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EXISTENCE AND UNIQUENESS IN NONCLASSICAL DIFFUSION*

By

K. KUTTLER1 and ELIAS C. AIFANTIS2

MM program, Michigan Technological University

Abstract. We consider a class of diffusion models that arise in certain nonclassical

physical situations and discuss existence and uniqueness of the resulting evolution

equations.

1. Introduction. A quite general program to consider diffusion processes in solids was

proposed recently by Aifantis [1]. It was based on the principles of continuum mechanics,

that is, the differential statements of conservation of mass and momentum together with

appropriate constitutive equations. It avoided unclear thermodynamic questions related to

the existence of chemical potentials and produced new classes of diffusion behavior within

a purely mechanical framework. Several of these classes are discussed in [1] where effects

of viscosity, memory, and nonlocality associated with the diffusing species were consid-

ered.

The program can briefly be described as follows. Instead of adopting the usual practice

of expressing the diffusion flux as the gradient of a chemical potential, we determine it as

a solution of a more general statement of momentum balance for the diffusing species.

This statement is a differential equation containing the divergence of a symmetric

second-order tensor T representing the stress supported by the diffusing species, and a

drag vector f modeling the resistance felt by the diffusing substance as it travels through

the matrix. The type of constitutive equations made for T and f define corresponding

classes of diffusion behavior.

Among them, Fick's law is derived as a special case when T is a function of the solute

density p and f is proportional to the flux j. If T also depends on a viscosity-like term

Vj(jij), it turns out that the usual parabolic diffusion equation is replaced by a

pseudoparabolic one of the form discussed by Ting [2] and Showalter [3]. If instead, T is

assumed to depend on the second density gradient V 2p(p,;), a fourth-order equation is
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obtained with a leading term A2p in addition to the usual ones entering the classical

diffusion equation. This is exactly the equation of spinodal decomposition introduced by

Cahn [4] to model uphill diffusion and phase separation in metallic alloys. Similar terms

of the form 3,(Ap) and A2p also arise by uncoupling the equations of double diffusivity as

originally proposed by Aifantis [5] and later discussed further by Aifantis and Hill [6], [7],

It should be emphasized that analogous higher-order derivatives have also appeared

previously in the literature of heat transfer and flow through porous media and the

resulting class of differential equations are known as " metaparabolic" or "Sobolev" type

[3], It is pointed out, however, that for diffusion problems such equations were first

derived in [1], thus providing a new interpretation on the physical origin of this class of

implicit evolution equations and additional justification for the study of their mathemati-

cal properties. In this connection, we remark that while certain explicit solutions of these

newly derived diffusion equations were obtained (e.g., [4]-[8]) and classical uniqueness

results have partially been studied (e.g., [6], [8]), their weak formulation [3] has not been

explored in the context of diffusion theory and time and space dependency of the

phenomenological coefficients occurring in the corresponding implicit evolution equation.

Section 2 outlines the derivation of a new nonclassical diffusion equation whose

straight-forward generalization yields the corresponding inhomogeneous implicit evolution

equation. Existence, uniqueness, and continuous dependence results pertaining to this

equation are established in Sec. 3 by utilizing results of Showalter [9] and Kuttler [10].

Finally, in Sec. 4 specific boundary value problems are considered.

2. The nonclassical diffusion equation. For a solute diffusing through a solid matrix the

following equations of mass and momentum balance hold [1]:

p, + divj = 0,

divT + f = j,, (2.1)

where p is the density and j the flux of the diffusing species, while T and f denote,

respectively, the symmetric stress tensor the diffusing substance exerts on itself and the

resistance force vector exerted upon it by the solid matrix. The index t denotes partial

differentiation with respect to time and the symbol div is the divergence operator

U I97"',
diy j = a"' div T = -r—i

oxi dXj

Equations 2.1 hold for all diffusion processes and it is only the nature of the constitutive

equations for T and f that determines how diffusion processes differ from one to another.

The constitutive equations to be assumed here are of the form

||j functions of { p, j, Vp, Vj, V 2p}, (2.2)

where Vp is the first gradient of density (Vp = 9p/3jc,), vj is a viscosity-like tensor

(Vj = dj]/dxk), and V 2p is the second gradient of p(V2p = 92p/3x,0x ). Thus, viscosity

is considered through vj and short-range nonuniformities (pseudo-nonlocality) through
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V 2p- Equations (2.2) are restricted by the invariance considerations of frame indifference

and material symmetry. For isotropic diffusion, the quantities T and f in (2.2) are

isotropic functions of their arguments. If, in addition, they are linear and also independent

of the position vector x, the following representations can be deduced by using standard

results of modern continuum mechanics [1]; see also [11],

(2.3)
T = —vp\ + A.(trD)l + 2ju,D + aAp\ + bv2p,

f = -aj - /3vp,

where the various phenomenological coefficients are constants and D is the symmetric

part of Vj [D = =?( Vj + (Vj)7")]. By substituting (2.3) into (2.1) we have

aj + j, = — FjVp + Av(trD) + 2judiv(D) + F2v(Ap), (2.4)

with F[ = 7t + (3 and F2 = a + b. On using the easily verified identities

div(D) = |[Aj + V(divj)], Aj = -curlcurlj + v(divjU ^ ^

v(trD) = v(divj), A(curlj) = curl( Aj), J

together with (2.4) we obtain

j + D*}, = -Dvp + D^y (divj) + ~D2 Aj + £v(Ap), (2.6)

where D* = a-1, D = a~xFv Dx = a_1(A + ju), Z)2 = and E = a~1F1.

By taking the curl of both sides of (2.6) and noting that the curl of a gradient vanishes,

we derive the following equation for curl j = v:

v, + ay = juAv. (2.7)

Proceeding formally and assuming that v and its derivatives are in L2(R") Pi Z.'(R") we

apply the Fourier transform in both sides of (2.7) to obtain

v, + av = -MklV (2-8)

with v = /// X\(x) dv denoting the Fourier transform of curlj. Since (2.8) is linear, it

follows that v = 0 (and therefore v = 0) if v = 0 at t = 0 or if initially j is given by the

gradient of a scalar field. Of course, the vanishing of v is guaranteed if j is delivered by a

gradient for all times, as assumed in the classical theory. We also note that a similar

argument implies v = 0, regardless of the value of v at t = 0, if the inertia term j, of (2.1)

is neglected entirely. Thus, with the result curlj = 0, a combination of (2.1)lt (2.5), and

(2.6) yields

j + Z)*j,= v(-Z>p-Z>p, + £Ap), (2.9)

with D = D1 + D2.

It is this last equation that we shall regard as the appropriate generalization of the first

Fick's law of diffusion. It models physical situations where viscosity and short-range

inhomogeneities associated with the diffusing species are important. On substituting (2.9)

into the mass balance equation (2.1)v we obtain the following equation:

p, + D*ptl = Dh.p + ~D\p, - Etfp. (2.10)
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An extension of this derivation to consider situations where the diffusion properties are

varying in time and space can easily be obtained by adopting the following set of

simplified constitutive equations:

(2.11)
T = c,pl + c2(trD)l + c3 tr( V 2p)l,1

f = -aj,

where a is a nonsingular symmetric matrix depending on x and t and the ct(i = 1,2,3)

are constants. The reason for neglecting the nonhydrostatic terms in (2.11)! and the Vp

term in (2.11)2 is that these terms did not contribute to the final form of the generalized

Fick's law (2.9) and (2.10) for the case of constant coefficients. We will also neglect the

inertia term j, since this quantity is small in usual diffusion situations. Under these

conditions, it follows that (2.1)2 yields, with (3 = a~\ the flux expression

j = pv(clP - c2p, + c3Ap), (2.12)

which with (2.1)j gives the following diffusion equation:

^■(p - c2div(Pvp)) = —qdivOvp) - c3div(3v(Ap)). (2.13)

We note that more general equations could have been obtained by letting the coeffi-

cients c, be tensors also depending on x and t. For brevity, we do not present the details

of such derivations here, but we remark that they all lead to differential equations that are

special cases of the following general fourth-order equation:

l^(p - EM A,(x>09/p)) - L3.-(Av(x'03yP)

+ E (-\)mDli(Ea/j(x,t)Dap) = (2.14)

M.I/8K2

where a, ft are multiindices and the various function coefficients will be specified later.

3. Existence and uniqueness. Motivated by the developments in the previous section, we

consider the following implicit evolution equation with time-dependent coefficients,

|^(p - E3,(Av(x'03yp)) - H^i{Du(\,t)dJp)
^ I' V ' ij

+ E (-1 )mD»(Ea/i(xj)Dap) = g(x,t), (3.1)

M. I0K2

and an initial condition of the type3

p(0,x) = p0(x), (3.2)

In actuality, the initial condition (3.2) will involve an operator B(t) to be defined later and reads:

lim, _ o + (B( t )p(t, ■), u) = ( B(0)po( ■), u) for all v in an appropriate Banach space of functions. This is because

the abstract theory to be used also applies to degenerate evolution equations in which the part of the equation

that is differentiated with respect to t could vanish entirely, thus making the initial condition (3.2) [but not its

proposed generalization] inappropriate.
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where the prescribed function p0(x) and the source function g(x, t) will be specified later.

Appropriate boundary conditions, of a form also to be discussed later, are attached to

(3.1) and the following assumptions are made on the various coefficients which are all

real-valued functions:

"Du - K
Z),; is bounded, measurable, and C1 in t,

Dijltj* Ofor^=(^,^,|3)GR3, (3.3)

D,j g L°°(S2 x[0,7]),

Eap e Lx(tt X [o, r]).

Next we state two basic definitions and a main hypothesis as follows:

Definition 1. Let V, W, and H be such that the following hold true:

QlSlJcFc^B), W = H = L2(tt). (3-4)

Definition 2. We introduce the following time-dependent operators:

(B(t)u,v) = J [w(x) u(x) -I- Djj(x, ?)9,m(x) djv(x) ] dx, u,v e W,

(A{l)u,v)= f
J o

Dij(x,t)diu(x)djv(x) + X EJx,t)Dau(x)D13 u{x)
a/S\ dx,

(3.5)

u e //2(fi), and v e V.

We adopt the notation that if u e L2(0, T; Au will denote the element of

L2(0,T\ V) with Au(t) = A(t)u(t) and a similar convention will apply to the term Bu.

Main Hypothesis. We assume that there exists at least one A e R for which the

following coercivity inequality holds:

2(A(t)u,u) + \(B(t)u,u) + (B'(/)«,«)> Cx||m||k, (3-6)

where > 0.

Before stating the main results on existence and uniqueness of solutions for the abstract

equation containing initial-boundary value problems for (3.1) as special cases, we need to

define what is meant by a solution. This is done in the following.

Definition 3. Let /e L2(0, T\ V). We define /' in the sense of V valued distribu-

tions by

/'(*)=- fTf(t)<P'(t)dt for all <j> G Co°(0, 7"). (3.7)
Jo

For / G L2(0, T\ V), we say that /' G L2(0, T\ V) if there exists g G L2(0, T\ V), such

that

f'(<t>)= fTg(,)<p(t)dt for all <p g Co°°(0, T). (3.8)
Jn
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It can be shown that the function g is unique; thus we may set /' = g. We also introduce

X= [u e L2(0, T; F): (i*Bu)' e L2(0, T; F')}, (3.9)

HI* II('**") ||z.2(o,r;K')- (3-10)

For convenience, we let Lu = (i*Bu)' for u e X and we also make use of the following

proposition whose proof is in [10].

Proposition 1. For m, » e I, the following hold.

(a) t -> (B(t)u(t), v(t))W: W equals an absolutely continuous function a.e. [denoted by

<5", »)(•)],
(b) (Lu(t), «(/)) = i[(^"' M)'(0 + (B'(t)u(t), w(0>] a-e-<

(c) / —> B(t)u(t) equals a function of C(0, 7"; H7") a.e. [denoted by #«(•)]>

(d) sup{||Bw(/)|| w., t e [0, 7]} < C||w[|^ for some C > 0,

(e) |(Bu, f)(/)| < CIMWMI x for some C > 0 and all t e [0, T],

(f) If Kt\ X -» A" is given by (Ktu,v)x, x = fQ(Lu(s),v(s)) ds + (Bu,v)(Q), then K,

is linear, continuous, and weakly continuous.

(g) (Ktu, m) > ">(0 + (Bu, m)(0)] + {fn(B'(s)u(s), u(s)> ds.

With the above, we can state the following existence and uniqueness theorem, which is a

special case of the results obtained in [10]. The existence part can also be obtained as a

specialization of the existence theorem of [9],

Theorem 1. Let4 / e L2(0,T\ V) and let u0 e W. Then there exists a unique solution

u e X to the problem

Lu + Au =/ in L2(0, T; V),

i*Bu{0) = i*B(0)uo in V.

Theorem 2. The solution of Theorem 1 satisfies the estimates

3 „ [< „ II2 , 4 /V |. . . „2

(3.11)

(5w, m)(0 + -tCj /"' ||«\\2yds < —— f ||/(i) ||t' + A T (Sw, «)(i) ds + (Bu, u){0),
4 y0 (-i •'o •'o

(3.12)

(Bu,u){t) < /r ll/llr^ + (b(0)uq,uo)
Jo

<? , (3.13)
4 /T „ ,, 2

where A is given in (3.6).

Proof. Estimate (3.12) follows from multiplying (3.11)! by u and using Proposition 1 to

integrate by parts. It is shown in Theorem 3 of [10] that (Bu,u)(0) = (Bu(0),u0).

Therefore, using (c) of Proposition 1, (Bu, «)(0) = (Bu(0), u0) <

((Bu, u)(0))1/2((B(0)uq, w0))1/2. Replacing (Bu, u)(0) in (3.12) by (Bu0, u0), an applica-

tion of Gronwall's inequaltiy [12] yields (3.13).

4 Note that /.'((),T: H)cz Z.2(0, 7"; V). By requiring / to just be in L2(0,T\ V'), the consideration of general

boundary conditions for (3.1) is simplified. This will be illustrated in the example of boundary value problems

considered in Sec. 4.
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Corollary 1. Let un e X be the solution to (3.11)! and the initial condition i*Bun(0) =

i*B(0)uOlt. Then if u is a solution of (3.11) and lim^^i^OXMo - u0n), u0 - u0n) = 0,

it follows that lim„^^— u\\x = 0.

Proof. Let w„ = un - u. Then wn satisfies

Lwn + Awn = 0 in L2(0, T\ V), \

i*Bwn(0) = i*B(0)(uOn — u0) in V'.j

Estimate (3.13) implies that (Bwn,wn)(t) converges uniformly to zero on [0, T], This along

with estimate (3.12) implies that \\wn\\Li(0T.V) converges to zero. Therefore, Awn and

consequently Lwn converge to zero in L2(0, T\ V), and this completes the proof. Next we

consider the question of when (3.11)2 can be replaced with the stronger condition

Bu(0) = B(0)u0 in W', (3.15)

and prove

Theorem 3. Let w0 e W and assume that there exists a sequence {u0l,}"=1 ^ V such that

lim,, - m0h), u0 - w0„) = 0. Then if u is the solution of (3.11), condition

(3.11)2 can be replaced with (3.15).

Proof. Suppose first that u() e V. Then w(t) = u(t) - u0 implies w e X and i*Bw(0)

= 0. It is shown in [10] that there exists a sequence {vv„} c X such that wn(t) = 0 near

t = 0 and limn_00||M'n — w||^ = 0; therefore, from (d) of Proposition 1, Bw(0) =

limOJOO Bwn(0) = 0, and thus Bu(0) = B(0)u0. Next, let un be the solution of (3.11) with

u{]n in place of w0 and wn= u — un. Then wn is the solution of

Lwn + Awn = 0 in L2(0, T; V), \

i*Bw„{0) = i*B(0)(u0 - u0n), )

and (3.13) establishes that limn_00(fiw,I,wn)(t) = 0 uniformly for t e [0,7]. Inequality

(3.12) now implies that lim,1_oo||wn||L2(0>r.(/) = 0 and (3.16), that lim„_00Lwn = 0 be-

cause of the continuity of A. Therefore,

Bu(0) = lim Bun{0) = lim B(0)uOn = B{0)un, (3.17)
n —* oo n—*cc

which completes the proof.

In concluding this section we note that the condition of Theorem 3 that allows the

replacement of (3.11)2 by (3.15) amounts to the imposition of a compatibility constraint

between boundary and initial conditions. This will be seen in the applications to specific

initial-boundary value problems discussed in the next section.

4. Boundary value problems. In this section we discuss specific initial-boundary value

problems obtained as special cases of the theorems given in Sec. 3. Let / e L2(0, T\ V),

such that

(/, u) = [(g(r),w(0)i/ ~ {(i*Bw)'(t),v(t)) - (^w(r),o(/)>] dt

3 v(t)

(3.16)

+ fTJo 3 n !.-(3£2)
dt, (4.1)
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where /, k e L2(0, 7; L2(3£2)), g e L2(0. 7; //), w e H\0, 7; //2(C2)) are all given; 30 is

a smooth two-dimensional manifold with n its outward normal, and the terms involving

L2(3S2) make sense because v(t) e //2(S2).

Suppose that (3.6) holds so that there exists a unique solution, « e X, to

(4.2)
Lu + Au = / in L2(0, T: V),

i*Bu(0) = i*B(0){un - w(0)) in F',;

and let p = u + w, u e Co°°(0, 7; K). On multiplying (4.2), by v and integrating by parts

we have
rT

f (Bp(t),v'(t))dt + f (Ap(t),v(t))dt = f (g(t),v(t))„dt
J() J(\ Jn

9 v(t)
+ L (/(0^(0)/.-oo) + U(0'

3 n L (dQ)
dt. (4.3)

On rearranging (4.3) we obtain

/' [-((flu)'.p) w+ {B'v,p)w\ dt + f (Ap,v)dt

fT (g(t),v(t)),fdr + fT
J() J()

(l(t),v(t)) t2(9Q) + ( k(t), ^ -
L-( 3S)

dt

(4.4)

for all v g C,5c(0, T\V). Let X = {v e L2(0, T; K): (By)' e L2(0, 7; fT')}, ||u||* =

llwll i:-(0.T;V) + IKBu)'\\i?(0.T-wy ancl X the closure of Co°°(0, T\ V) in X. Then (4.4) holds
for all v e X.

Next we define 7: V -> L2(3£2) X L2(3S2), such that

Ym(x) = (h(x), |^(jc)j; (4.5)

thus ker 7 = //(2(£2) [15]. On letting X0 = {u e X: yv(t) = 0 a.e.}, 96 = y( X), and 7:

X/X0 -* 96 be given by

7([«]) = 7«, (4.6)

we define \\b\\a = ||y _ 'ft||x/x,y Also f°r v e X, Sfp e A-', and Sp e Xq are defined by

(Sfp,v) = - /"r ((Bv)',p) dt + fT (B'v,p) dt + (T(Ap,v)dt,1
•'0 •'0 Jo

Sp = i*.'/'p,

where /: -» A" is the inclusion map.

Now by letting v e Xq, it follows that

(Sp,u> = (yp,u) = fT {g(t),v(t))Hdt. (4.8)
Jo

Since both X(l and X are dense in L2(0, T\ H), (4.8) implies that Sp e L2(0, T\ H') and

that for all v e A"0,

(yP,v) - (Sp,v)l2(0T:H) = 0. (4.9)

(4.7)
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Also if 77: X -» X/XQ is given by ttu = [w], it follows that there exists a unique element of

3£\ denoted by 0p, satisfying the condition (S^p, v) — (Sp, v)L2(0 T.H) = (ir*y*dp, v) for

u e X. Thus for all d £ X,

{Sfp,v) - (Sp,v)L2(0T H)= (dp,yv)a,a. (4.10)

The discussion leading to (4.10) is similar to the treatment of boundary value problems

given in [15] where 9 is called the abstract Green's operator. Summarizing (4.10), (4.8),

and (4.4), we have

(yp,v) = fT (g{t),v(t))ffdt for all v e X0,
Jo

p = u + w where u(t) e V a.e.,

(dp,yv) = (T (l{t),v(t)) + [r 2 0dt>
Jo ■'o \ an j l2(3Q)

(4.11)

where (4.11)! implies that p is a weak solution of the appropriate differential equation,

(4.11)2 gives the forced boundary conditions, and (4.11 )3, which holds for all v e X,

yields the variational boundary conditions.

4.1. Dirichlet boundary conditions. Here we let V = //,; (12) and assume that each En/} is

continuous with E|a|t^=2 Ea^a^ > C|£|4 for some C > 0 and all £ e Rj. Thus the

conditions of Gardings inequality [13] are satisfied, and (3.6) holds for some A and

C\ > 0. In this case (4.11)3 is trivial while (4.11)2 yields the following weak form of

time-dependent boundary conditions:

p(t) - w(t) e Hq(Q) a.e. (4.12)

To see that (4.11)x is the weak form of the relevant differential equation, let v e

C(J°((0, T) X S2) and use the definitions of A{t) and B(t) in (4.4). If a measurable

representative for p is chosen, (4.11 )x and (4.7)! imply

- fT f p(x, t)v,(x, t) + Du(x,/)8,p(x, r)8 u,(x, t) dxdt
Jo

rT

+ f f Djj(x,t)djpdivdxdt+ f f XI EaJx,t) DapDpv dx dt
J0JQ J0 JQ H,|(S|<2

f f g(x, t) u(x, t) dx dt, (4.13)
A)

which shows that p is indeed a weak solution of (3.1).

On returning to the initial condition, we note that (4.2)2 implies that

i*Bp(0) = i*B(0)uo. (4.14)

If u{) - w(0) e V where the closure is taken in W, then Theorem 3 implies Bp(0) = Z?(0)m0.

In particular, un - w(0) e V is the requirement that the initial conditions on 9S2 are

compatible with the boundary conditions at t = 0. Moreover, if D;/(x, t) do not depend

on /, the condition Bp(0) = B(0)«o implies p(0) = u0.
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In closing, we note that (4.12) is equivalent to the more familiar form of boundary

conditions:

p(x,t) = w(x, t), x <= 0S2, )

3,p(x,/) = 9,w(x,/), x e dttj

4.2. Variational boundary conditions. In discussing boundary conditions of the varia-

tional type, we consider a special case of (3.1) where

(A(t)u,v) = [ ( DI (x, t )9,m3 i> + AmAu) dx, (4.16)
JQ

and V = [u e H2(i2): du/dn = 0 on 3^}. With || ||0 and || ||, denoting the L2(&) and

norms respectively, we have

Lemma 1. There exists a constant C0 > 0 such that for all it e V,

||u||o + ||Am||0 ̂ Q||"lb- (4.17)

Proof. For any /e L2(£2), there exists a unique u e V such that u — Am = /, as

implied by elliptic regularity [15]. Thus, if L: V —> L2(£2) is given by Lu = u — Am, L is

one to one, onto, and continuous. Because of the open mapping theorem [16], L 1 is

continuous, ||u||,, = ||L_1Lm||^ < ||L"11|(||w||0 + ||Ai/||0), and this completes the proof.

Lemma 2. For given e > 0 there exists A" > 0 depending only on e and £2 such that

IMIi < e||m||2 + \\u\\0K for all u G H2(£l).

Proof. See reference [14].

Lemmas 1 and 2 may be used to verify (3.6) for the case where V is specified as above,

and then (4.11), implies p is a weak solution of

•jyl p - ~ T,di{Dij(xi')djp) + = g(x,0- (4.18)
^ i.j '-j

The condition (4.11)2 yields a forced boundary condition of the form

7f-(x, t) = (x, t), xeSS!. (4.19)
o n d n

Finally, (4.11)3 is a weak formulation of a corresponding variational boundary condition

which can be determined by assuming sufficient smoothness and then applying the

Divergence Theorem. This yields the boundary condition

^(D.jdjpn,) +(DiJdJp)ni- = I ondQ, (4.20)

while, as before, the initial condition is given by

i*Bp(0) = i*B(0)uo. (4.21)

For our last example, let V = {u e H2(i2) such that f3Q(du/dn) ds = 0, and m = an

unspecified constant on 9S2}. If L: V -» L2(fi) is given by Lu = u - Am, it can be shown

(by employing the techniques used in [13], [15] to obtain elliptic regularity) that L is

injective, onto, and continuous; thus by the open mapping theorem [16], L l is also



EXISTENCE AND UNIQUENESS IN NONCLASSICAL DIFFUSION 559

continuous. It follows that for u e V,

IIuH2 = \L~l(Lu) ||2 < U-L^H IIZ-M||o < ||L 111(11 «||o + II Am||o),

and, as in the preceding example, the basic hypothesis (3.6) holds. Therefore, we have

obtained existence and uniqueness of a weak solution for the equation (4.18) subject to the

initial condition (4.21) and the boundary conditons (4.11)23. For this example, (4.11)2

yields

p(x,t) = C(t) + w(x,t), x e 9£2,^

r dp . , r dw(x, t) } (4.22)
-£-(x,t)ds = / —^   ds '

Jsa 9" Jda on

where C(-) is an unknown function of t only, and (4.11)3 is a weak formulation of the

variational boundary conditions of the form

4 +V/P»< - ̂ |* - 4
f Ap(x, ?)^(x,/) ds = f k(x,t)^-(x,t) ds,

ho. on J* o 9 n

(4.23)

with (4.23), holding for all v e V. In this connection, we note that (4.23)2 has a local

description of the form

Ap(x, t) — k(x, t) = r(t), (4.24)

where r( ■) is an unknown function of t. To see this, let H0 = {/ e L2(9S2): / = constant}

so that dv/dn e Hq for each v e V and thus Ap — k is in H0X -1 = //0. Since this holds

for each t, the result (4.24) is established.

4.3. Other boundary conditions. Obviously, other types of boundary conditions may be

discussed by these methods. Time dependent, nonhomogeneous ones are obtained by

choosing / e L2(0, T; V) and V c //2(S2). Then, the abstract weak formulation of the

auxiliary conditions is given by (4.11 )23. In every case, the crucial hypothesis to be

verified is (3.6). We point out that if V is chosen to be all of H2(Sl) in Sec. (4.2), the

relevant boundary conditions are of purely variational type, that is,

^(fyjdjpn,.) + DIJdJpnJ - = /(x, t), x e 0Q,| ^ ^

Ap = A"(x, t), x e 90, j

which generalize a corresponding situation discussed in [8],
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