L2 the periodicities in the x and y directions. Then

it follows that if the flow is expressed as

Uj(x,t)= Y, m\ z, t)exp
k ,m

ik 77 inm

Tx + ~ry
1^1 1^2

(2.4)

(the reason for the zero superscript will become apparent), then the correlation may be put

in the form

Kijix'x') = <"/(x)"/(x')> = E Kij(k, m; z, z')exp
k ,m

ikm . ,, imiT, ,\
-r{x-x')+—{y-y')

i Lj 2

(2.5)

where

K,j = (nf](k,m; z)jiil)){k,m; z')>. (2.6)

Before going further we point out a subtle but important distinction that arises in the

derivation of (2.3). As obtained in (2.5), the form of the correlation matrix, K, depends on

having the representation in the form (2.4). On the other hand, if the data set being treated

arises from experiment or the method of snapshots the group average (see (2.2)), over lx

and 12, (2.1), used to obtain (2.3), has to be performed. In either case this also results in an

effective increase in the data, an estimate of which is discussed in Sec. 6.

This geometry, viz, flow through a channel, is also invariant under the dihedral group of

transformations, D2[2\. In particular, if the origin is placed at the center of the channel the

How is invariant under vertical reflection (i.e., in the (x, j)-plane)

R,: (x, y, z, m, v,w) —> (x, y, -z, u, v, -w), (2.7)

spanwise reflection

Ry:(x, y, z, u, v,w) —> (x, -y, z, u,-v,w), (2.8)

and rotation about the x-axis

R,Rv:(x, y, z,u,v,w) -> (x,-y,-z,u,-v,-w). (2.9)

2If a flow is entirely homogeneous the eigenfunctions are sinusoids and the eigenvalues are continuous. The latter

are given by the Fourier transform of the correlation matrix.
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If we write

«.|A° = I1'1' = (m i0)(^< m'■> z)> m, -z), -fi'i'ik, m, -z)),

= |J.(2) = (juf)(k,-m,z),-fif{k,-m,z), nf^k, -m, z)), (2.10)

^ -/?, jx° = (i(3) = (iif\k,-m,-z), -ju,(20>(&,-m,-z), ~^\k, -m, -z)),

then alternately,

^ ,,, / ikir imn
R:u = L exp —x + -7—^

A,m \ L1 L2

m / iktr imu 1 ,,.
Ryu = X n expl + — y ), (2-11)

k, m \ ^ 2

„ _ v m / '^•'77' "M77= X 'exp — x + -j—y
k,nl 1 2

Since all these now represent admissible flow realizations we can write instead of (2.5) that

Kij=(7 E tip)(k,m; z)pf\k,m-, z')>, (2.12)
p = 0

i.e., we include in the ensemble the flows produced by the group actions.

It is clear that for a kernel of the form (2.3) the eigenfunctions have the form

ik v im n
irx + ~ry (2.13)<f> = ^(/c, m\ z)exp

The determination of ^ then follows from

f ' dz'Kjj(k,m\ z, z')\pj(k, m\ z') = \(k, m)\pl(k, m; z) (2.14)
-i-i

where L3 is the channel half width. In an actual calculation, (2.14) is directly reducible to

a finite matrix problem. (Typically, the vertical dependence is expanded in a finite set of

Chebyshev polynomials [1: 31].) Thus k represents a degenerate kernel, the eigenfunctions

are then expressible in the same finite set, and the problem reduces to a finite matrix

problem. The direct method of Pt. I is of practical use in this problem provided the

number of approximating functions in the vertical direction does not turn out to be

excessive. It should be noted that in this approach

k = k(k, m; z, z') (2.15)

so that an eigenfunction calculation is required for each quantum pair (k, m).

Symmetry considerations continue to play a simplifying role in the actual calculation of

the eigenfunctions. To show this let us first suppose that

V = (K1(x),F2(x),F3(x)) (2.16)

is an eigenfunction of K(x, x') corresponding to the eigenvalue A, viz

f K(x,x')V(x')</x' = XV(x). (2.17)
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It then follows from (2.7) that

V = Ry = (Vl(x, y, -z), V2(x, y, -z),-V3(x, y, -z)) (2.18)

also is an eigenfunction, i.e., satisfies (2.17) with the same eigenvalue A. If (2.16) and

(2.18) are added and subtracted

V±= V ± V',

then V 1 are eigenfunctions in which the first two components are {^j1} and the last {e°vdedn}

in z. Equivalently this could have been assumed in the statement of (2.16). Similarly (2.8)

shows that we can also assume that Fj, F3 are {e0vdej} and V2 } in y.

The problem has in part been formatted in terms of trigonometric functions and we also

comment on this. Since a flow is real it follows that in say (2.4)

jHj(-k,-m) = Hj(k,m).

From this it follows that we can restrict attention to quantum numbers (k, m) such that

k > 0. Further it follows from (2.10) that the eigenfunction \\/(k, -m\z) can be calculated

from \|j(k, m; z). Hence we can restrict attention to

(k,m)>0. (2.19)

Also from the aforementioned parity considerations in the z-direction the integral in (2.14)

can be reduced to the interval (0, L3) or an equivalent of this.

3. Poiseuille flow in a rectangular channel. Next we relax the condition of periodicity in

the v-direction and consider flow through the cross section \y\ < L2, |z| < L3 with

homogeneous boundary conditions on the boundaries. Translational invariance in the

streamwise or jc-direction is still preserved and we now have

K(x,x') = K(x — x', y, y', z, z') (3.1)

and, in particular, if periodicity in the Jt-direction is assumed

ikir
K = L K(k'> J, y\ z, z')exp

k

(x - x') (3.2)

Although spanwise translational invariance has been lost, the geometry is still invariant

under the dihedral group D2. An average analogous to that of (2.12) still applies. In this

instance only the streamwise variable separates out and it is necessary to deal with the

eigentheory of k(k\ y, y', z, z') for each k. It is unlikely that any fully turbulent case can

now be accurately treated by the direct method. The method of snapshots is therefore

appropriate in this case.

The integral equation for the eigenfunctions has the form

/'' dz J''2 dy k(/c; y, y',z,z')ty(k; y',z') = AvJ,(k\ y,z). (3.3)
- - 1.2

From the reality condition we can restrict attention to k ^ 0. Further, under the parity

conditions discussed in the previous section and which still apply, we can, for each

eigenfunction, reduce the domain of integration in (3.3) to the quadrant

0 < J' < ^2' 0 < z < -^3*



THE DYNAMICS OF COHERENT STRUCTURES, II 577

An interesting extension of the case under study is obtained if L2 = L3 = L. In this

case the problem is invariant under the dihedral group DA[2\. If we denote by R0 the

rotation of 90° about the Jt-axis

R0:(x,y,z,u,v,w) -» (x,-z, y,-u,-w, v) (3.4)

then the dihedral group DA contains the eight elements

Z>4: R%, R\, Rl Rl Ry, R0Ry, R20Ry, R30Ry. (3.5)

The specific forms of this group follow directly from the definitions of i?0, (3.3), and Ry,

(2.8). By choosing a square cross section the data is stretched by a factor of eight in

addition to the extension afforded by translation in the x- direction. Thus instead of (2.12)

the average is taken over the eight group elements (3.5). We mention in passing that

although the group contains eight elements the actual numerical coding of the group

actions is actually simpler if one notes that the group only contains two generators. Thus

R0 and Ry could be coded as subroutines and by repeated application of these sub-

routines all members of the group can be generated. Finally we mention that in this case

the domain of integration in (3.3) can be reduced to an octant.

4. Benard problem (convection). As a further illustration we consider the Benard or

convection problem. This is governed by the Boussinesq equations [3],

V • u = 0,

du VP = PrRaTe: + P,v2u, (4.1)
dt

— + w = V2T.
dt

Pr denotes the Prandtl number, and Ra the Rayleigh number. As before z denotes the

vertical direction with origin in the mid-plane and w the corresponding velocity. As usual

T denotes the departure from the (nonconvective) equilibrium temperature profile. In the

turbulent regime

(u) = 0, <r> = T(z), (4.2)

and we write

T= T(z) + d(x,t). (4.3)

As mentioned in Pt. I the appropriate flow variable now is v = (u, 6).

For the horizontally unbounded case the kernel is translationally invariant so that

K = (v(x)v(x')) = K(x - x', y - y', z, z') (4.4)

and, for example, if periodicity of 2 Ll and 2 L2 in the horizontal is assumed, then

K= Yj K(k, m; z, z')exp[/£w(x - x')/Ll + im'u(y - y')/L2] ■ (4.5)
k,m

Also if we write

v= £ v(k, m\z)exp[ikirx/L1 + imrny/L2\ (4.6)
A, m
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then

k = (v(k, m\ z)v(k, m; z')), (4.7)

a consequence of averages of the form (2.2).

The flow geometry is invariant under the dihedral group D2 in the (x, j)-plane and if

Lj = L2 then the invariance group is Z)4, the dihedral group with eight elements. In

addition, this flow has a symmetry in the vertical direction,

R,: v —> (u(x, y, -z), v(x, y, -z), -w(x, v, -z), -0(x, y, -z)). (4.8)

(The circumflex is to contrast this with (2.7) in which temperature, 6, doesn't appear.)

Thus for the case in which the (x, >>)-plane projection is a square, the group of symmetries

has sixteen elements with the three generators R0, Rz, R[This in effect is the outer

product of R. with D4.] If the rectangular projection in the (x, y)-plane is not square the

group of symmetries has eight elements with the three generators RR_, Rv, and is the

outer product of R, with Dv

In any case, if we denote the elements of the group by T{p), it then follows that the

correlation matrix is

i p
k = (— Yj T^p)v(k,m; z)T<-p)v(k,m\ z')) (4.9)

P = l

where P is the number of elements of the group. Since a square (x, y)- projection yields a

16-element symmetry group this would seem to be a desirable case to pursue. On the one

hand it affords a 16-fold extension of the available data and on the other it considerably

reduces the labor in the eigenfunction calculation. Just as we arrived at (2.19) for the

channel problem we can show in this instance that all eigenfunctions of the kernel (4.9)

can be determined from 0 < m < n (4.10), i.e., from an octant. Moreover, it follows from

(4.8) that the eigenfunctions of (4.9) can be formatted in terms of odd and even functions

in the 2- direction, which further reduces the eigenfunction calculation.

5. Other geometries. We now briefly explore the symmetry properties of some of the

more commonly studied flows.

Flow past bodies of revolution. In this case, we take the uniform upstream flow in the

A-direction and consider cylindrical coordinates (x,r,8) with velocity components

(w, vr, ve). Then for bodies of revolution such as a sphere the transformation

Te:(x,r,0,u,vr,vg) (x,r,9 + a,u,vr,v>e) (5.1)

for any |a| < m produces an admissible flow. In addition, we have the discrete symmetry

Re:(x,rJ,u,vr,ve) -► (x,r,~6,u,vr,-ve). (5.2)

Flow in a circular pipe. If the generator of the pipe lies in the x-direction then

translation in the x-direction, Tx, (2.1), produces admissible flows as does the rotation, Te,

(5.1), and the reflection, Rg, (5.2).

Flow past a circular cylinder. We denote the upstream uniform flow direction by x and

the perpendicular direction containing the axis of the cylinder by y. Then other admissible

flows are generated by: translation in the v'-direction, Tv\ reflection in the (x, z)-plane), R v,
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(2.8); reflection in the (x, }>)-plane, Rz, (2.7); and rotation of 180° about the A-axis,

R:RV, (2.9). In other words, Tx along with this dihedral group D2 on the (y, z)-plane.

Plane Couette flow. We take (x, y) to be the plane of flow with a the direction of flow

and z the spanwise direction. The invariance group is now composed of translation in the

z-direction, T:\ reflection in the (x, j)-plane, R:, (2.7); rotation through an angle tt about

the z-axis, Tm\ and the product R,T„.

Taylor-Couette flow. Take the axis of rotation in the x-direction and cylindrical

coordinates (x,i\6). The invariance group is now composed of translation in the

x-direction, Tx, (2.1); reflection in the plane normal to x, Rx: rotation around the x-axis,

7}, (5.1).

6. Transformations. In anticipation of the results of Pt. Ill we mention the application

of the eigenfunctions or coherent structures as a basis set in the Galerkin procedure for

general flows. Two considerations are of immediate concern: (1) situations in which the

flow parameters are changed and, (2) situations in which the geometry is altered. The

former is considered in Pt. Ill, while in this section we make some brief remarks on

changes in geometry. In what follows it is probably useful to imagine the eigenfunctions as

residing in computer files, i.e., they are known numerically at a finite set of lattice points.

In speaking of the transformation of eigenfunctions we mean the mapping of these

discrete locations and the values of the flow at them.

Under a sufficiently regular mapping of three-space

x = F(X) (6.1)

the complete set (V,,} maps to

(V„(F(X))} = (W„(X)}, (6.2)
some new (complete) basis set. Boundary conditions are preserved since they were taken

to be homogeneous or periodic and are being sent to new appropriate locations. Ortho-

gonality is in general lost (unless the Jacobian is taken to be the weight function), but may

be recovered through the use of the Gram-Schmidt procedure under the inner product,

(1:2.8), and taken with respect to the new independent variables. In following such a

program, it is desirable that problems with like boundary conditions and similar nature be

treated. The more removed the transformed problem, the greater the expected number of

basis functions necessary to fit the situation. To illustrate some of these points we consider

some simple situations.

Rectilinear Boundaries. As a first, and very simple, example we consider a problem with

rectilinear boundaries as, for example, the convection or channel problem. In the simplest

case we wish to transform a box to another having a different aspect. Denote the

transformation taking the original box to the new box by

X = X(x) = (*(x),y(x),Z(x)).

The coherent structures then transform to {F("'(x(X))}, which in general are not incom-

pressible. In fact, if we denote the velocity components of a typical coherent structure by

Vj, j = 1,2, 3, then

W, Wj 9^/c , x

J K J
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For the simple case being discussed here Xk j is a constant matrix. Therefore if we take

w: = W,(X) = XkjVJ(x(X)) (6.4)

it then follows that

9 W:

9^-0- (65)

Since V satisfies the boundary conditions the linear combination of these W given by (5.4)

does also.

It is therefore clear that we can in this way construct a complete set of basis functions

{W(n)} for the transformed problem. These will satisfy the boundary conditions and, as

well, each will be incompressible. In general only orthogonality is lost, although for the

simpler versions of the convection and channel problems even orthogonality is preserved.

However, even when all this is true the set {W(n)} will not in general be the coherent

structures of the problem. This last point will be further taken up in Pt. III.

Three-dimensional flows in two-dimensional geometries. As a second, and more serious,

example of a mapping method we consider problems for which the boundaries are

two-diraensional, but the flow is not. Examples are flow in a pipe or flow past a cylinder.

The problem is then to generate a basis set for other two-dimensional geometries of the

same connectivity, for example, to treat flow in a pipe of noncircular cross section from

results on the circular cross section, or to treat flow past an airfoil based on flow past a

circular cylinder.

As in the previous example, we consider incompressible flow and assume a basis set

{V,n,(x)} of functions. In addition to being incompressible, these satisfy homogeneous

boundary conditions on boundaries 9b lying say in the (x, j^-plane,

V<n)( x, y, z ) = 0; (xj) e 9i. (6.6)

We consider a flow of like nature in a second domain of the same connectivity and

boundaries 9B. Then, under mild conditions, the Riemann mapping theorem assures us of

a conformal mapping

x = 4>(X,Y), y = \p(X,Y) (6.7)

such that 9B maps to 9b, and and 4" satisfy the Cauchy-Riemann equations. For

example, a circular pipe can be conformally mapped to an elliptic pipe and a circular

cylinder to an airfoil under the Jukowski transformation [4], Extremely efficient numerical

codes are available for carrying out more general transformations [5].

If we write a typical eigenfunction as

V = (VltV2,V3) (6.8)

and set the Jacobian of the transformation to

(69)
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then

W = (W1,W2,W3) = TV= (v^+V2^,V^+ V2\^,JV3) (6.10)

is incompressible, i.e.,

dW, 3W2 dW,
Vx 3X + 37 +~9Z~~° ^611^

in the new coordinate system as may be verified directly. Since V satisfies homogeneous

boundary conditions so also does W. It therefore follows that

(W"} = {TV1"*} (6.12)

constitute an admissible set of basis functions. (In general they are no longer orthogonal.)

It is of interest to point out that the case of the circular pipe, for which extensive

experimental data exist [6] and for which numerical data also exist [7] is a candidate for

the direct method. On the other hand, the elliptical cross section (or any other cross section

for that matter) is out of reach by this method. The transformation method just discussed

should nevertheless produce a reasonable set of functions based on the circular case.

7. Further comments.

1. Throughout our discussion there has been an emphasis on the discrete groups and

their extension of the available data. However, we have also applied the continuous groups

of transformations, (2.1). It is of importance, for example, in error estimates to assess how

these extend the available data. Toward this end denote a typical spatial correlation length

by A. Then a translation in a horizontal direction of A produces a new member of the

ensemble. For example if v(x) represents an admissible flow, then v(x + A, y, z) repre-

sents an admissible flow which is statistically independent. Hence if 2L1 and 2 L2 denote

the spatial periods in the horizontal directions the available data is extended by the factor

(2Lj • 2L2)/A2. That is, averaging over the groups (2.1), as typified by (2.2), results in the

members of the ensemble being increased by this factor.

2. Another result of applying the symmetry groups of a flow geometry is in zeroing out

appropriate quantities. A situation often encountered in data analysis is that of finding a

quantity, which should have a zero mean, but tending to zero slowly and not crossing the

zero axes. An excellent example of this is given in chapter III of Feller's book [8], where

coin tossing is considered. It is shown there that in considering the gain in tossing a fair

coin, infinity is the expected number of trials between zero crossings. In the context of say

the convection problem we should find (u) = 0, or (u1u2) = 0 = (u2u3), but in practice

we find an annoying persistence of signature. However, after the application of group

averaging, such quantities zero out. Moreover a general cleanup in the form of K or k

occurs after imposing the symmetries of the problem.

3. The continuity equation for incompressible flows,

3 u dv _

to + 3^ + 3? = '
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imposes a linear relation on the velocity components. This in turn implies a degeneracy in

the operator K. Thus for the channel problems one third of the eigenvalues should be zero

and for the convection problem one fourth should vanish. This therefore suggests that a

further reduction in the formulation is possible. For example, consider an incompressible

flow for which plane waves

exp[/p • x] = exp[i(plxl + p2x2 + />3x3)]

are a suitable basis. Then

V = (aa + 6p A a)exp[/p ■ x] (7.1)

with

« = (Pi - Py - Pn P\ ~ Pi) (7-2)

for arbitrary a and b represents an incompressible flow. Thus, for a suitable chosen set

{P„}>

V = L[an(t)an + bn(t)(p„ A aj]exp(/p„ • x) (7.3)

can be introduced into the dynamical equations and solved. The reduction from three to

two components is dealt directly in this way. A reduction to the same extent would then

be inherited by K or k.
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